進階搜尋


下載電子全文  
系統識別號 U0026-0307201914355300
論文名稱(中文) 回收都市垃圾焚化飛灰中鋅金屬之研究
論文名稱(英文) Study on the recovery of Zinc from Municipal Solid Waste incineration fly ash
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 黃信翔
研究生(英文) Hsin-Hsiang Huang
學號 N46064159
學位類別 碩士
語文別 中文
論文頁數 91頁
口試委員 召集委員-陳吉良
口試委員-邱瑞基
口試委員-陳曉鳴
指導教授-申永輝
中文關鍵字 焚化飛灰  水洗  酸浸漬  離子交換 
英文關鍵字 fly ash  washing  acid leaching  ion exchange 
學科別分類
中文摘要 工業革命後,醫療以及生產力的進步,使全球人口急速上升,多項環境問題也因此產生,反應灰以及飛灰是廢棄物進入焚化廠後的副產品,其中有許多的重金屬離子,例如Cd、Cr……等。本論文以回收飛灰以及反應灰中Zn金屬為目的,首先透過樣品初步測試其性質,再經過水洗、酸浸漬、離子交換等實驗進行研究。
本研究原料為台南城西焚化廠反應灰以及飛灰,首先利用各項儀器,如:XRF、XRD、SEM、FTIR等,測量反應灰以及飛灰原料的基本性質,再以水洗實驗對兩種灰進行溶解度測試,最佳操作條件為:反應灰液固比15、水洗時間2小時;飛灰液固比15、水洗時間1小時。
經過水洗實驗後的原料分別為反應灰樣品以及飛灰樣品,以兩種酸:鹽酸、硫酸,對樣品進行酸浸漬實驗,實驗結果為:反應灰以及飛灰皆以硫酸較鹽酸佳,最佳參數為反應灰液固比10 毫升/克、濃度1 N、溫度70°C、時間2小時;反應灰液固比15 毫升/克、濃度2 N、溫度50°C、時間4小時。
最後進行離子交換實驗,IRC-747較IRC-748適合進行Zn離子交換實驗,Zn符合Langmuir吸附熱力學模型,後續使用樣品酸浸漬後的溶液進行離子交換實驗,結果得知離子交換樹脂需要先將樹脂調成約pH=2,且必須在自行脫附前終止實驗。
英文摘要 Over one million tons of MSW incineration fly ash is generated annually in recent years in Taiwan. Only a few percent of the ash was used as a raw material for other utilities other than landfill. Fly ash contains many harmful heavy metals such as Cd and Cr etc. In addition, fly ash contains many valuable metals such as Zn, Ga, etc.
In order to recover Zn metal from fly ash, this paper first design an experiment to know the fly ash’s physical and chemical property. Then, treatment processes such as water leaching. acid leaching, and ion exchange were used.
Test samples were subjected to FTIR, SEM, XRD, XRF, and AA to understand their physical and chemical property. Then water leaching was conducted with optimum experimental conditions. Acid leaching was conducted by using two different acid (hydrochloric and sulfuric) to extract target metal ions and finally the ion exchange process was conducted to concentrated and recover the target metal ions.
The optimum process was developed to recover zinc from municipal solid waste incineration bottom and fly ash. Aqueous solution containing approximately 1 wt% of zinc was obtained by leaching with sulfuric acid. Zn was then concentrated by using a chelating resin IRC-747 in column mode. Resin adsorption amount for Zn was 2.7~3.2 g/l.
論文目次 封面
考試合格證明
摘要 I
致謝 VII
目錄 VIII
表目錄 X
圖目錄 XI
第一章 前言 1
1-1研究緣起 1
1-2研究目的 1
第二章 文獻回顧 3
2-1飛灰簡介 3
2-1-1廢棄物分類 3
2-1-2飛灰來源 5
2-1-3飛灰產量 6
2-2飛灰化學組成及金屬對人體的危害 9
2-2-1飛灰化學組成 9
2-2-2金屬對人體的危害 11
2-3飛灰處理方法 12
2-3-1廢棄物處理技術以及飛灰處理方法 12
2-3-2飛灰再利用技術層次分類 14
2-3-3鋅金屬利用[13] 15
2-4離子交換法以及吸附理論 15
2-4-1離子交換法 15
2-4-2離子交換樹脂與特性 15
2-4-3離子交換反應簡介 16
2-4-4離子交換管柱操作方法 17
2-4-5吸附理論 19
2-5前人研究 20
2-5-1飛灰研究方向 20
2-5-2以飛灰為材料回收不同元素 23
2-5-3 pH對飛灰中金屬離子的浸漬效率關係 24
2-5-4飛灰的其他用途 25
2-5-5其他量測方式以及確認 25
2-5-6離子交換 26
第三章 實驗材料與流程 28
3-1實驗材料及設備 28
3-1-1實驗材料及藥品 28
3-1-2實驗設備 31
3-1-3分析設備 32
3-2實驗方法及步驟 34
3-2-1實驗流程圖介紹 34
3-2-2水洗 35
3-2-3酸浸漬 35
3-2-4離子交換 35
3-2-5 飛灰樣品測定 35
第四章 結果與討論 37
4-1 飛灰樣品相關確認 37
4-1-1 XRD 晶相測定 37
4-1-2化學成分分析 39
4-1-3表面分析 41
4-1-4可燃份分析 49
4-1-5官能基分析 49
4-2飛灰水洗實驗結果 51
4-2-1反應灰分別進行液固比以及時間參數改動 51
4-2-2飛灰分別進行液固比以及時間參數改動 53
4-3 飛灰酸浸漬實驗結果 55
4-3-1鹽酸作為浸漬液-改變浸漬液和飛灰樣品之液固比對浸出率之影響 56
4-3-2鹽酸作為浸漬液-改變浸漬液對飛灰樣品液固比之影響 58
4-3-3鹽酸作為浸漬液-改變浸漬液溫度對浸出率之影響 60
4-3-4鹽酸作為浸漬液-改變浸漬實驗時間對浸出率之影響 62
4-3-5硫酸作為浸漬液-改變浸漬液和飛灰樣品之液固比對浸出率之影響 64
4-3-6硫酸作為浸漬液-改變浸漬液濃度對飛灰樣品浸漬率之影響 66
4-3-7硫酸作為浸漬液-改變浸漬液溫度對浸出率之影響 68
4-3-8硫酸作為浸漬液-改變浸漬實驗時間對浸出率之影響 70
4-4 以離子交換法提取飛灰中鋅金屬離子可行性實驗 72
4-4-1離子交換實驗材料 72
4-4-2 使用Zn模擬液作離子交換實驗樹脂之選擇 73
4-4-3離子交換樹脂之吸附熱力學模型 75
4-4-4使用反應灰浸漬液作離子交換實驗 79
4-4-5使用飛灰浸漬液作離子交換實驗 83
第五章 結論與建議 85

參考文獻 87
參考文獻 1. Zhou, H., et al., Application of digital holographic microscopy and microfluidic chips to the measurement of particle size distribution of fly ash after a wet electrostatic precipitator. Flow Measurement and Instrumentation, 60: p. 24-29.(2018)
2. Sushil, S. and V.S. Batra, Analysis of fly ash heavy metal content and disposal in three thermal power plants in India. Fuel, 85(17-18): p. 2676-2679.(2006)
3. Kim, A.G. and P. Hesbach, Comparison of fly ash leaching methods. Fuel, 88(5): p. 926-937.(2009)
4. Tsuboi, I., E. Kunugita, and I. Komasawa, RECOVERY AND PURIFICATION OF BORON FROM COAL FLY-ASH. Journal of Chemical Engineering of Japan, 23(4): p. 480-485.(1990)
5. Fedje, K.K., et al., Removal of hazardous metals from MSW fly ash-An evaluation of ash leaching methods. Journal of Hazardous Materials, 173(1-3): p. 310-317.(2010)
6. Fang, Z. and H.D. Gesser, Recovery of gallium from coal fly ash. Hydrometallurgy, 41(2-3): p. 187-200.(1996)
7. Seggiani, M., S. Vitolo, and S. D'Antone, Recovery of nickel from Orimulsion fly ash by iminodiacetic acid chelating resin. Hydrometallurgy,81(1): p. 9-14.(2006)
8. Bosshard, P.P., R. Bachofen, and H. Brandl, Metal leaching of fly ash from municipal waste incineration by Aspergillus niger. Environmental Science & Technology, 30(10): p. 3066-3070.(1996)
9. 曾思萍, 以高溫熱熔融法回收處理廢碳鋅/鹼性電池之研究. 民102.
10. 焚化灰渣處理技術之探討(二).
11. 高恩懷、王鯤生, 垃圾焚化灰渣利用之研究建制及推廣計畫(第一年). 民87.
12. 高思懷、王鯤生, 垃圾焚化灰渣利用之研發建制及推廣計畫(第三年) 民88
13. 謝承育, 利用由電弧爐集塵灰回收之粗氧化鋅製取片狀鋅粉, in 化學工程與材料工程系. 國立高雄應用科技大學: 高雄市. p. 75.(2013)
14. Calvo, G., Decreasing Ore Grades in Global Metallic Mining:
A Theoretical Issue or a Global Reality? resources, 2016.
15. 朱屯, 萃取與離子交換. 冶金工業出版社.(2005)
16. 蕭因秀, ITO蝕刻廢液中銦金屬吸附回收之研究, in 資源工程學系碩博士班. 國立成功大學: 台南市. p. 89.(2009)
17. Quina, M.J., et al., Technologies for the management of MSW incineration ashes from gas cleaning: New perspectives on recovery of secondary raw materials and circular economy. Science of the Total Environment, 635: p. 526-542.(2018)
18. Izquierdo, M., et al., Coal fly ash-slag-based geopolymers: Microstructure and metal leaching. Journal of Hazardous Materials,166(1): p. 561-566.(2009)
19. Wu, H.Y. and Y.P. Ting, Metal extraction from municipal solid waste (MSW) incinerator fly ash - Chemical leaching and fungal bioleaching. Enzyme and Microbial Technology,38(6): p. 839-847.(2006)
20. Safarzadeh, M.S., D. Moradkhani, and P. Ashtari, Recovery of zinc from Cd-Ni zinc plant residues. Hydrometallurgy, 97(1-2): p. 67-72.(2009)
21. Tsuboi, I., et al., RECOVERY OF GALLIUM AND VANADIUM FROM COAL FLY-ASH. Journal of Chemical Engineering of Japan,24(1): p. 15-20.(1991)
22. Navarro, R., et al., Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes. Waste Management,27(3): p. 425-438.(2007)
23. Torralvo, F.A. and C. Fernandez-Pereira, Recovery of germanium from real fly ash leachates by ion-exchange extraction. Minerals Engineering,24(1): p. 35-41.(2011)
24. Mousa, K.M., extraction of nickel from fly ash of heavy oil using ammonium hydroxide. Al-Qadisiyah Journal for Engineering Sciences, 5(Vol 5 No 1 (2012).
25. Yao, Z.T., et al., A review of the alumina recovery from coal fly ash, with a focus in China. Fuel,120: p. 74-85.(2014)
26. Wang, Y.Q., D.Y. Ren, and F.H. Zhao, Comparative leaching experiments for trace elements in raw coal, laboratory ash, fly ash and bottom ash. International Journal of Coal Geology,40(2-3): p. 103-108.(1999)
27. Komonweeraket, K., et al., Effects of pH on the leaching mechanisms of elements from fly ash mixed soils. Fuel, 140: p. 788-802.(2015)
28. Jiao, F.C., et al., Study on the species of heavy metals in MSW incineration fly ash and their leaching behavior. Fuel Processing Technology, 152: p. 108-115.(2016)
29. Nagib, S. and K. Inoue, Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid and/or alkaline leaching. Hydrometallurgy, 56(3): p. 269-292.(2000)
30. Ugurlu, A., Leaching characteristics of fly ash. Environmental Geology, 46(6-7): p. 890-895.(2004)
31. Izquierdo, M. and X. Querol, Leaching behaviour of elements from coal combustion fly ash: An overview. International Journal of Coal Geology, 94: p. 54-66.(2012)
32. Liu, F., et al., Leaching characteristics of heavy metals in municipal solid waste incinerator fly ash. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering,40(10): p. 1975-1985.(2005)
33. Praharaj, T., et al., Leachability of elements from sub-bituminous coal fly ash from India. Environment International, 27(8): p. 609-615.(2002)
34. Yu, W.H., et al., A low-emission strategy to recover lead compound products directly from spent lead-acid battery paste: Key issue of impurities removal. Journal of Cleaner Production, 210: p. 1534-1544.(2019)
35. Li, Q., et al., Extraction of manganese and zinc from their compound ore by reductive acid leaching. Transactions of Nonferrous Metals Society of China, 27(5): p. 1172-1179.(2017)
36. Feng, D. and J.S.J. van Deventer, The role of heavy metal ions in gold dissolution in the ammoniacal thiosulphate system. Hydrometallurgy,64(3): p. 231-246.(2002)
37. Ho, H.H., et al., Potential release of selected trace elements (As, Cd, Cu, Mn, Pb and Zn) from sediments in Cam River-mouth (Vietnam) under influence of pH and oxidation. Science of the Total Environment, 435: p. 487-498.(2012)
38. Pozdniakova, T.A., et al., Brown macro-algae as natural cation exchangers for the treatment of zinc containing wastewaters generated in the galvanizing process. Journal of Cleaner Production,119: p. 38-49. (2016)
39. Sarver, R.H., Aerosolization as a means of sample preparation of geological materials for XRF analysis and its validity compared to EPA method 3050A digestion. Journal of the Air & Waste Management Association,46(3): p. 234-240. (1996)
40. Sastre, J., et al., Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction. Analytica Chimica Acta,462(1): p. 59-72. (2002)
41. Lima, A.T., et al., Characterization of fly ash from bio and municipal waste. Biomass & Bioenergy,32(3): p. 277-282. (2008)
42. Zhu, F., et al., Chloride Behavior in Washing Experiments of Two Kinds of Municipal Solid Waste Incinerator Fly Ash with Different Alkaline Reagents. Journal of the Air & Waste Management Association,59(2): p. 139-147. (2009)
43. Kuo, Y.M., K.L. Huang, and C. Lin, Metal Behavior during Vitrification of Municipal Solid Waste Incinerator Fly Ash. Aerosol and Air Quality Research,12(6): p. 1379-1385. (2012)
44. Arvelakis, S., et al., Studying the melting behaviour of fly ash from the incineration of MSW using viscosity and heated stage XRD data. Fuel,87(10-11): p. 2269-2280. (2008)
45. Kuchar, D., et al., Sulfidation treatment of molten incineration fly ashes with Na2S for zinc, lead and copper resource recovery. Chemosphere,67(8): p. 1518-1525. (2007)
46. Tojo, Y., et al., INFLUENCE OF WEATHERING OF BOTTOM ASH ON THE LEACHING BEHAVIOR OF CESIUM. International Journal of Geomate,12(32): p. 43-49. (2017)
47. Yin, B., et al., Analysis of Active Ion-Leaching Behavior and the Reaction Mechanism During Alkali Activation of Low-Calcium Fly Ash. (2009)International Journal of Concrete Structures and Materials, 12(1). (2018)
48. MOHANRAJ, K., HYDRATION PROCESS OF FLY ASH BLENDED CEMENT COMPOSITE. Int. J. Chem. Sci, 8(1): p. 589~601. (2010)
49. Sivalingam, S., Optimization of synthesis parameters and characterization of coal fly ash derived microporous zeolite X Applied Surface Science,455: p. 903~910. (2018)
50. Yu, Z.H., et al., Removal of Ca(II) and Mg(II) from potassium chromate solution on Amberlite IRC 748 synthetic resin by ion exchange. Journal of Hazardous Materials,167(1-3): p. 406-412. (2009)
51. Dinu, M.V. and E.S. Dragan, Heavy metals adsorption on some iminodiacetate chelating resins as a function of the adsorption parameters. Reactive & Functional Polymers,68(9): p. 1346-1354. (2008)
52. Franco, P.E., et al., Nickel(II) and zinc(II) removal using Amberlite IR-120 resin: Ion exchange equilibrium and kinetics. Chemical Engineering Journal,221: p. 426-435. (2013)
53. Kolodynska, D., P. Rudnicki, and Z. Hubicki, New approach to Cu(II), Zn(II) and Ni(II) ions removal at high NaCl concentration on the modified chelating resin. Desalination and Water Treatment, 74: p. 184-196. (2017)
54. Jafarli, M., Ion-Exchange properties of Diaion Cr 11, Amberlite Irc 748, and Dowex M 4195. Jafarli and Abbasov,4(1): p. 449~462. (2017)
55. Ogorodnikov, V.A., L.A. Shcherbina, and I.A. Bydkute, Adsorption Activity of Materials Derived from Copolymers of Acrylonitrile with Various Acid Comonomers. Fibre Chemistry,48(4): p. 329-335. (2016)
56. Aboul-Magd, A.A.S., S.A. Al-Husain, and S.A. Al-Zahrani, Batch adsorptive removal of Fe(III), Cu(II) and Zn(II) ions in aqueous and aqueous organic-HCl media by Dowex HYRW2-Na Polisher resin as adsorbents. Arabian Journal of Chemistry,9: p. S1-S8. (2016)
57. Schwertfeger, D.M. and W.H. Hendershot, Ion-exchange technique (IET) for measuring Cu2+, Ni2+ and Zn2+ activities in soils contaminated with metal mixtures. Environmental Chemistry,14(1): p. 55-63. (2017)
58. Bazargan, A., et al., Optimising batch adsorbers for the removal of zinc from effluents using a sodium diimidoacetate ion exchange resin. Adsorption-Journal of the International Adsorption Society,23(4): p. 477-489. (2017)
59. Pashkov, G.L., S.V. Saikova, and M.V. Panteleeva, Reactive ion exchange processes of nonferrous metal leaching and dispersion material synthesis. Theoretical Foundations of Chemical Engineering,50(4): p. 575-581. (2016)
60. Azimi, A., et al., Removal of Heavy Metals from Industrial Wastewaters: A Review. Chembioeng Reviews,4(1): p. 37-59. (2017)
61. Fonseca, W.T., et al., Voltammetric Determination of Zn2+ in Antiseptic Dusting Powder and Multivitamins Using a Carbon Paste Electrode Modified with Bi Anchored on Amberlite (R) IR120. Journal of the Brazilian Chemical Society,29(12): p. 2466-2474. (2018)
62. Lin, L.C. and R.S. Juang, Ion-exchange equilibria of Cu(II) and Zn(II) from aqueous solutions with Chelex 100 and Amberlite IRC 748 resins. Chemical Engineering Journal, 112(1-3): p. 211-218. (2005)
63. Mumford, K.A., et al., Comparison of amberlite IRC-748 resin and zeolite for copper and ammonium ion exchange. Journal of Chemical and Engineering Data,53(9): p. 2012-2017. (2008)
64. Yu, Z.H., et al., Application of mathematical models for ion-exchange removal of calcium ions from potassium chromate solutions by Amberlite IRC 748 resin in a continuous fixed bed column. Hydrometallurgy, 158: p. 165-171. (2015)
65. Su, Q., et al., Use of hydrous manganese dioxide as a potential sorbent for selective removal of lead, cadmium, and zinc ions from water. Journal of Colloid and Interface Science, 349(2): p. 607-612. (2010)
66. Lee, C.G., et al., Application of carbon foam for heavy metal removal from industrial plating wastewater and toxicity evaluation of the adsorbent. Chemosphere, 153: p. 1-9. (2016)
67. Andoni, M., et al., Study Regarding the Presence of Zn(II) in Thermal Waters for Cosmetic Use. Revista De Chimie, 68(7): p. 1565-1567. (2017)
68. Kalra, A., et al., Sorption of heavy metal ions onto e-waste-derived ion-exchange material - selecting the optimum isotherm. Desalination and Water Treatment, 126: p. 196-207. (2018)
69. Zewail, T.M. and N.S. Yousef, Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed. Alexandria Engineering Journal, 54(1): p. 83-90. (2015)
70. 葉子維, 分離廢鋰離子電池中有價金屬之研究, in 資源工程學系碩士班. 國立成功大學: 台南市. (2018)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-07-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw