進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0306201302265900
論文名稱(中文) 網路口碑知識結構為基之SWOT分析方法研究
論文名稱(英文) On eWOM Knowledge Structure-Based SWOT Analysis Method
校院名稱 成功大學
系所名稱(中) 製造資訊與系統研究所碩博士班
系所名稱(英) Institue of Manufacturing Information and Systems
學年度 101
學期 2
出版年 102
研究生(中文) 白貿元
研究生(英文) Mao-Yuan Pai
學號 p98961104
學位類別 博士
語文別 英文
論文頁數 103頁
口試委員 指導教授-陳裕民
口試委員-黃三益
口試委員-許孟祥
口試委員-歐陽超
口試委員-李昇暾
口試委員-朱治平
中文關鍵字 網路口碑  SWOT分析  本體論  市場分析 
英文關鍵字 Electronic Word-of-Mouth (eWOM)  Strengths, Weaknesses, Opportunities and Threats (SWOT)  Ontology  Marketing Analysis 
學科別分類
中文摘要 策略規劃的第一步是進行市場或環境分析,企業管理者與管專案管理者常透過傳統SWOT分析瞭解市場或企業環境,依賴人力進行傳統SWOT 分析容易造成主觀的分析結果。企業管理者與管專案管理者為了客觀的收集市場資訊,使企業做出正確的策略規劃,常透過問卷進行市場調查,傳統市場調查固然有助於了解市場趨勢,卻往往耗時費力,而調查對象不一定是公司產品或服務的潛在顧客,因此常造成市場調查結果無法反應市場需求。因此,如何有效進行市場分析,藉以找出企業在市場中的優勢、劣勢、機會與威脅,協助企業有效的進行策略規劃,己成為企業所重視的議題。網路口碑評價是一種消費意見,這些評價包含了企業品牌、產品或服務的 優勢、劣勢、機會與威脅等相關資訊。然而,很少有研究探討如何透過網路口碑發展決策支援系統,協助企業進行策略規劃。若能透過網路口碑評價進行SWOT分析,將使分析結果更為客觀,使企業能動態的掌握市場變化,做出正確的策略規劃。
因此,本研究主要是發展網路口碑知識結構為基之SWOT分析方法,主要是透過網路口碑知識結構進行市場分析,藉以找出企業在市場中優勢、劣勢、機會與威脅,以支援企業進行策略規劃。針對上述目的,本研究主要的研究項目包含:(i)分析網路口碑內容與評價字特性;(ii)建構一個網路口碑知識結構為基之SWOT分析模式、(iii)發展一個網路口碑知識結構為基之SWOT分析方法與技術、與(iv)實作一個網路口碑知識結構為基之SWOT分析機制。最後,本研究透過使用者滿意度分析證明本機制是有效性與有用性,可有效地協助企業管理者有效的制訂策略規劃。
英文摘要 Strategic planning is the first step in a market or environment analysis, managers or planners often apply traditional SWOT analyses to analyze the market or the business environment, these are likely to hold biased views, and thus they may tamper with the results. In order to collect objective market information and make correct strategic planning, managers or planners often administered questionnaires to carry out marketing surveys. Even though traditional marketing surveys can help the managers to understand market trends, it has its limitation. To be more specific, it takes time and human resource to get it done and the respondents of the survey may not be the potential consumers of the target enterprises. That is also why marketing surveys often cannot reflect market needs. As a result, finding out approaches to effectively conduct a market analysis and finding out the strengths, weaknesses, opportunities and threats of the target enterprises have become one of the most important issues for modern enterprises. However, the research on developing decision support systems and carrying out strategic planning through eWOM is scant. Through the use of eWOM appraisals, it is expected that a SWOT analysis may be more objective and provide businesses with more accurate information by which to carry out more effective strategic planning.
Therefore, this study develops an eWOM knowledge structure-based SWOT analysis method. An eWOM knowledge structure is used to conduct a market analysis to finding out the strengths, weaknesses, opportunities and threats of the enterprises, hence, the managers or planners can carry out their strategic planning. This approach can be an effective tool for strategic planning. Specifically, this study has the following tasks: (i) analyzing the characteristics of eWOM content, appraisal words and ontology; (ii) constructing an eWOM knowledge structure-based SWOT analysis model; (iii) providing an eWOM knowledge structure-based SWOT analysis method; and (iv) developing an eWOM knowledge structure-based SWOT analysis mechanism. Finally, this study conducted an experimental analysis for eWOM analysis and system evaluation to validate the proposed mechanism. It is expected that this approach presented in this work can help managers to make more effective plans for their enterprises.
論文目次 合格證明 I
誌謝 II
摘要 IV
Abstract V
Contents VII
List of Figures IX
List of Tables XI
Chapter 1. Introduction 1
1.1. Background 1
1.2. Motivation 3
1.3. Objective 5
Chapter 2. Literature Review 7
2.1. Service Experience Engineering 7
2.2. Electronic Word-of-Mouth (eWOM) 12
2.3. Traditional SWOT Analysis 15
2.4. Ontology 19
2.4.1. Ontology Definition 19
2.4.2. Ontology Building 21
2.5. Knowledge Management 25
Chapter 3. eWOM Knowledge Structure-based SWOT Analysis Model 27
3.1. Analysis of eWOM Content and Appraisal Words 27
3.1.1. Analysis of eWOM Content Characteristics 27
3.1.2. Analysis of eWOM Appraisal Characteristics 33
3.2. Design of Appraisal Knowledge Structure 36
3.2.1. Definition of Appraisal Knowledge Structure Relations 37
3.2.2. Design of Concept Schema for Appraisal Knowledge Structure 38
3.3. Analysis of Ontological Characteristics 39
3.3.1. Strength and Threat Analysis for the Positive Appraisal Ontology 41
3.3.2. Weakness and Opportunity Analysis for Negative Appraisal Ontology 42
3.4. Develop of eWOM Knowledge Structure-based SWOT Analysis Model 46
Chapter 4. Methods and Technologies 48
4.1. Procedure for eWOM Knowledge Structure-based SWOT Analysis 48
4.2. eWOM Collection 49
4.2.1. Content Collection 50
4.2.2. eWOM Identification 51
4.3. eWOM Analysis 52
4.3.1. eWOM Content Analysis 52
4.3.2. Appraisal Sentence Evaluation 61
4.4. SWOT Analysis 65
4.4.1. Ontology Construction 65
4.4.2. Set Difference Analysis 70
4.4.3. SWOT Evaluation 72
Chapter 5. Prototype Implementation and System Evaluation 76
5.1. Implementation Environment 76
5.2. Implementation Results 78
5.3. Experimental Analysis and System Evaluation 82
5.3.1. Experimental Analysis 83
5.3.2. System Evaluation 86
Chapter 6 Conclusions, Further Work and Limitation 90
References 94
參考文獻 [1]Aksoy, L., Buoye, A., Cooil, B., Keiningham, T.L., Paul, D.D., & Volinsky, C. (2011). Can We Talk? The Impact of Willingness to Recommend on a New-to-Market Service Brand Extension Within a Social Network. Journal of service research, 14(3), 355-371.
[2]Alavi, M., & Leidner, D.E. (2001). Review: Knowledge management and knowledge management systems: Conceptual foundations and research issues. MIS quarterly, 107-136.
[3]Albescu, F., Pugna, I., & Paraschiv, D. (2009). Cross-cultural knowledge management. Informatica Economica, 13(4), 39-50.
[4]Allsop, D.T., Bassett, B.R., & Hoskins, J.A. (2007). Word-of-mouth research: principles and applications. Journal of Advertising Research, 47(4), 398-411.
[5]Arndt, J. (1967). Role of product-related conversations in the diffusion of a new product. Journal of Marketing Research, 291-295.
[6]Awad, N.F., & Ragowsky, A. (2008). Establishing trust in electronic commerce through online word of mouth: An examination across genders. Journal of Management Information Systems, 24(4), 101-121.
[7]Bansal, H.S., & Voyer, P.A. (2000). Word-of-mouth processes within a services purchase decision context. Journal of service research, 3(2), 166-177.
[8]Bei, L.T., & Shang, C.F. (2006). Building marketing strategies for state-owned enterprises against private ones based on the perspectives of customer satisfaction and service quality. Journal of Retailing and Consumer Services, 13(1), 1-13.
[9]Berger, A.A. (1997). Narratives in popular culture, media, and everyday life. Sage London.
[10]Bickart, B., & Schindler, R.M. (2001). Internet forums as influential sources of consumer information. Journal of interactive marketing, 15(3), 31-40.
[11]Bitner, M.J. (1992). Servicescapes: the impact of physical surroundings on customers and employees. The Journal of Marketing, 57-71.
[12]Bone, P.F. (1995). Word-of-mouth effects on short-term and long-term product judgments. Journal of Business Research, 32(3), 213-223.
[13]Brown, J., Broderick, A.J., & Lee, N. (2007). Word of mouth communication within online communities: Conceptualizing the online social network. Journal of interactive marketing, 21(3), 2-20.
[14]Bullinger, H.J., Fähnrich, K.P., & Meiren, T. (2003). Service engineering—methodical development of new service products. International Journal of Production Economics, 85(3), 275-287.
[15]Chatman, S. (1980). Story and discourse: Narrative structure in fiction and film: Cornell University Press.
[16]Chen, C.F., & Tsai, D.C. (2007). How destination image and evaluative factors affect behavioral intentions? Tourism Management, 28(4), 1115-1122.
[17]Chen, C.W.D., & Cheng, C.Y.J. (2009). Understanding consumer intention in online shopping: a respecification and validation of the DeLone and McLean model. Behaviour & Information Technology, 28(4), 335-345.
[18]Chen, Y.J. (2011). Ontology-based empirical knowledge verification for professional virtual community. Behaviour & Information Technology, 30(5), 555-586.
[19]Chen, Y.J., & Chen, Y.M. (2012). Knowledge evolution course discovery in a professional virtual community. Knowledge-Based Systems, 33(1), 1-28.
[20]Choi, J.Y., Shin, J., & Lee, J. (2012). Strategic demand forecasts for the tablet PC market using the Bayesian mixed logit model and market share simulations, Behaviour & Information Technology,1-14.
[21]Csikszentmihalyi, M. (1991). Flow, The Psychology of Optimal Experience, Steps towards enchancing the quality of life. Harper&Row, Publishers: Inc.
[22]de Matos, C.A., & Rossi, C.A.V. (2008). Word-of-mouth communications in marketing: a meta-analytic review of the antecedents and moderators. Journal of the Academy of Marketing Science, 36(4), 578-596.
[23]Diso, L.I. (2005). Information technology policy formulation in Nigeria: Answers without questions. The International Information & Library Review, 37(4), 295-302.
[24]Dwyer, P. (2007). Measuring the value of electronic word of mouth and its impact in consumer communities. Journal of interactive marketing, 21(2), 63-79.
[25]Fan, T.K., & Chang, C.H. (2010). Sentiment-oriented contextual advertising. Knowledge and information systems, 23(3), 321-344.
[26]Fanuta, P., & Monica, A. (2008). The Analysis of the Romanian Business Environment in the Context of the Adherence to the European Union, Proceedings of the International Conference on Emerging Economic Issues in a Globalizing World, Izmir, Turkish.
[27]Ferguson, R. (2008). Word of mouth and viral marketing: taking the temperature of the hottest trends in marketing. Journal of Consumer Marketing, 25(3), 179-182.
[28]Fernández-López, M., Gómez-Pérez, A., & Juristo, N. (1997). Methontology: from ontological art towards ontological engineering. Proceedings of the Ontological Engineering AAAI-97 Spring Symposium Series, California, USA.
[29]Foo, S., & Li, H. (2004). Chinese word segmentation and its effect on information retrieval. Information processing & management, 40(1), 161-190.
[30]Formica, A. (2006). Ontology-based concept similarity in formal concept analysis. Information Sciences, 176(18), 2624-2641.
[31]Fraenkel, T., & Schul, Y. (2008). The meaning of negated adjectives. Intercultural Pragmatics, 5(4), 517-540.
[32]Gómez-Pérez, A., & Corcho, O. (2002). Ontology languages for the semantic web. Intelligent Systems, IEEE, 17(1), 54-60.
[33]Gao, C.Y., & Peng, D.H. (2011). Consolidating SWOT analysis with nonhomogeneous uncertain preference information. Knowledge-Based Systems, 24(6), 796-808.
[34]Giaretta, N., & Giaretta, P. (1995). Ontologies and knowledge bases towards a terminological clarification. Towards very large knowledge bases: knowledge building & knowledge sharing 1995, 25-32.
[35]Gilmore, J., & Pine, J. (1999). The Experience Economy: work is theatre and every business a stage. Harvard Business Publ., Cambridge, Massachusetts.
[36]Gladstone, B. (2000). From Know-how to knowledge: The essential guide to understanding and implementing knowledge management. London: Spiro Press.: Industrial Society.
[37]Godes, D., & Mayzlin, D. (2004). Using online conversations to study word-of-mouth communication. Marketing Science, 23(4), 545-560.
[38]Gold, A.H., Malhotra, A., & Segars, A.H. (2001). Knowledge management: An organizational capabilities perspective. Journal of Management Information Systems, 18(1), 185-214.
[39]Grace, D., & O'Cass, A. (2004). Examining service experiences and post-consumption evaluations. Journal of Services Marketing, 18(6), 450-461.
[40]Haksever, C., Render, B., Rusell, R.S., & Murdick, R.G. (2000). Service Management and Options: Prentice-Hall, Englewood Cliffs, NJ.
[41]Halstead, D., (2002). Negative word of mouth: substitute for or supplement to consumer complaints?. Journal of Consumer Satisfaction, Dissatisfaction and Complaining Behavior, 15(1), 1-12.
[42]Hay, G.J., & Castilla, G. (2006). Object-based image analysis: Strengths, weaknesses, opportunities and threats (SWOT). Proceedings of the 1st International Conference on Object-based Image Analysis, Austrian.
[43]Hennig-Thurau, T., Malthouse, E.C., Friege, C., Gensler, S., Lobschat, L., Rangaswamy, A., & Skiera, B. (2010). The impact of new media on customer relationships. Journal of service research, 13(3), 311-330.
[44]Hennig-Thurau, T., & Walsh, G. (2003). Electronic word-of-mouth: motives for and consequences of reading customer articulations on the internet. International Journal of Electronic Commerce, 8(2), 51-74.
[45]Holbrook, M.B., Chestnut, R.W., Oliva, T.A., & Greenleaf, E.A. (1984). Play as a consumption experience: The roles of emotions, performance, and personality in the enjoyment of games. Journal of Consumer Research, 728-739.
[46]Hotho, A., Maedche, A., & Staab, S. (2001). Ontology-based text document clustering. Proceedings of the IJCAI-2001 Workshop “Text Learning: Beyond Supervision", Seattle, USA.
[47]Hotho, A., Staab, S., & Stumme, G. (2003). Ontologies improve text document clustering. Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03), Florida, USA.
[48]Hu, M., & Liu, B. (2004). Mining opinion features in customer reviews. Proceedings of the 19th National Conference on Artificial Intelligence, California, USA.
[49]Hu, N., Bose, I., Gao, Y., & Liu, L. (2011). Manipulation in digital word-of-mouth: a reality check for book reviews. Decision Support Systems, 50(3), 627-635.
[50]Huang, X., Peng, F., Schuurmans, D., Cercone, N., & Robertson, S.E. (2003). Applying machine learning to text segmentation for information retrieval. Information Retrieval, 6(3), 333-362.
[51]Kajanus, M., Kangas, J., & Kurttila, M. (2004). The use of value focused thinking and the A’WOT hybrid method in tourism management. Tourism Management, 25(4), 499-506.
[52]Kakabadse, N.K., Kouzmin, A., & Kakabadse, A. (2001). From tacit knowledge to knowledge management: leveraging invisible assets. Knowledge and Process Management, 8(3), 137-154.
[53]Kangas, J., Kurttila, M., Kajanus, M., & Kangas, A. (2003). Evaluating the management strategies of a forestland estate—the SOS approach. Journal of Environmental Management, 69(4), 349-358.
[54]Kietz, J.U., Volz, R., & Maedche, A. (2000). Extracting a domain-specific ontology from a corporate intranet. Proceedings of the Fourth Conference on Computational Natural Language Learning and of the Second Learning Language in Logic Workshop, California, USA.
[55]Kotler, P. (1979). Strategies for introducing marketing into nonprofit organizations. The Journal of Marketing, 43(1), 37-44.
[56]Kotler, P., & Fox, K.F.A. (1995). Strategic marketing for educational institutions: Prentice-Hall.
[57]Ku, L.W., Wu, T.H., Lee, L.Y., & Chen, H.H. (2005). Construction of an evaluation corpus for opinion extraction. Proceedings of the 5th NTCIR Workshop Meeting, Tokyo, Japan.
[58]Kumar, S. (2005). Exploratory analysis of global cosmetic industry: major players, technology and market trends. Technovation, 25(11), 1263-1272.
[59]Kuo, Y.F., Wu, C.M., & Deng, W.J. (2009). The relationships among service quality, perceived value, customer satisfaction, and post-purchase intention in mobile value-added services. Computers in Human Behavior, 25(4), 887-896.
[60]Lages, C.R., & Piercy, N.F. (2012). Key drivers of frontline employee generation of ideas for customer service improvement. Journal of service research, 15(2), 215-230.
[61]Lau, G.T., & Ng, S. (2001). Individual and Situational Factors Influencing Negative Word‐of‐Mouth Behaviour. Canadian Journal of Administrative Sciences / Revue Canadienne des Sciences de l'Administratio, 18(3), 163-178.
[62]Lau, R.Y., Liao, S.S., Wong, K., & Chiu, D.K. (2012). Web 2.0 Environmental Scanning and Adaptive Decision Support for Business Mergers and Acquisitions. MIS Quarterly, 36(4), 1239-1268.
[63]Lee, C.S., Chen, Y.J., & Jian, Z.W. (2003). Ontology-based fuzzy event extraction agent for Chinese e-news summarization. Expert Systems with Applications, 25(3), 431-447.
[64]Li, S.T., & Chang, W.C. (2009). Exploiting and transferring presentational knowledge assets in R&D organizations. Expert Systems with Applications, 36(1), 766-777.
[65]Lide, W., Xuanjing, H., & Guo, Y. (2001). FDU at TREC-9: CLIR, Filtering and QA Tasks. Proceedings of the 9th text retrieval conference.
[66]Lin, S.M. (2011). Marketing mix (7P) and performance assessment of western fast food industry in Taiwan: An application by associating DEMATEL and ANP. African Journal of Business Management, 5(26), 10634-10644.
[67]Lin, Z., Li, D., Janamanchi, B., & Huang, W. (2006). Reputation distribution and consumer-to-consumer online auction market structure: an exploratory study. Decision Support Systems, 41(2), 435-448.
[68]Litvin, Stephen W, Goldsmith, Ronald E, & Pan, Bing. (2008). Electronic word-of-mouth in hospitality and tourism management. Tourism Management, 29(3), 458-468.
[69]Maedche, A., & Staab, S. (2000). Discovering conceptual relations from text. Proceedings of the 14th European Conference on Artificial Intelligence, Berlin, Germany.
[70]Marchiori, E., Milwood, P., & Zach, F. (2013). Drivers and Benefits of Analysing DMOs’ eWOM Activities. Information and Communication Technologies in Tourism 2013, Springer, pp. 107-118.
[71]Mintzberg, H. (1994). The rise and fall of strategic planning: preconceiving roles for planning, plans, planners: Plans, Planners.
[72]Neches, R., Fikes, R.E., Finin, T., Gruber, T., Patil, R., Senator, T., & Swartout, W.R. (1991). Enabling technology for knowledge sharing. AI magazine, 12(3), 36.
[73]Nonaka, I., & Takeuchi, H. (1995). The knowledge-creating company: How Japanese companies create the dynamics of innovation: Oxford University Press, USA.
[74]Noy, N.F., & McGuinness, D.L. (2001). Ontology development 101: A guide to creating your first ontology: Stanford knowledge systems laboratory technical report KSL-01-05 and Stanford medical informatics technical report SMI-2001-0880.
[75]Okazaki, S. (2008). Determinant factors of mobile‐based word‐of‐mouth campaign referral among Japanese adolescents. Psychology and Marketing, 25(8), 714-731.
[76]Otto, J.E., & Ritchie, J.R. (1996). The service experience in tourism. Tourism Management, 17(3), 165-174.
[77]Pai, M.Y., Chu, H.C., Wang, S.C., & Chen, Y.M. (2013). Electronic Word of Mouth Analysis for Service Experience. Expert Systems with Applications, 40(6), 1993-2006.
[78]Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval. 2(1-2), 1-135.
[79]Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up?: sentiment classification using machine learning techniques. Proceedings of the ACL-02 conference on Empirical methods in natural language processing. New Jersey, USA.
[80]Pesonen, M., Kurttila, M., Kangas, J., Kajanus, M., & Heinonen, P. (2001). Assessing the Priorities Using AWOT Among Resource Management Strategies at the Finnish Forest and Park Service. Forest science, 47(4), 534-541.
[81]Petrash, G. (1996). Dow's journey to a knowledge value management culture. European Management Journal, 14(4), 365-373.
[82]Pluciennik, M. (1999). Archaeological Narratives and Other Ways of Telling. Current Anthropology, 40(5), 653-678.
[83]Quan, T.T., Hui, S.C., & Fong, A.C.M. (2006). Automatic fuzzy ontology generation for semantic help-desk support. Industrial Informatics, IEEE Transactions on, 2(3), 155-164.
[84]Ryan, M.L. (2004). Narrative across media: The languages of storytelling: University of Nebraska Press.
[85]Söderlund, M., & Rosengren, S. (2007). Receiving word-of-mouth from the service customer: An emotion-based effectiveness assessment. Journal of Retailing and Consumer Services, 14(2), 123-136.
[86]Samson, A. (2006). Understanding the buzz that matters: negative vs positive word of mouth. International Journal of Market Research, 48(6), 647-657.
[87]Shaw, M.J, Subramaniam, C., Tan, G.W., & Welge, M.E. (2001). Knowledge management and data mining for marketing. Decision Support Systems, 31(1), 127-137.
[88]Sheu, J.B. (2007). A hybrid fuzzy-optimization approach to customer grouping-based logistics distribution operations. Applied Mathematical Modelling, 31(6), 1048-1066.
[89]Smith, B. (2003). The effectiveness of marketing strategy making processes: A critical literature review and a research agenda. Journal of Targeting, Measurement and Analysis for Marketing, 11(3), 273-290.
[90]Sowa, J.F. (2001). Building, sharing, and merging ontologies. web site: http://www.jfsowa.com/ontology/ontoshar.htm.
[91]Studer, R., Benjamins, V.R., & Fensel, D. (1998). Knowledge engineering: principles and methods. Data & knowledge engineering, 25(1), 161-197.
[92]Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., & Lakhal, L. (2002). Computing iceberg concept lattices with TITANIC. Data & knowledge engineering, 42(2), 189-222.
[93]Swartout, B., Patil, R., Knight, K., & Russ, T. (1997). Toward distributed use of large-scale ontologies. Proceedings of the AAAI-97 Spring Symposium on Ontological Engineering, California, USA.
[94]Sweeney, J.C., Soutar, G.N., & Mazzarol, T. (2008). Factors influencing word of mouth effectiveness: receiver perspectives. European Journal of Marketing, 42(3/4), 344-364.
[95]Tsai, C.F., & Chen, M.Y. (2010). Variable selection by association rules for customer churn prediction of multimedia on demand. Expert Systems with Applications, 37, 2006-2015.
[96]Turney, P.D. (2002). Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, Pennsylvania, USA.
[97]Uschold, M., & Gruninger, M. (1996). Ontologies: Principles, methods and applications. Knowledge engineering review, 11(2), 93-136.
[98]van der Vet, P.E., & Mars, N.J.I. (1998). Bottom-up construction of ontologies. Knowledge and Data Engineering, IEEE Transactions on, 10(4), 513-526.
[99]Villanueva, J., Yoo, S., & Hanssens, D.M. (2008). The impact of marketing-induced versus word-of-mouth customer acquisition on customer equity growth. Journal of Marketing Research, 45(1), 48-59.
[100]Vincent, L., 2002. Legendary brands: Unleashing the power of storytelling to create a winning marketing strategy. Dearborn Trade Publishing.
[101]Walstad, W.B., & Rebeck, K. (2002). Assessing the economic knowledge and economic opinions of adults. The Quarterly Review of Economics and Finance, 42(5), 921-935.
[102]Wang, C.B., Chen, Y.J., Chen, Y.M., & Chu, H.C. (2006). Development of technology for customer requirement-based reference design retrieval. Robotics and Computer-Integrated Manufacturing, 22(1), 33-46.
[103]Wangenheim, F.V. (2005). Postswitching negative word of mouth. Journal of service research, 8(1), 67-78.
[104]Waterman, D. (1986). A guide to expert systems: Addison-Wesley, MA.
[105]Weng, S.S., Tsai, H.J., Liu, S.C., & Hsu, C.H. (2006). Ontology construction for information classification. Expert Systems with Applications, 31(1), 1-12.
[106]Wielinga, B.J, & Schreiber, A.T. (1993). Reusable and sharable knowledge bases: a European perspective. Proceedings of the First International Conference on Building and Sharing of Very Large-Scaled Knowledge Bases, Tokyo, Japan.
[107]Xie, L., Shen, W., & Zheng, Y. (2011). Examining the effect of service experiences on the attitude towards and intention on using self-service technology. Proceedings of the 2011 International Conference on Computer Science and Service System, Nanjing, Chian.
[108]Zack, M.H. (2002). Developing a knowledge strategy The strategic management of intellectual capital and organizational knowledge (pp. 255-276). New York: Oxford Univeristy Press.
[109]Zhang, W., Xu, H., & Wan, W. (2012). Weakness Finder: Find product weakness from Chinese reviews by using aspects based sentiment analysis. Expert Systems with Applications. 39(11), 10283-10291.
[110]Zhang, W., Yu, C., & Meng, W. (2007). Opinion retrieval from blogs. Proceedings of the sixteenth ACM conference on Conference on information and knowledge management, Lisbon, Portugal.
[111]Zhou, L. (2007). Ontology learning: state of the art and open issues. Information Technology and Management, 8(3), 241-252.
[112]林東清(2003),知識管理,台北市: 智勝。
[113]莊雨薇(2006),半自動化建置本體論-以旅遊本體論為例: 國立成功大學工程科學系碩士論文。
[114]資訊工業策進會創新應用服務研究所(2010),2009科技化服務應用及發展年鑑: 財團法人資策會創新應用服務研究。
[115]資訊工業策進會創新應用服務研究所a (2008),服務體驗工程方法指引-研究篇: 資訊工業策進會創新應用服務研究所。
[116]資訊工業策進會創新應用服務研究所b (2008),服務體驗工程方法指引-實務篇: 資訊工業策進會創新應用服務研究所。
[117]蘇漢(2009),專業虛擬社群之知識演化歷程發掘技術研發: 國立成功大學製造工程研究所碩士論文。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-06-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw