進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0302201611213500
論文名稱(中文) 以粒子網格法模擬電容耦合電漿在二維渠溝幾何下之現象
論文名稱(英文) Particle-In-Cell Simulation of Two Dimensional Trench Geometry in Capacitively Coupled Plasma
校院名稱 成功大學
系所名稱(中) 太空與電漿科學研究所
系所名稱(英) Institute of Space and Plasma Sciences
學年度 104
學期 1
出版年 105
研究生(中文) 林泰錄
研究生(英文) Tai-Lu Lin
學號 LA6021022
學位類別 碩士
語文別 英文
論文頁數 54頁
口試委員 指導教授-西村泰太郎
口試委員-河森榮一郎
口試委員-李汶樺
口試委員-洪昭南
中文關鍵字 粒子網格法  電容耦合電漿  電漿蝕刻  渠溝  非等向性 
英文關鍵字 Particle-in-Cell  Capacitively Coupled Plasma  Plasma etching  Trench  Anisotropy 
學科別分類
中文摘要 在半導體製程下,電漿蝕刻的探討是一個很普遍的課題,然而在大部分的研究裡,很少看到以模擬的方式去探討電漿蝕刻在二維渠溝下的行為。因此,本研究以粒子網格法(PIC)建構一維以及二維空間電漿行為之模型。首先先以一維模型模擬電容耦合電漿在兩電極板間之行為,觀察電漿鞘層的形成,並且探討由電子撞擊兩極板產生的二次電子所造成的影響。更進一步拓展PIC模型至二維電漿蝕刻渠溝下之行為,藉由改變渠溝的寬度,探討乾式蝕刻的非等向性。為了使情況更加貼近真實,在模擬中我們加入射頻偏壓來符合實際情況。此外,在電漿蝕刻時,渠溝底部有可能會因為離子不斷轟擊而帶正電,因此,我們也在渠溝底部加入了正電位的邊界條件來探討其對電漿蝕刻非等向性的影響。
英文摘要 For an efficient etching by plasma, in generating trench geometries, anisotropy is an important factor. For the ions to perpendicularly bombard the semiconductor surface, stationary plasma sheaths need to be formed to accelerate the ions. However, not many journal publications have reported on the stability of a plasma in a multi-dimensional trench geometry. A Particle-in-Cell model is built solely from the beginning in Fortran 95 to investigate basic plasma interaction between two electrode plates including ions and electrons. A secondary electron emission (SEE) effect in one-dimensional PIC model is incorporated. Then, our PIC model is extend to a two-dimensional trench geometry. The plasma behavior in the vicinity of the trench geometry is investigated by varying its size. In this study, radio frequency (RF) electric potential is employed in the system as in capacitively coupled plasma (CCP) process widely used in the plasma etching process. Furthermore, the influence of charging up by ions’ bombardment, which results in a positive potential on the trench bottom, is also examined.
論文目次 摘要 I
Abstract II
Contents III
List of Figures IV
List of Table IX
Chapter 1 Introduction 1

Chapter 2 Theoretical and Computational Model 6
2.1 Basic Concepts and Electrostatic Model Equations 6
2.2 The Planar Sheath Equation and Bӧhm Sheath Criterion 8
2.3 The Collisionless Sheath and Presheath 11

Chapter 3 Particle-in-Cell Simulation 14
3.1 Concepts of Particle-in-Cell Method 14
3.2 Initial Loading for Particle Position and Velocity 16
3.3 Weighting Particles and Gathering Charges 18
3.4 Solving Poisson Equation and Calculating Electric Field 20
3.5 Time Advancing Particles 27
3.6 Modelling of Secondary Electron Emission 30

Chapter 4 Simulation Results 32
4.1 Sheath Formation between Two Capacitors 32
4.2 Effects of Secondary Electron Emission on Sheath 35
4.3 Two Dimensional Sheath Formation in Trench Geometry 38

Chapter 5 Summary and Discussion 49

References 51
參考文獻 1. Abramowitz, M., and Stegun, I. A., Handbook of Mathematical Functions, New York, Dover, p.933 (1970).

2. Amelio, G. F., “Theory for the Energy Distribution of Secondary Electrons”, Journal of Vacuum Science and Technology, Vol. 7, No.6, p.593-604 (1970).

3. Birdsall, C. K., and Langdon, A. B., Plasma Physics via Computer Simulation, Bristol, IOP Publishing, p.11 (1986).

4. Chen, Y. C., “Particle-in-Cell Simulation of Capacitively Coupled Plasma in The Presence of Coulomb Collisions and Secondary Electron Emission”, Master’s thesis, National Cheng Kung University (2015).

5. Campanell, M. D., and Khrabrov, A. V., and Kaganovich, I. D., “Absence of Debye Sheaths due to Secondary Electron Emission”, Phys. Rev. Lett., Vol. 108, No. 25, p.255001-1255001-5 (2012a).

6. Campanell, M. D., and Khrabrov, A. V., and Kaganovich, I. D., “General Cause of Sheath Instability Identified for Low Collisionality Plasmas in Devices with Secondary Electron Emission”, Phys. Rev. Lett., Vol. 108, No. 23, p.235001-1-235001-5 (2012b).

7. Chen, F. F., Introduction to plasma physics and controlled fusion, 2nd ed., New York, Plenum, p.290 (1984).

8. Dawson, J. M., “One-dimensional plasma model”, Phys. Fluids, Vol. 5, No. 4, p.445-449 (1962).

9. Dai, Z. L., and Yue, G., and Wang, Y. N., “Simulations of Ion Behaviors in a Photoresist Trench During Plasma Etching Driven by a Radio-Frequency Source”, Plasma Science and Technology, Vol.14, No.3, p.240-244 (2012).

10. Hager, W. W., “Applied Numerical Linear Algebra”, Upper Saddle River, Prentice Hall, p.346 (1987).

11. Hitchon, W. N. G., Plasma Processes for Semiconductor Fabrication, New York, Cambridge University Press, p.121-141 (1999).

12. Huang, C. W., and Chen, Y. C., and Nishimura, Y., “Particle-in-Cell Simulation of Plasma Sheath Dynamics With Kinetic Ions”, IEEE Transactions on Plasma Science, Vol. 43, No. 2, p.675-682 (2015).

13. Huang, C. W., “Particle-In-Cell Simulation of Asymmertic Secondary Electron Emission in Plasma Processing”, Master’s thesis, National Cheng Kung University (2014).

14. Konuma, M., Film deposition by plasma techniques, Berlin, Springer-Verlag, p.117 (1991).
15. Lieberman, M. A., and Lichtenberg, A. J., Principles of Plasma Discharges and Materials Processing, 2nd ed., Hoboken, John Wiley and Sons, p.1-22, p.165-206, p571 (2005).

16. Lee, J. K., and Babaeva, N. Y., and Kim, H. C., and Manuilenko, O. V., and Shon, J. W., "Simulation of Capacitively Coupled Single- and Dual-Frequency RF Discharges", IEEE Transactions on Plasma Science, Vol. 32, No. 1, p. 47-53 (2004).

17. Nicholson, D. R., Introduction to Plasma Theory, Melbourne, Krieger, p.1-7 (1992).

18. Ruth, R. D., “A canonical integration technique”, IEEE Transactions on Nuclear Science, Vol. 30, No. 4, p.2669-2671 (1983).

19. Surendra, M., and Graves, D. B., “Particle simulations of radio-frequency glow discharges”, IEEE Transactions on Plasma Science, Vol. 19, No. 2, p. 144-157 (1991).

20. Strikwerda, J. C., Finite Difference Schemes and Partial Differential Equations, Belmont, Wadsworth & Brooks, p.32 (1989).

21. Sansonettia, J. E., and Martin, W. C., Handbook of Basic Atomic Spectroscopic Data, Gaithersburg, National Institute of Standards and Technology, p.2001 (2005).

22. Smith, M. R., and Hung, C. T., and Lin, K. M., and Wu, J. S., and Yu, J. P., “Development of a semi-implicit fluid modeling code using finite-volume method based on Cartesian grids”, Computer Physics Communications, Vol. 182, No. 1, p.170-172 (2011).

23. Xu, L., and Chen, L., and Funk, M., and Ranjan, A., and Hummel, M., and Bravenec1, R., and Sundararajan, R., and Economou, D. J., and Donnelly, V. M., “Diagnostics of ballistic electrons in a dc/rf hybrid capacitively coupled discharge”, Applied Physics Letter, Vol. 93, No. 26, p.261502-1-261502-3 (2008).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-02-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw