進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0307201820320800
論文名稱(中文) 氧化鋅奈米粒子與石墨烯量子點製作聚合物電阻式記憶體之研究
論文名稱(英文) Investigation of Polymer Resistive Memory with ZnO Nanoparticles and Graphene Quantum Dots
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 106
學期 2
出版年 107
研究生(中文) 陳柔安
研究生(英文) Rou-An Chen
學號 Q16054079
學位類別 碩士
語文別 英文
論文頁數 89頁
口試委員 指導教授-蘇炎坤
口試委員-尤信介
口試委員-莊賦祥
口試委員-吳孟奇
口試委員-楊智強
中文關鍵字 電阻式記憶體  聚二甲基矽氧烷  聚甲基丙烯酸甲酯  氧化鋅奈米粒子  石墨烯量子點 
英文關鍵字 Resistive memory  PDMS  PMMA  ZnO NPs  GQDs 
學科別分類
中文摘要 本論文利用旋轉塗佈的方式在氧化铟锡/玻璃基板上沉積絕緣層,並利用熱蒸鍍機在絕緣層表面鍍上Al當上電極來製作出結構為金屬/絕緣體/金屬(MIM)的電阻式記憶體。絕緣層的種類主要分成兩種:一種是使用聚二甲基矽氧烷(Polydimethylsiloxane,PDMS),另外一種是使用聚甲基丙烯酸甲酯(Poly(methyl methacrylate),PMMA),並分別加入氧化鋅奈米粒子(Zinc Oxide Nanoparticles,ZnO NPs)及石墨烯量子點(Graphene Quantum Dots,GQDs)來觀察電阻式記憶體之切換特性與傳導機制。
在PDMS電阻式記憶體方面,首先將PDMS溶於甲苯來改善不同轉速下旋轉塗佈時的絕緣層厚度,之後再摻雜氧化鋅奈米粒子來提升元件寫入/讀取的次數(~ 300次)。而在PMMA電阻式記憶體方面,首先直接將GQD溶於PMMA來製作絕緣層,之後又在絕緣層與上電極之間沉積氟化鋰(LiF)來提升元件的穩定度與可靠度,有助於寫入/讀取的次數(~ 500次)及改善上電極鋁的氧化問題。
以上這兩種元件其導電機制在低阻態(low resistance state,LRS)時皆為歐姆傳導機制,高阻態(high resistance state,HRS)在低電壓時符合歐姆定律,而高電壓則為空間電荷限制電流機制,兩者都具有不錯的開關電流比(~ 104 )和耐久力(~ 104s)。因此可證實聚合物摻雜奈米粒子與量子點製作電阻式記憶體都具有優異的記憶體特性。
英文摘要 In this study, the insulator layer was deposited on the ITO/Glass substrate by spin coating method and Al was deposited on the insulator layer as the top electrode using thermal evaporation to form a resistive memory with the metal/insulator/metal (MIM) structure. The insulator layers used in this experiment were divided into two types: one was polydimethylsiloxane (PDMS), and the other was poly(methyl methacrylate (PMMA), and zinc oxide nanoparticles (ZnO NPs) and graphene quantum dots (GQDs) were doped respectively to observe the switching characteristics and the conduction mechanism of the resistive memory.
In PDMS resistive memory, PDMS was firstly dissolved in toluene to improve the thickness of the insulator layer under different spinning speed, and then doped with zinc oxide nanoparticles to increase the write/read times of the device (~300 times). In PMMA resistive memory, GQD was initially dissolved directly in PMMA to form the insulator layer, and then the lithium fluoride (LiF) was deposited between the insulator layer and the top electrode to improve the stability and reliability, the writes/reads times (~500 times) was enhanced and the oxidation of Al on the top electrode was suppressed of the device.
The conduction mechanism of the above two devices was ohmic conduction mechanism in low resistance state (LRS); In high resistance state (HRS) Ohm's law dominate at low voltage region and space charge limitation current mechanism at high voltage was observed and they all had good ON/OFF current ratio (~104) and retention time (~104s). Therefore, polymers doped with nanoparticles or quantum dots to fabricate resistive memory could help to obtain good memory characteristics.
論文目次 Chinese Abstract I
English Abstract II
Acknowledgements IV
Contents VI
Figure Captions IX
Table Captions XII
Chapter 1 Introduction 1
1.1 History of Resistive Random access Memory 1
1.2 The Technology of Memory 1
1.3 Motivation 3
1.4 Article structure 4
Chapter 2 Theoretical Analysis of RRAM 7
2.1 Classification of Resistive Memory 8
2.1.1 Unipolar 8
2.1.2 Bipolar 9
2.2 Classification of RRAM by Switching Mechanism 10
2.2.1 Filamentary conducting path 10
2.2.2 Interface Effect 13
2.3 Classification of RRAM by Conduction Mechanism 15
2.3.1 Electrode-limited Conduction Mechanisms 16
(a.) Schottky Emission: 16
(b.) Fowler-Nordheim Tunneling / Direct Tunneling: 18
(c.) Thermionic-field Emission: 19
2.3.2 Bulk-limited Conduction Mechanisms 20
(a.) Poole-Frenkel Emission: 20
(b.) Hopping Conduction: 21
(c.) Ohmic Conduction: 22
(d.) Space-charge-limited Conduction: 23
(e.) Ionic Conduction: 25
(f.) Grain-boundary-limited Conduction: 27
Chapter 3 Experimental processes and measurements 29
3.1 Material Introduction 29
3.2 Fabrication process 32
3.2.1 ITO/Glass substrate cleaning steps 35
3.2.2 Device preparation 35
3.2.3 Electrical measurement 36
3.3 Experimental Instruments and Specifications 36
Alpha-Step (α-step): 36
Scanning Electron Microscope (SEM): 37
Atomic Force Microscope (AFM): 37
Chapter 4 Investigation of PDMS as insulator layer 38
4.1 To fabricate ITO/PDMS/Al RRAM 38
4.1.1 Fabrication process of PDMS thin film 38
4.1.2 Experimental Detail 39
4.1.3 Influence of electrical characteristics with different PDMS thickness 39
4.2 To fabricate ITO/PDMS:ZnO NPs /Al RRAM 45
4.2.1 Experimental Detail 45
4.2.2 Electrical Characteristics of ITO/PDMS:ZnO NPs/Al device 45
Thickness of insulator layer (SEM) 47
SET/RESET voltage 47
Cumulative Probability 48
Retention time and ON/OFF ratio 48
ZnO NPs film surface analysis (AFM) 48
4.3 Conduction Mechanism of ITO/PDMS:ZnO NPs/Al device 49
4.4 Summery 49
Chapter 5 Investigation of PMMA:GQD as insulator layer 61
5.1 To fabricate ITO/PMMA:GQD/Al RRAM 61
5.1.1 Experimental Detail 61
5.1.2 Electrical Characteristics of ITO/PMMA:GQD/Al device 62
5.2 To fabricate ITO/PMMA:GQD/Al RRAM with buffer layer of LiF 64
5.2.1 Experimental Detail 64
5.2.2 Electrical Characteristics of ITO/PMMA:GQD/LiF/Al device 64
Thickness of insulator layer (SEM) 65
SET/RESET voltage 65
Switching cycle 66
Retention time and ON/OFF ratio 66
Thin film surface analysis (AFM) 66
5.3 Conduction Mechanism of ITO/PMMA:GQD/LiF/Al device 67
5.4 Summery 67
Chapter 6 Conclusion and Future work 74
6.1 Conclusion 74
6.2 Future work 77
Reference 80

參考文獻 [1] J. S. Meena, S. M. Sze, U. Chand and T. -Y. Tseng, ‘‘Overview of emerging nonvolatile memory technologies,’’ Nanoscale Research Letters, vol. 6,2014.
[2] H. -R. On, B. -H. Cho, W. Y. Cho, S. Kang, B. -G. Choi, H. -J Kim, K.-S. Kim, D. -E Kim, C. -K. Kwak, H. -G. Byun, G. -T. Jeong, H. -S Jeong and K. Kim, ‘‘Enhanced Write Performance of a 64-Mb Phase-Change Random Access Memory,’’ IEEE J. SolidState Circuits, vol. 41, no. 1, pp. 122-126, 2006.
[3] S. Raoux, F. Xiong, M. Wuttig, and E. Pop, ‘‘Phase change materials and phase change memory,’’ MRS Bulletin, Vol. 39, Issue 8, pp. 703-710, 2014.
[4] T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y. Min Lee, R. Sasaki, Y. Goto, K. Ito, T. Meguro, F. Matsukura, H. Takahashi, H. Matsuoka, and H. Ohno, ‘‘2 Mb SPRAM (SPin-Transfer Torque RAM) with Bit-by-Bit Bi-directional Current Write and Parallelizing Direction Current Read,’’ IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 109-120, 2008.
[5] R. Takemura, T. Kawahara, K. Miura, H. Yamamoto, J. Hayakawa, N. Matsuzaki, Kazuo Ono, M. Yamanouchi, K. Ito, H. Takahashi, S. Ikeda, H. Hasegawa, H. Matsuoka, and H. Ohno, ‘‘A 32-Mb SPRAM with 2T1R Memory Cell, Localized Bi-directional Write Driver and ‘1’/‘0’ Dual-Array Equalized Reference Scheme,’’ IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 869-879, 2010.
[6] S. Dietrich, M. Angerbauer, M. Ivanov, D. Gogl, H. Hoenigschmid, M. Kund, C. Liaw, M. Markert, R. Symanczyk, L. Altimime, S. Bournat, and G. Mueller, ‘‘A Nonvolatile 2-Mbit CBRAM Memory Core Featuring Advanced Read and Program Control,’’ IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 839-845, 2007.
[7] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. -S. Suh, J. C. Park, S. O. Park, H.S. Kim, I. K. Yoo, U. -In. Chung, J. T. Moona, ‘‘Highly Scalable Nonvolatile Resistive Memory Using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses,’’ Proc. Int’l Electron Devices Meeting (IEDM 04), IEEE Press, pp. 587, 2004.
[8] A. Chen, S. Haddad, Y. -C. Wu, T.-N. Fang, Z. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk, and M. Taguchi, ‘‘Nonvolatile Resistive Switching for Advanced Memory Applications,’’ Proc. Int’l Electron Devices Meeting (IEDM 05), IEEE Press, pp. 746, 2005.
[9] D. Lee, D. Jj. Seong, H. J. Choi, I. Jo, R. Dong, W. Xiang, S. Oh, M. Pyun, S. -O. Seo, S. Heo, M. Jo, D. -K. Hwang, H. K Park, M. Chang, M. Hasan, and H. Hwang, ‘‘Excellent Uniformity and Reproducible Resistance Switching Characteristics of Doped Binary Metal Oxides for Nonvolatile Resistance Memory Applications,’’ Proc. Int’l Electron Devices Meeting (IEDM 06), IEEE Press, pp. 797, 2006.
[10] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai, ‘‘Low Power and High Speed Bipolar Switching with a Thin Reactive Ti Buffer Layer in Robust HfO2 Base RRAM,’’ Proc. Int’l Electron Devices Meeting (IEDM 08), IEEE Press, pp. 297-300, 2008.
[11] S. -S. Sheu, P.-C. Chiang, W. -P. Lin, H. -Y. Lee, P. -S. Chen, Y. -S. Chen, T. -Y. Wu, F. T. Chen, K. -L. Su, M. -J. Kao, K. -H. Cheng, M. -J. Tsai, ‘‘A 5 ns Fast Write Multi-Level Nonvolatile 1 K bits RRAM Memory with Advance Write Scheme,’’ Proc. Symp. VLSI Circuits, IEEE Press, pp. 82-83, 2009.
[12] S. -S. Sheu, K. -H. Cheng and M. -F. Chang, ‘‘Fast-Write Resistive RAM (RRAM) for Embedded Applications,’’ IEEE Design & Test of Computers, Vol. 28, Issue. 1, pp. 64-71, 2011.
[13] S. Kim, I. Byun, I. Hwang, J. Kim, J. Choi, B. H. Park, S. Seo, M. J. Lee,D. H. Seo, D. S. Suh, Y. S. Joung, and I. K. Yoo, ‘‘Giant and Stable Conductivity Switching Behaviors in ZrO2 Films Deposited by Pulsed Laser Depositions,’’ Jpn. J. Appl. Phys. ,Vol. 44, No. 11, pp. L345-L347, 2005.
[14] Y. C. Yang, F. Pan, Q. Liu, M. Liu and F. Zeng, ‘‘Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application,’’ NANO LETTERS, vol. 9, No. 4, pp. 1636-1643, 2009.
[15] C. Jin, J. Lee, E. Lee, E. Hwang and H. Lee, ‘‘Nonvolatile resistive memory of ferrocene covalently bonded to reduced graphene oxide,’’ Chem. Commun., vol. 48, pp. 4235-4237, 2009.
[16] J. Yao, J. Lin, Y. Dai, G. Ruan, Z. Yan, L. Li, L. Zhong, D. Natelson and J. M. Tour, ‘‘Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene,’’ Nature Commun., vol. 3, 2012.
[17] L. -E. Yu, S. Kim, M. -K. Ryu, S. -Y. Choi, and Y. -K. Choi, ‘‘Structure Effects on Resistive Switching of Al/TiOx/Al Devices for RRAM Applications,’’ IEEE ELECTRON DEVICE LETTERS, vol. 29, NO. 4, 2008.
[18] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai, ‘‘Low Power and High Speed Bipolar Switching with A Thin Reactive Ti Buffer Layer in Robust HfO2 Based RRAM,’’ IEDM, 2008.
[19] C. H. Ho, E. K. Lai, M. D. Lee, C. L. Pan, Y. D. Yao, K. Y. Hsieh, Rich Liu, and C. Y. Lu, ‘‘A Highly Reliable Self-Aligned Graded Oxide WOx Resistance Memory: Conduction Mechanisms and Reliability,’’ VLSI Technology, 2007.
[20] L. Wu, X. Li, X. Gao, R. Zheng, F. Zhang, X. Liu and Q. Wang, ‘‘Unipolar resistance switching and abnormal reset behaviors in Pt/CuO/Pt and Cu/CuO/Pt structures,’’ Solid-State Electronics, vol. 73, pp. 11-14, 2012.
[21] W. -P. Lin, S.-J. Liu, T. G, Q. Zhao and W. Huang, ‘‘Polymer-Based Resistive Memory Materials and Devices,’’ Adv. Mater., vol. 26, pp. 570-606, 2014.
[22] P. F. Lee, and J. Y. Dai, “Memory effect of an organic based trilayer structure with Au nanocrystals in an insulating polymer matrix,” Nanotechnol., vol. 21, no. 29, pp. 295706-295710, 2010.
[23] A. Prakash, J. Ouyang, J. L. Lin, and Y. Yang, “Polymer memory device based on conjugated polymer and gold nanoparticles,” J. Appl. Phys., vol. 100, no. 5, pp. 054309-054313, 2006.
[24] K. S. Yook , S. O. Jeon, C. W. Joo, J. Y. Lee, S. H. Kim, and J. Jang, “Organic bistable memory device using MoO3 nanocrystal as a charge trapping center,” Org. Electr., vol. 10, no. 1, pp. 48-52, 2009.
[25] C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. -S. Zhao, and C. S. Hwang, ‘‘Identification of a determining parameter for resistive switching of TiO2 thin films,’’ Appl. Phys., Lett. 86, 262907, 2005.
[26] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka et al., " Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism ", Tec. Dig.-Int. Electron Devices Meet., pp. 1-4, 2008.
[27] I. G. Baek, D. C. Kim, M. J. Lee, H. -J. Kim, E. K. Yim, M. S. Lee, J. E. Lee, S. E. Ahn, S. Seo, J. H. Lee, J. C. Park, Y. K. Cha, S. O. Park, H. S. Kim, I. K. Yoo, U-In Chung, J. T. Moon and B. I. Ryu, "Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application," IEEE Elec. Dev. Meet., pp. 750-753, 2005.
[28] H. B. Lv, M. Yin, Y. L. Song, X. F. Fu, L. Tang, P. Zhou, C. H. Zhao, T. A. Tang, B. A. Chen, and Y. Y. Lin, "Forming Process Investigation of CuxO Memory Films", IEEE Elec. Dev. Lett., vol. 29, NO. 1, 2008.
[29] A. Prakash, D. Jana and S. Maikap, ‘‘TaOx-based resistive switching memories: prospective and challenges,’’ Nanoscale Research Letters, vol. 8, 2013.
[30] Y. -S. Chen, P. -S. Chen, H. -Y. Lee, T. -Y. Wua, K. -H. Tsai, F. Chen and M. -J. Tsai, "Enhanced endurance reliability and low current operation for AlOx /HfOx based unipolar RRAM with Ni electrode", Solid-State Electronics, vol. 94, pp. 1-5, 2014.
[31] L. Goux, R. Degraeve, J. Meersschaut, B. Govoreanu and D. J. Wouters, "Role of the anode material in the unipolar switching of TiNNiONi cells", Journal of Applied Physics, vol. 113, 054505, 2013.
[32] C. -Y. Liu, Y. -R. Shih and S. -J. Huang, "Unipolar resistive switching in a transparent ITO/SiOx/ITO sandwich fabricated at room temperature", Solid State Communications, vol. 159, pp. 13-17, 2013.
[33] G. S. Park, X. S. Li, D. C. Kim, R. J. Jung, M. J. Lee, and S. Seo, “Observation of Electric-field Induced Ni Filament Channels in Polycrystalline NiOx Film”, Appl. Phys. Lett., vol. 91, Issue 22, pp. 222103, 2007.
[34] S. C. Chae, J. S. Lee, W. S. Choi, S. B. Lee, S. H. Chang, H. Shin, B. Kahng, and T. W. Noh, “Multilevel Unipolar Resistance Switching in TiO2 Thin Films”, Applied Physics Letters, vol. 95, issue. 9, pp. 093508, 2009.
[35] S. Lee, H. Kim, D. J. Yun, S. W. Rhee, and K. Yong, “Resistive Switching Characteristics of ZnO Thin Film Grown on Stainless Steel for Flexible Nonvolatile Memory Devices”, Applied Physics Letters, vol. 95, issue. 26, pp. 262113, 2009
[36] C. Schindler, S. C. P. Thermadam, R. Waser, and N. Kozicki, “Bipolar and Unipolar Resistive Switching in Cu-Doped SiO 2 ”, IEEE Transactions on Electron Devices, vol. 54, no. 10, pp. 2762-2768, 2007.
[37] Y. Li, S. Long, M. Zhang, Q. Liu, L. Shao, S. Zhang, Y. Wang, Q. Zuo, S. Liu, and M. Liu, “Resistive Switching Properties of Au/ZrO2 /Ag Structure for Low-Voltage Nonvolatile Memory Applications”, IEEE Elect. Device Lett., vol. 31, no. 2, pp. 117-119, 2010.
[38] L. E. Yu, S. Kim, M. K. Ryu, S. Y. Choi, and Y. K. Choi, “ Structure Effects on Resistive Switching of Al/TiOx/Al Devices for RRAM Applications”, IEEE Elect. Device Lett., vol. 29, no. 4, pp.331-333, 2008.
[39] B. Sun, L. Liu, N. Xu, B. Gao, Y. Wang, D. Han, X. Liu, R. Han, and J. Kang, ” The Effect of Current Compliance on the Resistive Switching Behaviors in TiN/ZrO2 /Pt Memory Device”, Jpn. J. Appl. Phys., vol. 48, issue. 4, pp. 04C061, 2009.
[40] B. Gao, L. Liu, X. Liu, J. Kang, "Resistive switching characteristics in HfOx layer by using current sweep mode", Microelectronic Engineering, vol. 94, pp. 14-17, 2012.
[41] Z.-W. Zheng, C.-H. Cheng, K.-I. Chou, M. Liu, A. Chin, "Improved current distribution in resistive memory on flexible substrate using nitrogen-rich TaN electrode", Applied Physics Letters, vol. 101, 243507, 2012.
[42] C.-H. Hsu, Y.-S. Fan, P.-T. Liu, "Multilevel resistive switching memory with amorphous InGaZnO-based thin film", Applied Physics Letters, vol. 102, 062905, 2013.
[43] J. Park, S. Jung, J. Lee, W. Lee, S. Kim, J. Shin, H. Hwang, "Resistive switching characteristics of ultra-thin TiOx ", Microelectronic Engineering, vol. 88, pp. 1136-1139, 2011.
[44] A. Markeev, A. Chouprik, K. Egorov, Y. Lebedinskii, A. Zenkevich, O. Orlov, "Multilevel resistive switching in ternary HfxAl1-xOy oxide with graded Al depth profile", Microelectronic Engineering, vol. 109, pp. 342-345, 2013.
[45] D. Wouters, "Resistive switching materials and devices for future memory applications", 43rd IEEE SISC, 2012.
[46] R. Waser and M. Aono, ‘‘Nanoionics-based resistive switching memories,’’ Nature Materials, vol. 6, pp.833-840, 2007.
[47] D. Ielmini, R. Bruchhaus amd R. Waser, ‘‘Thermochemical resistive switching: materials, mechanisms, and scaling projections,’’ Phase Transition, vol. 84, pp.570-602, 2010.
[48] U. Russo, D. Ielmini, C. Cagli and A. L. Lacaita, "Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices", IEEE Trans. Electron Devices, vol. 56, no. 2, pp. 186-192, 2009.
[49] A. Sawa, ‘‘Resistive switching in transition metal oxides,’’ materials-today, vol. 11, Issue 6, pp. 28-36, 20008.
[50] A. Makarov, V. Sverdlovb and S. Selberherr, ‘‘Stochastic model of the resistive switching mechanism in bipolar resistive random access memory: Monte Carlo simulations,’’ Journal of Vacuum Science & Technology B, vol. 29, 01AD03, 2011.
[51] Q. Li, L. Qiu, X. Wei, B. Dai and H. Zeng, ‘‘Point contact resistive switching memory based on self-formed interface of Al/ITO, ’’Scientific Reports volume, vol. 6, 2016.
[52] J. Shang, G. Liu, H. Yang, X. Zhu, X. Chen, H. Tan, B. Hu, L. Pan, W. Xue and R. ‐W. Li, ‘‘Thermally Stable Transparent Resistive Random Access Memory based on All‐Oxide Heterostructures,’’ Adv. Funct. Mater., vol. 24, pp. 2171-2179, 2013.
[53] H. Y. Jeong, J. Y. Lee and S. Y. Choi, ‘‘Interface-engineered amorphous TiO2-based resistive memory devices,’’ Adv. Funct. Mater., vol. 20, pp. 3912-3917, 2010.
[54] H. Y. Peng, Y. F. Li, W. N. Lin, Y. Z. Wang, X. Y. Gao and T. Wu, ‘‘Deterministic conversion between memory and threshold resistive switching via tuning the strong electron correlation,’’ Sci. Rep., vol. 2, pp. 442-447, 2012.
[55] B. Cho, J. ‐M. Yun, S. Song, Y. Ji, D. ‐Y. Kim and T. Lee, ‘‘Direct Observation of Ag Filamentary Paths in Organic Resistive Memory Devices,’’ Adv. Funct. Mater., vol. 21, pp. 3976-3981, 2011.
[56] S. H. Jo, ‘‘Recent Progress in RRAM,’’ SEMICON, 2015.
[57] Y. B. Zhu, K. Zheng, X. Wu and L. K. Ang, ‘‘Enhanced stability of filament-type resistive switching by interface engineering,’’ Scientific Reports, vol. 7, 2017.
[58] F. -C. Chiu, ‘‘A Review on Conduction Mechanisms in Dielectric Films,’’ Adv. in Mat. Sci. and Eng., vol. 2014, 2014.
[59] W. -C. Lee and C. Hu, “Modeling CMOS tunneling currents through ultrathin gate oxide due to conduction-and valence-band electron and hole tunneling,” IEEE Transactions on Electron Devices, vol. 48, no. 7, pp. 1366-1373, 2001.
[60] F. -C. Chiu, C. -Y. Lee, and T. -M. Pan, “Current conduction mechanisms in Pr2O3/oxynitride laminated gate dielectrics,” Journal of Applied Physics, vol. 105, no. 7, 2009.
[61] H. Akinaga and H. Shima, “Resistive random access memory (ReRAM) based on metal oxides,” Proceedings of the IEEE, vol. 98, no. 12, pp. 2237-2251, 2010.
[62] F.-C. Chiu, P.-W. Li, and W.-Y. Chang, “Reliability characteristics and conduction mechanisms in resistive switching memory devices using ZnO thin films,” Nanoscale Research Letters, vol. 7, Article ID 178, 9 pages, 2012.
[63] T. K. Kundu and J. Y.-M. Lee, “Thickness-dependent electrical properties of Pb(Zr, Ti)O3 thin film capacitors for memory device applications,” Journal of the Electrochemical Society, vol. 147, no. 1, pp. 326-329, 2000.
[64] K. Onlaor, N. Chaithanatkun and, B. Tunhoo, ‘‘Electrical mechanisms of bi-stable memory devices based on an Al/PVK:ZnO NPs/ITO structure with different ZnO NPs annealing temperatures,’’ Curr. App. Phy., vol. 16, pp. 1418-1423, 2016.
[65] T. T. Dao, T. V. Tran, K. Higashimine, H. Okada, D. Mott, S. Maenosono and H. Murata, ‘‘High-performance nonvolatile write-once-read-many-times memory devices with ZnO nanoparticles embedded in polymethylmethacrylate,’’ App. Phy. Lett., vol. 99, 233303, 2011.
[66] K. Onlaor, T. Thiwawong and B. Tunhoo, ‘‘Electrical switching and conduction mechanisms of nonvolatile write-once-read-many-times memory devices with ZnO nanoparticles embedded in polyvinylpyrrolidone,’’ Organic Electronics, vol. 15, pp. 1254-1262, 2014.
[67] D. Y. Yun, J. K. Kwak, J. H. Jung, T. W. Kim and D. I. Son, ‘‘Electrical bistabilities and carrier transport mechanisms of write-once-read-many-times memory devices fabricated utilizing ZnO nanoparticles embedded in a polystyrene layer,’’ App. Phy. Lett., vol. 95, 143301, 2009.
[68] K. Onlaor, T. Thiwawong and B. Tunhoo, ‘‘Bi-stable switching behaviors of ITO/EVA:ZnO NPs/ITO transparent memory devices fabricated using a thermal roll lamination technique,’’ Organic Electronics, vol. 31, pp. 19-24, 2016.
[69] L. Kou, F. Li, W. Chen and T. Guo, ‘‘Synthesis of blue light-emitting graphene quantum dots and their application in flexible nonvolatile memory,’’ Organic Electronics, vol. 14, pp. 1447-1451, 2013.
[70] D. H. Kim, W. K. Kim, S. J. Woo, C. Wu and T. W. Kim, ‘‘Highly-reproducible nonvolatile memristive devices based on polyvinylpyrrolidone:Graphene quantum-dot nanocomposites,’’ Organic Electronics, vol. 51, pp. 156-161, 2017.
[71] H. An, W. K. Kim, C. Wu and T. W. Kim, ‘‘Highly-stable memristive devices based on poly(methylmethacrylate):CsPbCl 3 perovskite quantum dot hybrid nanocomposites,’’ Organic Electronics, vol. 56, pp. 41-45, 2018.
[72] CH. V. V. Ramana, M.K. Moodely, V. Kannan, A. Maity, J. Jayaramudu and W. Clarke, ‘‘Fabrication of stable low voltage organic bistable memory device,’’ Sensors and Actuators B: Chemical, vol. 161, pp. 684-688, 2012.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw