進階搜尋


下載電子全文  
系統識別號 U0026-0307201811061000
論文名稱(中文) 銫原子階梯式電磁誘發透明的模型模擬
論文名稱(英文) Modeling Simulation of Ladder-type Electromagnetically Induced Transparency in Cesium Atoms
校院名稱 成功大學
系所名稱(中) 物理學系
系所名稱(英) Department of Physics
學年度 106
學期 2
出版年 107
研究生(中文) 陳德欣
研究生(英文) Te-Hsin CHEN
學號 l26054132
學位類別 碩士
語文別 英文
論文頁數 57頁
口試委員 指導教授-蔡錦俊
口試委員-黃守仁
口試委員-韓殿君
中文關鍵字 電磁誘發透明  光泵浦效應 
英文關鍵字 Electromagnetically Induced Transparency  Optical Pumping  optical Bloch equation 
學科別分類
中文摘要 本文介紹了用於推導optical Bloch方程的基本知識,然後得到了二能階系統中光與介質相互作用的特徵。最後將optical Bloch方程推廣至具有兩個外場的三能階系統中,模擬電磁誘發透明(EIT)的量子干涉現象。吸收的特徵被量測並將其結合到理論模型中。為了使這個原始理論模型與實驗光譜相匹配,考慮了由馬克士威-波茲曼分布下的每個速度群的貢獻引起的都普勒效應,以及獲得由探測和耦合場作用於相同的原子速度群導致的頻率不匹配。
此工作提出了一個理論模型來研究銫原子的階梯式EIT,方法是在每個偶極子允許的躍遷處鎖定探測場並掃描耦合場至激發態。Optical Bloch方程,雙光子躍遷機率和重新分配基曼子能階中的居量的光泵浦效應,構成了我們的理論模型。探測和耦合場的偏振狀態是擬合實驗數據的關鍵因素,因為不同基曼子能階的居量和每個EIT路徑的權重將受到偏振顯著的影響。此理論模型準確地重現了三能階系統中所有可能的躍遷的EIT頻譜。但是,對於高功率的探測和耦合場,只能被歸納為定性的結果。具有不同功率的EIT頻譜需要再進一步研究。
英文摘要 In this thesis, the basic knowledge that will be used for deriving the optical Bloch equation is introduced. Then, the features of the interaction between light and medium in two-level system are obtained. Finally, the optical Bloch equation is applied to three-level system with two external fields for simulating the quantum interference phenomena of electromagnetically induced transparency (EIT), and the property of absorption coefficient is measured and combined into the theoretical model. In order to make this pristine theoretical model matches the experimental spectra, Doppler effect due to the contribution of each velocity group under Maxwellian distribution is taken into consideration and thus the frequency mismatch owing to the probe and coupling fields acting on the same velocity group of atoms is acquired.
The key point is presenting a theoretical model to study the ladder-type EIT of cesium atoms by locking the probe field at each dipole-allowed transitions and scanning the coupling field to access the higher excited state. Optical Bloch equation, tow-photon transition probability, and optical pumping effect which redistributes the relative population in the magnetic Zeeman sublevels are concerned and constitute our theoretical model. The state of the probe and coupling polarization is a pivotal factor for fitting the experimental data, since the population of different Zeeman sublevels and the weighting of each EIT path will be significantly affected by the state of polarization. This theoretical model accurately reproduced the measured EIT spectra for all the possible transitions in the three-level system. However, for the higher power of the probe and coupling fields, the results only can be concluded as a qualitative one. The EIT spectra with varying the power have to be further investigated.
論文目次 List of Tables II
List of Figures III
Chapter 1 Introduction 1
Chapter 2 The interaction of atoms and radiation 2
2.1 Density matrix 2
2.2 Density matrix under the interaction picture 3
2.3 Density matrix approaches in two-level system 5
2.4 The absorption in atomic medium 10
2.5 The refraction index and absorption coefficient 11
2.6 Density matrix approaches in three-level system 13
2.7 Dressed state 15
Chapter 3 The factors in electromagnetically induced transparency 20
3.1 Doppler effect in EIT 20
3.2 Two-photon transition probability 23
3.3 Optical pumping effect 24
3.4 Rabi frequency calculation 28
3.5 Frequency mismatch 33
Chapter 4 Experimental setup and results 36
4.1 Experimental setup 36
4.2 Experimental and simulated results 37
4.3 Power dependent 43
Chapter 5 Discussion 44
5.1 The explanation of the factors in Tables 44
5.2 Polarization state 45
5.3 Power dependent 46
Chapter 6 Conclusions and suggestions for further work 47
Reference 48
Appendix A 50
Appendix B 54
Appendix C 55

參考文獻 [1]K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 66, 2593 (1991).
[2]L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397 (1999).
[3]D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, ” Storage of Light in Atomic Vapor,” Phys. Rev. Lett. 86, 783 (2001).
[4]A. V. Gorshkov, A. Andre´, M. Fleischhauer, A. S. Sørensen, and M. D. Lukin, “Universal Approach to Optimal Photon Storage in Atomic Media,” Phys. Rev. Lett. 98, 123601 (2007).
[5]L. M. Duan, J. I. Cirac, and P. Zoller, “Geometric Manipulation of Trapped Ions for Quantum Computation,” Science 292, 1695 (2001).
[6]E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46 (2001).
[7]T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T.A.B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833 (2005).
[8]K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67 (2008).
[9]M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794 (2011).
[10]Y. F. Hsiao, P. J. Tsai, H. S. Chen, S. X. Lin, C. C. Hung, C. H. Lee, Y. H. Chen, Y. F. Chen, I. A. Yu, and Y. C. Chen, “Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency,” Phys. Rev. Lett. 120, 183602 (2018).
[11]C. Y. Wang, Y. F. Chen, S. Ch. Lin, W. H. Lin, P. C. Kuan, and I. A. Yu, “Low-light-level all-optical switching,” Opt. Lett. 31, 2350-2352 (2006).
[12]Z. S. He, J. H. Tsai, M. T. Lee, Y. Y. Chang, C. C. Tsai, T. J. Whang, “Determination of the Cesium 11s 2S1/2 Hyperfine Magnetic Coupling Constant Using Electromagnetically Induced Transparency,” J. Phys. Soc. Jpn. 81, 124302 (2012).
[13]A. K. Mohapatra, M. G. Bason, B. Butscher, K. J. Weatherill, and C. S. Adams, “Giant electro-optic effect using polarizable dark states,” Nature Physics 4, 890 (2008).
[14]M. Krainska-Miszczak, “Alignment and orientation by optical pumping with
pi polarised light,” J. Phys. B: At. Mol. Phys. 12 555 (1979).
[15]W. Happer, “Optical Pumping,” Rev. Mod. Phys. 44, 169 (1972).
[16]Z. S. He, J. H. Tsai, Y. Y. Chang, C. C. Liao, and C. C. Tsai, “Ladder-type electromagnetically induced transparency with optical pumping effect,” Phys. Rev. A 87, 033402 (2013).
[17]R. A. Bertlmann and N. Friis, Theoretical Physics T2 Quantum Mechanics.
[18]T. R. Shafer, Three Pictures of Quantum Mechanics (2009).
[19]Z. S. He, Transition Properties of Ladder-type Electromagnetically Induced Transparency in Cesium Atoms, Doctoral dissertation, National Chen Kung University (2013).
[20]C. J. Foot, Atomic Physics, Oxford, 2004.
[21]J. D. Jackson, Classical Electrodynamics (3rd ed.), New York: John Wiley & Sons, 1999.
[22]R. Shankar, Principles of Quantum Mechanics, Yale, 1994.
[23]E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, Courier Corporation, 1964.
[24]G. D. Domenico and A. Weis, Transition Strengths of Alkali-Metal Atoms, Wolfram Demonstrations Project.
[25]P. M. Farrell and W. R. MacGillivray, On the consistency of Rabi frequency calculations, J. Phys. A 28, 209 (1995).
[26]I. I. Sobelman, Atomic Spectra and Radiative Transitions, Springer, 1979.
[27]C. Y. Su, Optical Pumping Effects on Electromagnetically Induced transparency in a Three-level Cascade-type System of Cesium Atom, Master thesis, National Chen Kung University (2014).
[28]M. L. Harris, C. S. Adams, S. L. Cornish, I. C. McLeod, E. Tarleton, and I. G. Hughes, “Polarization spectroscopy in rubidium and cesium,” Phys. Rev. A 73, 062509 (2006).
[29]H. D. Do, G. Moon, and H. R. Noh, “Polarization spectroscopy of rubidium atoms: Theory and experiment,” Phys. Rev. A 77, 032513.
[30]S. M. Rochester and D. Budker, “Atomic polarization visualized,” Am. J. Phys. 69, 450 (2001).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-07-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-07-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw