進階搜尋


下載電子全文  
系統識別號 U0026-0307201321071700
論文名稱(中文) 摻雜奈米碳管向列型液晶之研究
論文名稱(英文) Study on Carbon Nanotube Doped Nematic Liquid Crystals
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 101
學期 2
出版年 102
研究生(中文) 黃裕家
研究生(英文) Yu-Chia Huang
學號 l78941034
學位類別 博士
語文別 英文
論文頁數 208頁
口試委員 指導教授-傅永貴
口試委員-張守進
口試委員-藍永強
口試委員-李偉
口試委員-許佳振
口試委員-黃啟炎
中文關鍵字 液晶  奈米碳管 
英文關鍵字 liquid crystal  carbon nanotube 
學科別分類
中文摘要 本論文專注在向列型液晶與奈米碳管混合物之研究。根據過去超過十年來有關文獻指出,該複合體被發現有相當令人注目的特性有:液晶與奈米碳管之共同配向性、於電場下之賓主效應及非線性光學表現與光電效應之提升等。因此,此篇論文除了簡介液晶與奈米碳管兩項材料外,首先以回顧液晶與奈米碳管複合物之相關研究為開始,之後則為本實驗室透過光學、熱力學與介電子學方面之量測,輔以電腦理論分析所做對該混和物之物理特性描述,確認了摻雜奈米碳管確實會使得向列型液晶母體之介電異向性、雙折射率、旋轉黏滯係數增加,然使得相變溫度減低的現象。雖然液晶與奈米碳管複合體看似有趣且充滿其應用潛力,然惡名昭彰且亦於本實驗室所觀察到的是其不溶性;加上奈米碳管之高比表面積 (表面積除以質量,m2/kg) 特性,導致奈米碳管因凡德瓦爾力而非常易於液晶母體中聚集成塊。因此,本實驗室爾後便致力於”如何能將奈米碳管均勻分散至液晶當中”之研究,以致於其未來應用之潛力能得以真正發揮。該研究是基於行之有年,以熱力學觀點檢視大或高分子溶質與溶劑是否互溶之Flory-Huggins理論,且具我們所知是第一次運用在奈米碳管與向列型液晶溶解度之研究上。而模擬結果指出,以順丁烯二酸酐為官能基接枝於單壁奈米碳管,其接枝量若能達到20 wt%,則此表面改質之奈米碳管能以若干長度於5CB液晶內達到某個程度的溶解;而接枝量若達到30 wt% 時,則奈米碳管可完全溶解於5CB液晶溶劑當中。最後,基於對實驗數據之好奇,特別是在摻雜奈米碳管後,向列型液晶母體本身介電異向性增加之現象,本實驗室以Maxwell Garnett 模型提供了奈米碳管與向列型液晶複合體介電行為之具體呈現;而此數值分析結果發現,代表於光學頻率中儲存於奈米碳管中能量的Debye係數,於此複合體介電異向性增加的物理現象當中,似乎扮演了關鍵性的角色。
英文摘要 This dissertation is dedicated to the study on the binary mixture of nematic liquid crystal (NLC) and carbon nanotube (CNT). Based on the literatures over the decade, this novel combination exhibits eye-catching characteristics such as mutual alignment, guest-host effect under electric fields, improved non-linear optic properties and electro-optical performances etc. Thus, besides a brief introduction to both materials, this dissertation starts from a scientific review on the historic studies related to this novel mixture. After the background and the review chapters, presented is the characterization of the physical properties of the mixture through thermal, optical, dielectric measurements and computer calculations, re-assuring the enhancements of dielectric anisotropy, birefringence, rotational viscosity and effective elastic coefficient of the mixture, yet the decrease in the phase transition temperature compared with the pristine NLC matrix. Although the combination seems attractive and promising, it is ill-famed and observed in our experiments that the agglomeration of CNTs in LCs is serious and dissolving these two components into a reliable and empirically repeatable mixture is indeed, a painstaking and frustrating task. Therefore, a theoretical study which is based upon the well-known, yet for the first time (to the best of our knowledge), Flory-Huggins model is applied in effort to solubilization of the polar LCs and the non-polar CNTs. The results reveal that when the grafting ratio of maleic anhydride (MA) functionalized single-walled CNT (SWCNT-MA) is 20 atomic weight percent, SWCNT-MA can dissolve in the 5CB liquid crystal solvent within certain length and composition range. And when the grafting ratio reaches up to 30 atomic weight percent, SWCNT-MA can spontaneously and fully dissolve in the NLC with all regular CNT lengths and mixture compositions. On the other hand, to interpret the physical phenomena observed in our experiments, especially for the enhanced dielectric anisotropy which is an important factor for the binary mixture to play a role in future applications, a numerical analysis using the Maxwell Garnett approximation method was performed , and the results show that the Debye parameter of the CNT dopant at optic frequency limit seems to be the key physical cause of the enhancement of dielectric anisotropy of the NLC host.
論文目次 CHAPTER 1 Introduction ................................................................................................... 1
1.1 Preface ................................................................................................................ 1
1.2 Introduction to liquid crystals ............................................................................ 2
1.2.1 Orientational order parameter ............................................................... 6
1.2.2 Dielectric constants ................................................................................ 7
1.2.3 Refractive Index .................................................................................... 11
1.2.4 Elastic constants ................................................................................... 14
1.2.5 Viscosity-Rotational Viscosity .............................................................. 15
1.3 Introduction to carbon nanotubes ................................................................... 16
1.3.1 Structure ............................................................................................... 19
1.3.2 Electronic properties ............................................................................ 22
1.3.3 Functionalized carbon nanotubes ........................................................ 26
CHAPTER 2 Review on the Binary Mixture of Liquid Crystal and Carbon Nanotube ... 29
2.1 Enhanced non-linear properties of LC:CNT ...................................................... 32
2.2 Mutual alignment of liquid crystal and carbon nanotube ............................... 35
2.3 Characterization of the liquid crystal-carbon nanotube composite ................ 40
2.4 Electro-optic responses of the mixture ............................................................ 46
2.5 Theoretical studies related to the LC:CNT composite ...................................... 56
2.6 Motivations of our works ................................................................................. 62
CHAPTER 3 Physical properties of carbon nanotube doped nematic liquid crystal ..... 64
VIII
3.1 Sample preparation .......................................................................................... 65
3.1.1 Failure of the capacitance-voltage and the birefringence measurement
………………………………………………………………………………………………………………………..65
3.1.2 The “micro-doping” process ................................................................. 68
3.2 Experimental ....................................................................................................71
3.3 Results and Discussion ..................................................................................... 74
3.3.1 Dielectric anisotropy ............................................................................ 74
3.3.2 Elastic constants ................................................................................... 77
3.3.3 Rotational viscosity ............................................................................... 78
3.3.4 Ion density ............................................................................................ 79
3.3.5 Birefringence ........................................................................................ 81
3.3.6 TN-I measurement ................................................................................. 83
3.4 Computer experiments (by molecular dynamics calculations): From the
chemophysical point of view ........................................................................................ 86
CHAPTER 4 Solubilization of functionalized (5, 5) single-walled carbon nanotube in
5CB nematic liquid crystal: Simulation using Flory-Huggins theory .......... 95
4.1 Introduction ...................................................................................................... 96
4.2 Materials ........................................................................................................... 97
4.3 Flory-Huggins Theory and Simulation .............................................................. 99
4.4 Results and Discussion ................................................................................... 109
CHAPTER 5 Modeling the Dielectric Behavior of the Carbon-nanotube-doped Nematic
Liquid Crystal .............................................................................................. 124
5.1 Mixing rules .................................................................................................... 124
IX
5.1.1 The Maxwell Garnett theory .............................................................. 126
5.1.1.1 The local field and Clausius - Mosotti relation ................................... 127
5.1.1.2 The Maxwell Garnett equation .......................................................... 130
5.1.2 The extended Maxwell Garnett theories ........................................... 132
5.1.3 Other mixing rules .............................................................................. 134
5.2 Derivation of extended Maxwell Garnett formula for the
carbon-nanotube-doped nematic liquid crystal binary mixture ................................ 138
5.2.1 The nematic mixture with aligned CNTs ............................................. 147
5.2.2 The isotropic mixture with aligned CNTs ............................................ 161
5.3 Discussion ....................................................................................................... 162
CHAPTER 6 Conclusions ................................................................................................ 168
APPENDICES ....................................................................................................................171
Appendix I ...................................................................................................................171
Appendix II .................................................................................................................. 174
REFERENCES .................................................................................................................... 178
LIST OF PUBLICATIONS…………………………………………..…………………………………………………..189
參考文獻 [1] S. Chandrasekhar F.R.S., Liquid Crystals, 2nd ed. Cambridge (1993).
[2] P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, 1999).
[3] I. Haller, Thermodynamic and static properties of liquid crystals, Prog. Solid State Chem., 10, 103 (1975).
[4] W. Maier and G. Meier, Z. Naturforsch, Eine einfache Theorie der dielektrischen Eingenschaften homogen rientierter kristallenflttssiger Phasen des nematischen Typs, A 16, 262 (1961).
[5] L. Onsager, Electric moments of molecules in liquids, J. A m. Chem. Soc. 58, 1486 (1936).
[6] M. F. Vuks, Determination of the optical anisotropy of aromatic molecules from the double refraction of crystals, Opt, Spektrosk. 60, 644 (1966).
[7] J. Li and S.-T. Wu, Self-consistency of Vuks equations for liquid-crystal refractive indices, J. Appl. Phys. 96, 6253 (2004).
[8] C. W. Oseen, The theory of liquid crystals, Trans. Faraday Soc. 29, 883 (1933).
[9] F. C. Frank, On the theory of liquid crystals, Disc. Faraday Soc. 25, 19 (1958).
[10] For example, see S. T. Wu and D. K. Yang, Reflective liquid crystal displays, Wiley 2005.
[11] S. Iijima, Helical microtubules of graphitic carbon, Nature 354, 56 (1991).
[12] M. Monthioux, V. Kuznetsov, Who should be given the credit for the discovery of carbon nanotubes?, Carbon 44, 1621 (2006).
[13] Courtesy of Pf. Yury Gogotsi, Drexel University, USA.
[14] S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes Basic Concepts and Physical Properties (WILEY-VCH, Weinheim, 2004).
[15] K. Tanaka, T. Yamabe, K. Fukui, The Science and Technology of Carbon Nanotubes, 1st ed. (Elsevier, UK, 1999).
[16] The simulation is carried out by Materials StudioⓇ which is a commercially available scientific software for simulating and modeling materials developed and distributed by AccelrysTM.
[17] From the website of Wikipedia (search: carbon nanotube): http://en.wikipedia.org/wiki/Carbon_nanotube
[18] K. Zhang, G. Malcolm Stocks and J. Zhong, Nanotechnology 18, 285703 (2007).
[19] Data from NanocylTM Inc.
[20] X. Lu, Z. Chen, Curved Pi-Conjugation, aromaticity, and the related chemistry of small fullerenes (C60) and single-walled carbon nanotubes, Chemical reviews 105, 3643 (2005).
[21] M. J. O’Connell, Carbon Nanotubes Properties and Applications, (Taylor & Francis, FL, 2006).
[22] M. R. Falvo, G. J. Clary, R. M. Taylor, Chi, V., Brooks, F. P. Washburn, S., and Superfine, R., Bending and buckling of carbon nanotubes under large strain, Nature, 389, 582 (1997).
[23] R. E. Camley, R. L. Stamps, Solid State Physics, vol.62 (Elsevier, 2011).
[24] D. Sikharulidze, Nanoparticles: An approach to controlling an electro-optical behaviour of nematic liquid crystals, Appl. Phys. Lett. 86, 033507 (2005).
[25] S.-J. Hwang, S.-C. Jeng, C.-Y. Yang, C.-W Kuo and C.-C. Liao, Characteristics of nanoparticle-doped homeotropic liquid crystal devices, J. Phys. D 42, 025102 (2008).
[26] W.-Y. Teng, S.-C. Jeng, C.-W. Kuo, Y.-R. Lin, C.-C. Liao, and W.-K. Chin, Nanoparticles-doped guest-host liquid crystal displays, Opt. Lett. 33, 1663 (2008).
[27] S.-C. Jeng, S.-J. Hwang, and C.-Y. Yang, Tunable Pretilt Angles Based on Nanoparticles-Doped Planar Liquid Crystal Cells, Opt. Lett. 34, 455 (2009).
[28] S. Sridevi, S. K. Prasad, G. G. Nair, V. D’Britto, and B. L. V. Prasad, Enhancement of anisotropic conductivity, elastic, and dielectric constants in a liquid crystal-gold nanorod system, Appl. Phys. Lett. 97, 151913 (2010).
[29] J. Y. Woo, E. H. Kim, and B. K. Kim, Dual effects of fullerene doped to holographic polymer dispersed liquid crystals, J. Polym. Sci. (Part A) 45, 5590 (2007).
[30] L. M. Lopatina and J. V. Selinger, Theory of Ferroelectric Nanoparticles in Nematic Liquid Crystals, Phys. Rev. Lett, 102, 197802 (2009).
[31] J. P. F. Lagerwall and G. Scalia, Carbon nanotubes in liquid crystals, J. Mater. Chem. 18, 2890 (2008).
[32] M. Rahman and W. Lee, Scientific duo of carbon nanotubes and nematic liquid crystals, J. Phys. D 42, 063001 (2009).
[33] S. Xie, W. Li, Z. Pan, B. Chang, and L. Sun, Mechanical and physical properties on carbon nanotube, J. Phys. Chem. Solids 61,
1153 (2000).
[34] A. M. Somoza, C. Sagui, and C. Roland, Liquid-crystal phases of capped carbon nanotubes, Phys. Rev. B 63, 081403 (2001).
[35] W. Lee and C.-S. Chiu, Observation of self-diffraction by gratings in nematic liquid crystals doped with carbon nanotubes, Opt. Lett. 26, 521 (2000).
[36] W. Lee, S.-L. Yeh, C.-C. Chang, and C.-C. Lee, Beam coupling in nanotube-doped nematic liquid-crystal films, Opt. Express 9, 791 (2001).
[37] W. Lee and S.-L. Yeh, Optical amplification in nematics doped with carbon nanotubes, Appl. Phys. Lett. 79, 4488 (2001).
[38] W. Lee, H.-Y. Chen, and S.-L. Yeh, Surface-sustained permanent gratings in nematic liquid crystals doped with carbon nanotubes, Opt. Express 10, 482 (2002).
[39] I. C. Khoo, J. Ding, Y. Zhang, K. Chen, and A. Diaz, Supra-nonlinear photorefractive response of single-walled carbon nanotube- and C60-doped nematic liquid crystal, Appl. Phys. Lett. 82, 3587 (2003).
[40] S. Ghosh and G. O. Carlisle, Carbon nanotube enhanced diffraction efficiency in dye-doped liquid crystal, J. Mater. Sci: Mater. in Electr. 16, 753 (2005).
[41] M. D. Lynch and D. L. Patrick, Organizing carbon nanotubes with liquid crystals, Nano Lett. 2, 1197 (2002).
[42] I. Dierking, G. Scalia, and P. Morales, Liquid crystal–carbon nanotube dispersions, J. Appl. Phys. 97, 044309 (2005).
[43] G. Scalia, J. P. F. Lagerwall, S. Schymura, M. Haluska, F. Giesselmann, and S. Roth, Carbon nanotubes in liquid crystals as versatile functional materials, Phys. Stat. Sol. (b) 244, 4212 (2007).
[44] J. M. Russell, S. Oh, I. LaRue, O. Zhou, E. T. Samulski, Alignment of Nematic Liquid Crystals Using Carbon Nanotube Films, Thin Solid Films 509, 53 (2006).
[45] I.-S. Baik, S. Y. Jeon, S. J. Jeon, S. H. Lee, K. H. An, S. H. Jeong, and Y. H. Lee, Local deformation of liquid crystal director induced by translational motion of carbon nanotubes under in-plane field, J. Appl. Phys. 100, 074306 (2006).
[46] S. Y. Jeon, K. A. Park, S. H. Jeong, H. J. Jeong, K. H. An, C. W. Nah, D. Pribat, S. H. Lee, and Y. H. Lee, Electroactive superelongation of carbon nanotube aggregates in liquid crystal medium, Nano Lett. 7, 2178 (2007).
[47] J. P. F. Lagerwall, G. Scalia, M. Haluska, U. Dettlaff-Weglikowska, F. Giesselmann, and S. Roth, Simultaneous alignment and dispersion of carbon nanotubes with lyotropic liquid crystals, Phys. Stat. Sol. (b) 243, 3046 (2006).
[48] J. P. F. Lagerwall, G. Scalia, M. Haluska, U. Dettlaff-Weglikowska, S. Roth, and F. Giesselmann, Nanotube Alignment Using Lyotropic Liquid Crystals, Adv. Mater. 19, 359 (2007).
[49] G. Scalia, C. von Buhler, C. Hagele, S. Roth, F. Giesselmann, and J. P. F. Lagerwall, Spontaneous macroscopic carbon nanotube alignment via colloidal suspension in hexagonal columnar lyotropic liquid crystals, Soft Matter 4, 570 (2008).
[50] H. Duran, B. Gazdecki, A. Yamashibta and T. Kyu, Effect of carbon nanotubes on phase transitions of nematic liquid crystals, Liq. Cryst. 32, 815 (2005).
[51] C.-Y. Huang, H.-C. Pan, and C.-T. Hsieh, Jap. Electro-optical proper- ties of carbon-nanotube-doped twisted nematic liquid crystal cell, J. Appl. Phys. 45, 6392 (2006).
[52] G. Scalia, J. P. F. Lagerwall, M. Haluska, U. Dettlaff-Weglikowska, F. Giesselmann, and S. Roth, Effect of phenyl rings in liquid crystal molecules on SWCNTs studied by Raman spectroscopy, Phys. Stat. Sol. (b) 243, 3238 (2006).
[53] S. J. Jeong, P. Sureshkumar, K.-U. Jeong, A. K. Srivastava, S. H. Lee, S. H. Jeong, Y. H. Lee, R. Lu, and S.-T. Wu, Unusual double four-lobe textures generated by the motion of carbon nanotubes in a nematic liquid crystal, Opt. Express 15, 11698 (2007).
[54] O. Trushkevych, N. Collings, T. Hasan, V. Scardaci, A. C. Ferrari, T. D. Wilkinson, W A Crossland, W I Milne, J Geng, B F G Johnson and S Macaulay, Characterization of carbon nanotube–thermotropic nematic liquid crystal composites, J. Phys. D 41, 125106 (2008).
[55] R. Basu and G. S. Iannacchione, Carbon nanotube dispersed liquid crystal: a nano electromechanical system, App. Phys. Lett. 93, 183105 (2008).
[56] R. Basu and G. S. Iannacchione, Nematic anchoring on carbon nanotubes, App. Phys. Lett. 95, 173113 (2009).
[57] R. Basu and G. S. Iannacchione, Orientational coupling enhancement in a carbon nanotube dispersed liquid crystal, Phys. Rev. E 81, 051705 (2010).
[58] R. Basu, K. A. Boccuzzi, S. Ferjani, and C. Rosenblatt, Carbon nanotube induced chirality in an achiral liquid crystal, App. Phys. Lett. 97, 121908 (2010).
[59] R. Basu and G. S. Iannacchione, Dielectric hysteresis, relaxation dynamics, and nonvolatile memory effect in carbon nanotube dispersed liquid crystal, J. Appl. Phys. 106, 124312 (2009).
[60] A. Koval’chuk, L. Dolgov, O. Yaroshchuk, Semicond. Dielectric studies of dispersions of carbon nanotubes in liquid crystals 5CB, Phys. Quant. Electron. Optoelectron. 11, 337 (2008).
[61] C.-W. Lee and W.-P. Shih, Quantification of ion trapping effect of carbon nanomaterials in liquid crystals, Mater. Lett. 64, 466 (2010).
[62] K. R. Sun and B. K. Kim, Polym. Adv. Technol. (2010).
[63] B.-R. Jian, C.-Y. Tang, W. Lee, Temperature-dependent electrical properties of dilute suspensions of carbon nanotubes in nematic liquid crystals, Carbon 49, 910 (2011).
[64] W. Lee, C.-Y. Wang, and Y.-C. Shih, Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host, Appl. Phys. Lett. 85, 513 (2004).
[65] S. Ghosh, P. Nayek, S. Kr. Roy, R. Gangopadhyay, M. R. Molla, and R. Dabrowski, Effects of conducting polymer poly(3, 4-ethylenedioxythiophene) nanotubes on the electro-optical and dielectric properties of a nematic liquid crystal 4-n-pentyl-4′-cyanobiphenyl host, Appl. Phys. Lett. 96, 073101 (2010).
[66] H.-Y. Chen, W. Lee, and N. Clark, Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension, Appl. Phys. Lett. 90, 033510 (2007).
[67] I.-S. Baik, S. Y. Jeon, S. H. Lee, K. A. Park, S. H. Jeong, K. H. An, and Y. H. Lee, Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell, Appl. Phys. Lett. 87, 263110 (2005).
[68] S. Y. Jeon, S. H. Shin, S. J. Jeong, S. H. Lee, S. H. Jeong, Y. H. Lee, H. C. Choi, and K. J. kim, Effects of carbon nanotubes on electro-optical characteristics of liquid crystal cell driven by in-plane field, Appl. Phys. Lett. 90, 121901 (2007).
[69] S. Y. Jeon, S. H. Shin, J.-H. Lee, S. H. Lee, and Y. H. Lee, Effects of Carbon Nanotubes on Nematic Backflow in a Twisted Nematic Liquid-Crystal Cell, Jap. J. Appl. Phys. 46, 7801 (2007).
[70] C.-Y. Huang, C.-Y. Hu, H.-C. Pan, and K.-Y. Lo, Electrooptical Responses of Carbon Nanotube-Doped Liquid Crystal Devices, Jap. J. Appl. Phys. 44, 8077 (2005).
[71] C.-Y. Huang, Y.-G. Lin, and Y.-J. Huang, Electro-optical Devices based on a PDLC films, Jap. J. Appl. Phys. 47, 6407 (2008).
[72] C.-Y. Huang, and H.-C. Pan, Electrooptical properties of carbon–nanotube-doped twisted nematic liquid crystal cell, Appl. Phys. Lett. 89, 056101 (2006).
[73] S.-Y. Lu and L.-C. Chien, Carbon nanotube doped liquid crystal OCB cells: physical and electro-optical properties, Opt. Express 16, 12777 (2008).
[74] J. Prakash, A. Choudhary, D. S. Mehta, and A. M. Biradar, Effect of carbon nanotubes on response time of ferroelectric liquid crystals, Phys. Rev. E 80, 012701 (2009).
[75] V. Manjuladevia, R. K. Guptaa and S. Kumarb, Effect of functionalized carbon nanotube on electro-optic and dielectric properties of a liquid crystal, J. Mole. Liq. 171, 60 (2012).
[76] R. C. Y. King and F. Roussel, Transparent carbon nanotube-based driving electrodes for liquid crystal dispersion display devices, Appl. Phys. A 86, 159 (2007).
[77] P. van der Schoot, V. Popa-Nita, and S. Kralj, Alignment of Carbon Nanotubes in Nematic Liquid Crystals, J. Phys. Chem. B 112, 4512 (2008).
[78] V. Popa-Nita and S. Kralj, Liquid crystal-carbon nanotubes mixtures, J. Chem. Phys. 132, 024902 (2010).
[79] L. N. Lisetski, A. M. Chepikov, S. S. Minenko, N. I. Lebovka, M. S. Soskin, Dispersion of carbon nanotubes in nematic liquid crystals: effect of nanotubes geometry, Funct. Mater. 18, 143 (2011).
[80] K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, Anchoring liquid crystal molecule on single-walled carbon nanotube, J. Phys. Chem. C 111, 1620 (2007).
[81] D. L. Cheung and M. P. Allen, Liquid-crystal-mediated force between a cylindrical nanoparticle and substrate, Phys. Rev. E 76, 041706 (2007).
[82] W. Gwizdala, K. Gorny, and Z. Gburski, Molecular dynamics and dielectric loss in 4-cyano-4-n-pentylbiphenyl (5CB) mesogene film surrounding carbon nanotube – Computer simulation, J. Mole. Struc. 887, 148 (2008).
[83] A. Dawid, W. Gwizdala, J. Non-Cryst. Sol. 335, 1302 (2009).
[84] R. H. Petrucci, General Chemistry 5th ed., New York: Macmillan, 1989.
[85] Z. Chen, K. Kobashi, U. Rauwald, R. Booker, H. Fan, W. F. Hwang, and J. M. Tour, Soluble Ultra-Short Single-Walled Carbon Nanotubes, J. Am. Chem. Soc. 128, 10568 (2006).
[86] A. Y.-G. Fuh and K. Y.-C. Huang, Solubilization of functionalized (5, 5) single-walled carbon nanotubes in 5CB nematic liquid crystals: simulation using Flory–Huggins theory, Modelling Simul. Mater. Sci. Eng. 19, 025006 (2011).
[87] X. Chen, X. Wu, J. Zou, J. Liu, J. Chen, Dispersion of functionalized multi-walled carbon nanotubes in multi-walled carbon nanotubes/liquid crystal nanocomposites and their thermal properties, Mater. Sci. Eng. B 176, 425–430 (2011).
[88] C. Y. Huang, C. Y. Hu, H. C. Pan and K. Y. Lo, Electrooptical Responses of Carbon Nanotube-Doped Liquid Crystal Devices, Jpn. J. of Appl. Phys. 44, 8077 (2005).
[89] M. G. Clark, E. P. Raynes, R. A. Smith, and R. J. A. Tough, Measurement of the permittivity of nematic liquid crystals in magnetic and electric fields using extrapolation procedures, J. Phys. D 13, 2151 (1980).
[90] K. R. Welford and J. R. Sambles, Analysis of electric field induced ... in a nematic liquid crystal for any applied field, Mol. Cryst. Liq. Cryst. 147, 25 (1987).
[91] C. Y. Huang, H. C. Pan, and C. T. Hsieh, Electrooptical Properties of Carbon-Nanotube-Doped Twisted Nematic Liquid Crystal Cell, Jpn. J. of Appl. Phys. 45 8A (2006).
[92] C. Maze, Determination of eleastic constant and dielectric anisotropy for nematic liquid crystals, Mol. Cryst. Liq. Cryst. 48, 273 (1978).
[93] G. Baur, The influence of material and device parameters on the optical characteristics of liquid crystal displays, Mol. Cryst. Liq. Cryst. 63, 45 (1981).
[94] M. Imai, H. Naito, H. Okuda, A. Sugimura, determination of rotational viscosity of nematic liquid crystals from transient current: numerical analysis and experiment, Jpn. J. Appl. Phys., 33, 3482 (1994).
[95] A. R. Leach, Molecular Modeling Principles and Applications 2nd edn (Prentice Hall, 2001).
[96] A. Dawid and Z. Gburski, Dielectric relaxation of 4-cyano-4-n-pentylbiphenyl (5CB) thin layer adsorbed on carbon nanotube – MD simulation, J. Non-Cryst. Solids 353, 4339 (2007).
[97] L. X. Benedict, S. G. Louie, and M. L. Cohen, Static polarizabilities of single-wall carbon nanotubes, Phys. Rev. B 52, 8541 (1995).
[98] For example, (a) S. Girodani, S. Bergin, V. Nicolosi, S. Lebedkin, M. Kappes, W. Blau and J. Coleman, Debundling of single-walled nanotubes by dilution:  observation of large populations of individual nanotubes in amide solvent dispersions, J. Phys. Chem. B 110 15708 (2006) (b) V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, R. E. Smalley, J. Schmidt and Y. Talmon, Individually suspended single-walled carbon nanotubes in various surfactants, Nono Letters 3, 1379 (2003) (c) S. E. Moulton, M. Maugey, P. Poulin and G. G. Wallace, Liquid crystal behavior of single-walled carbon nanotubes dispersed in biological hyaluronic acid solutions, J. Am. Chem. Soc. 129, 9452 (2007) (d) H. Cathcart, S. Quinn, V. Nicolosi, J. M. Kelly, W. J. Blau and J. N. Coleman, Spontaneous debundling of single-walled carbon nanotubes in dna-based dispersions, J. Phys. Chem. C 111, 66 (2007) (e) Nature 2, 338 (2003).
[99] C. H. Tseng, C. C. Wang and C. Y. Chen, Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites , Chem. Mater. 19, 308 (2007).
[100] See, for example, A. R. Leach, Molecular Modeling Principles and Applications 2nd ed., Prentice Hall, 2001.
[101] Edited by J. F. Johnson and R. S. Porter, Liquid Crystal and Ordered Fluids Vol. 2, New York: Plenum, 1974.
[102] (a) Y. Gnanou and M. Fontanille, Organic and Physical Chemistry of Polymers, New Jersey: Wiley, Hoboken, 2008 (b) p. 149 wherein.
[103] For reviews, see like T. Engel and P. Reid, Physical Chemistry, Pearson Education Inc, 2006.
[104] J. H. Hildebrand, Viscosity and Diffusivity, New York: Wiley, 1977.
[105] (a) P. J. Flory, The vapor pressure and heat of vaporization of N15, J. Chem. Phy. 9, 660 (1941) (b) P. J. Flory, Thermodynamics of high polymer solutions, J. Chem. Phys. 10, 51 (1942).
[106] M. L. Huggins, Solutions of long chain compounds, J. Chem. Phys. 9, 440 (1941).
[107] J. Mark, K. Ngai and W. W. Graessley, Physical Properties of Polymers 3rd ed. Cambridge: Cambridge Univ. Press, 2004.
[108] M. G. Bawend, K. F. Freed and U. Mohanty, A lattice model for self‐avoiding polymers with controlled length distributions. II. Corrections to Flory–Huggins mean field, J. Chem. Phys. 84, 7036 (1986).
[109] K. S. Schweizer and J. G. Curro, Integral equation theory of the structure and thermodynamics of polymer blends, J. Chem. Phys. 91, 5059 (1989).
[110] (a) K. F. Freed, New lattice model for interacting, avoiding polymers with controlled length distribution, J. Phys. A 18, 871 (1985) (b) A. M. Nemirovsky, M. G. Bawendi and K. F. Freed, Lattice models of polymer solutions: Monomers occupying several lattice sites, J. Chem. Phys. 87, 7272 (1987) (c) M. G. Bawendi and K. F. Freed, Systematic corrections to Flory–Huggins theory: Polymer–solvent–void systems and binary blend–void systems, J. Chem. Phys. 88, 2741 (1988) (d) A. I. Pesci and K. F. Freed, Lattice models of polymer fluids: Monomers occupying several lattice sites. II. Interaction energies, J. Chem. Phys 90, 2003 (1989).
[111] M. G. Bawendi and K. F. Freed, Statistical mechanics of the packing of rods on a lattice: Cluster expansion for systematic corrections to mean field, J. Chem. Phys. 85, 3007 (1986).
[112] M. G. Bawendi and K. F. Freed, A lattice model for self‐ and mutually avoiding semiflexible polymer chains, J. Chem. Phys. 86, 3720 (1987).
[113] M. G. Bawendi, K. F. Freed and U. Mohanty, A lattice field theory for polymer systems with nearest‐neighbor interaction energies, J. Chem. Phys. 87, 5534 (1987).
[114] P. G. deGennes, Scaling Concepts in Polymer Physics, New York: Cornell University, 1979.
[115] C. F. Fan, B. D. Olafson, M. Blanco and S. L. Hsu, Application of molecular simulation to derive phase diagrams of binary mixtures, Macro. Mol. 25, 3667 (1992).
[116] B. H. Zimm, Application of the methods of molecular distribution to solutions of large molecules, J. Chem. Phys. 14, 164 (1946).
[117] L. Onsager and N. Y. Ann, The effects of shape on the interaction of colloidal particles, Acad. Sci. 51, 627 (1949).
[118] (a) A. Isihara, Determination of molecular shape by osmotic measurement, J. Chem. Phys. 18, 1446 (1950) (b) Theory of anisotropic colloidal solutions, 19, 1142 (1951).
[119] P. J. Flory, Statistical thermodynamics of semi-flexible chain molecules, Proc. Roy. Soc. A 234, 73 (1956).
[120] (a) W. Maier and A. Saupe, Eine einfache molekulare theorie des nematischen kristallinflussigen zustandes, Z. Naturforsch A 13, 564 (1958) (b) Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil I, 14, 882 (1959) (c) 15, 287 (1960).
[121] E. A. DiMarzio, Statistics of orientation effects in linear polymer molecules, J. Chem. Phys. 35, 658 (1961).
[122] I. C. Sanchez, Bulk and interface thermodynamics of polymer alloys, Ann. Rev. Mater. Sci. 13, 387 (1983).
[123] M. Blanco, Molecular silverware. I. General solutions to excluded volume constrained problems, J. Comput. Chem. 12, 237 (1991).
[124] S. L. Mayo, B. D. Olafson and W. A. III Goddard, DREIDING: A generic force field for molecular simulations, J. Phys. Chem. 94, 8897 (1990).
[125] A. Maiti, J. Wescott and P. Kung, Nanotube-polymer composites: insights from Flory-Huggins theory and mesoscale simulations, Mol. Sim. 31, 143 (2005).
[126] K. L. Lu, R. M. Lago, Y. K. Chen, M. L. H. Green, P. J. F. Harris and S. C. Tsang, Mechanical damage of carbon nanotubes by ultrasound, Carbon 34, 814 (1992).
[127] Reactions to functionalize the SWCNT may be achieved by following the protocols in e. g., C. A. Dyke, J. M. Tour, Unbundled and highly functionalized carbon nanotubes from aqueous reactions, Nano Lett. 3, 1215 (2003).
[128] F. Capolino, Theory and Phenomena of Metamaterials (CRC Press, 2009).
[129] J. C. M. Garnett, Colours in metal glasses and in metallic films, R. Soc. London, Ser. A 203, 385 (1904).
[130] The lecture note is available on the network: http://www.tf.uni-kiel.de/matwis/amat/elmat_en/index.html
[131] J. E. Sipe, R. W. Boyd, Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model, Phys. Rev. A 46, 1614 (1992).
[132] O. Levy, D. Stroud, Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers, Phys. Rev. B 56, 8035 (1997).
[133] A. Lakhtakia, B. Michel and W. S. Weiglhofer, The role of anisotropy in the Maxwell Garnett and Bruggeman formalisms for uniaxial particulate composite media, J. Phys. D, 30, 230 (1997).
[134] A. Sihvola, On the dielectric problem of isotropic sphere in anisotropic medium, Electromagnetics 17, 69 (1997).
[135] A. Sihvola, Electromagnetic Mixing Formulas and Applications (Baker & Taylor Books, 2000)
[136] L. Jylh¨a and Ari Sihvola, Equation for the effective permittivity of particle-filled composites for material design applications, J. Phys. D: Appl. Phys. 40, 4966 (2007).
[137] M. H. Nisanci, F. De Paulis, D. Di Febo and A. Orlandi, Synthesis of composite materials with conductive aligned cylindrical inclusions, PIERS Proceedings, Kuala Lumpur, Malaysia, March 27-30 (2012).
[138] F. De Paulis, M. H. Nisanci, M. Y. Koledintseva, J. L. Drewniak, and A. Orlandi, Homogenized permittivity of composites with aligned cylindrical inclusions for causal electromagnetic simulations, Prog. Electromag. Res. B 37, 205 (2012).
[139] S. M. Shelestiuk, V. Yu. Reshetnyak and T. J. Sluckin, Frederiks transition in ferroelectric liquid-crystal nanosuspensions, Physical Review E 83, 041705 (2011).
[140] V. Reshetnyak, Effective dielectric function of ferroelectric lc suspensions, Mol. Cryst. Liq. Cryst. 421, 219 (2004).
[141] O. Buchnev, E. Ouskova, Y. Reznikov, V. Reshetnyak, H. Kresse and A. Grabar, Enhanced dielectric response of liquid crystal ferroelectric suspension, Mol. Cryst. Liq. Cryst. 422, 47 (2004).
[142] Bruggeman, D. A. G., Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen, I. Dielektrizitatskonstanten und Leitf ¨ ahigkeiten der Mischk ¨ orper aus isotropen Substanzen, Annalen der Physik, 5. Folge, Band 24, 636 (1935).
[143] L. Tsang, J. A. Kong and R. T. Shin, Theory of Microwave Remote Sensing (Wiley, New York, 1985).
[144] A. Sihvola, Self-consistency aspects of dielectric mixing theories, IEEE Transact. Geosci. Rem. Sens., 27 (4), 403 (1989).
[145] H. Looyenga, Dielectric constants of heterogeneous mixtures, Physica 31, 401 (1965).
[146] P. N. Sen, C. Scala and M. H. Cohen, A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beds, Geophysics 46, 781 (1981).
[147] K. Lichtenecker, Die Dielektrizitätskonstante natürlicher und künstlicher Mischkörper, Phys. Z. 27, 115 (1926).
[148] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics
of Continuous Media, 2nd ed. (Pergamon Press, New York, 1984).
[149] J. C. M. Garnett, Colours in Metal Glasses and in Metallic Films, R. Soc. London, Ser. B 203, 385 (1904).
[150] S. G. Moiseev, Active Maxwell-Garnett composite with the unit refractive index, Physica B 405, 3042 (2010).
[151] A. Sihvola, Metamaterials and depolarization factors, Prog. Electromag. Res. PIER 51, 65 (2005).
[152] D. K. Cheng, Fundamentals of Engineering Electromagnetics (Addison Wesley, 1993).
[153] O. Levy, D. Stroud, Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers, Phys. Rev. B, 56, 8035 (1997).
[154] R. Basu and G. S. Iannacchione, Dielectric response of multiwalled carbon nanotubes as a function of applied ac-electric fields, J. Appl. Phys. 104, 114107 (2008).
[155] M. C. W. Van Boxtel, M. Wübbenhorst, J. Van Turnhout, C. W. M. Bastiaansen and D. J. Broer, A dielectric study on the relaxation and switching behaviour of liquid crystals confined within a colloidal network, Liq. Cryst. 30, 235 (2003).
[156] van de Hulst, H. C., Light Scattering by Small Particles (Dover Publication, New York, 1981).
[157] B. Kozinsky and N. Marzari, Static Dielectric Properties of Carbon Nanotubes from First Principles, Phys. Rev. Lett. 96, 166801 (2006).
[158] Y. -H. Li and J. -T. Lue, Dielectric constants of single-wall carbon nanotubes at various frequencies, J. Nanosci. Nanotech. 7, 3185 (2007).
[159] Lagarkov AN, Sarychev AK. Electromagnetic properties of composites containing elongated conducting inclusions, Phys Rev B. 1996; 53: 6318–6336.
[160] For example, Vl. A. Margulis and E. A. Gaiduk, Dielectric function of single-wall carbon nanotubes, Chem. Phys. Lett. 341, 16 (2001).
[161] For example, L. X. Benedict, V. H. Crespi, S. G. Louie and M. L. Cohen, Static conductivity and superconductivity of carbon nanotubes: Relations between tubes and sheets, Phys. Rev. B. 52, 14935 (1995).
[162] L. Huang, M. Wang, Y. Zhang, Z. Guo, J. Sun and N. Gu, Synthesis of gold nanotadpoles by a temperature-reducing seed approach and the dielectrophoretic manipulation, J. Phys. Chem. C. 111,16154 (2007).
[163] C. A. Grimes, C. Mungle, D. Kouzoudis, S. Fang and P.C. Eklund, The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites, Chem. Phys. Lett. 319, 460 (2000).
[164] C. A. Grimes, E. C. Dickey, C. Mungle, K. G. Ong and D. Qian, Effect of purification of the electrical conductivity and complex permittivity of multiwall carbon nanotubes, J. Appl. Phys. 90, 4134 (2001).
[165] T. –I. Jeon, K. –J. Kim, C. Kang, S. –J. Oh, J. –H. Son, K. H. An, D. J. Bae and Y. H. Lee, Terahertz conductivity of anisotropic single walled carbon nanotube films, Appl. Phys. Lett. 80, 3403 (2002).
[166] Z. H. Peng, J. C. Peng, Y. F. Peng and J. Y. Wang, Complex conductivity and permittivity of single wall carbon nanotubes/polymer composite at microwave frequencies: A theoretical estimation, Chin. Sci. Bullet. 53, 3497 (2008).
[167] Y. –C. Wang, J. –T. Lue, (master thesis) Dielectric constants of multi-wall carbon nanotubes from low to microwave frequencies, National Tsing Huang University (2007).
[168] H. Nishimura, N. Minami and R. Shimano, Dielectric properties of single-walled carbon nanotubes in the terahertz frequency range, Appl. Phys. Lett. 91, 011108 (2007) and communication with the corresponding author.
[169] M. Y. Koledintseva, R. E. DuBroff and R. W. Schwartz, "A Maxwell Garnett model for dielectric mixtures containing conducting particles at optical frequencies, Prog. Electromagn. Res. PIER. 63, 223 (2006).
[170] C. T. White and T. N. Todorov, Carbon nanotubes as long ballistic conductors, Nature. 393, 240 (1998).
[171] T. W. Ebbesen , H. J. Lezec , H. Hiura , J. W. Bennett , H. F. Ghaemi and T. Thio, Electrical conductivity of individual carbon nanotubes, Nature. 382, 54 (1996).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw