進階搜尋


下載電子全文  
系統識別號 U0026-0301201315424500
論文名稱(中文) 等價鉍元素摻雜對鑭系化合物之結構及磁性的影響
論文名稱(英文) Effect of isovalent Bismuth doping on the structural and magnetic properties of (R,Bi)MnO3 with R=La, Dy
校院名稱 成功大學
系所名稱(中) 物理學系碩博士班
系所名稱(英) Department of Physics
學年度 101
學期 1
出版年 102
研究生(中文) 陳萬全
研究生(英文) Wan-Chuan Chen
學號 l26981290
學位類別 碩士
語文別 英文
論文頁數 67頁
口試委員 指導教授-田聰
共同指導教授-林昭吟
口試委員-呂欽山
中文關鍵字 鑭鉍錳氧  鏑鉍錳氧 
英文關鍵字 LaMnO3  DyMnO3 
學科別分類
中文摘要 錳氧化物近期已重新引起人們對它的關注,主要是因為其內在的科學價值和具應用前景的新穎磁性材料與磁性光學設備。其中又以二價的稀土族元素摻雜尤為重要,如鍶、鈣等摻雜氧化物La1-xAxMnO3 已被世人廣為研究。導電性來自於混合價的錳離子之錳氧化物。用等價之鉍離子取代鈣鈦礦(ABO3)中「鑭」和「鏑」原子所在的位置至今仍沒有被廣泛的探討。而本文的目的則是探討等價電子的Bi3 +摻雜鑭錳氧化物(LaMnO3)和鏑氧化錳(DyMnO3)的材料。由於Bi3 +的穩定且無磁性之性質將不會導致任何的電洞進入系統當中。反之,它產生一個非常小的A位陽離子不匹配。通過取代引入的「化學壓力」影響,還能造成我們所研究之鈣鈦礦系統結構的扭曲。因此,替代的「鑭」和「鏑」位置之LaMnO3和DyMnO3的等價電子為非磁性Bi3+並不會造成錳離子價數改變或任何磁性交互作用的產生。在本篇論文中,我們將探索其結構和磁性之屬性。當摻雜Bi3+之比例x≥0.3 時,LaMnO3之結構將被轉變,從斜方晶系轉變為立方體。而在摻雜Bi3+後,ZFC-FC圖之轉換溫度均有下降的趨勢,這是由於Bi3+摻雜導致晶格扭曲所產生的結果。而類似自旋玻璃的性質在鉍之摻雜量超過30%時出現(x≥0.3),此時斜方晶系的特性逐漸消失,反之,立方體對稱型式的結構開始逐步呈現出來。在10K 時,斜方晶系隨著摻雜鉍的量增多其矯頑力逐漸降低,反觀立方相的矯頑力卻隨著鉍的增加而輕微上升。因此,等價電子的Bi3+摻雜LaMnO3可發現其引起斜方晶系轉變為立方結構的磁特性改變並還表現出從硬磁性到軟磁性的行為。據我們觀察,在受Bi3+摻雜的DyMnO3中並無顯著之結構轉變發生。其晶格之(a)和(c)參數下降而(b)參數增加。Bi3+離子摻雜的整體影響是造成晶胞體積逐漸減少。在ZFC-FC區域為不可逆的。鐵氧體磁性有序的Dy3+減少對於在x=0〜0.10從8K到2K。在2K 的時候,類似自旋垂下轉變(spin-flop)在純的DyMnO3被明顯觀察到。但其特性隨著Bi3+摻雜的增加而逐漸減小,對於x=0.15與x=0.2後開始傾向鐵磁之行為。尼爾溫度轉換幾乎消失,約40 K.相對尖銳過渡出現在2K 時由於Bi3+的含量增加,相反地,我們發現在Bi3 +摻雜LaMnO3時,矯頑力和剩餘磁化強度與暗示改變從軟到硬磁性行為。比熱的數據暗示著,DyMnO3的鐵電轉換TLOCK在摻雜鉍時消失,鏑離子所造成的反鐵磁性轉換在40 K 與8 K 經由摻雜鉍之後,分別移往較高溫與較低溫處。

關鍵字:鑭鉍錳氧;鏑鉍錳氧
英文摘要 Manganites have attracted renewed attention because of both their intrinsic scientific interest and prospective applications in novel magnetoelectric and magneto-optical devices. Bivalent rare earth elements such as Sr, Ca etc doped La1-xAxMnO3 are extensively studied by researchers. Electrical conductivity of manganites is due to the mixed valency of the manganese ions. Substitution of the ‘La3+’ and ‘Dy3+’ site with isovalent ‘Bi3+’ in LaMnO3 and DyMnO3 has not been explored so widely. The purpose of this dissertation is to explore isovalent Bi3+ doped Lanthanum manganese oxide (LaMnO3) and dysprosium manganese oxide
(DyMnO3) materials. The Bi3+ is stable and non-magnetic which does not introduce any holes into the system; instead it induces a very small A-site cationic mismatch.The effect of “chemical pressure” introduced by substitution may lead to an increase in the distortion of the perovskite structure of the studied system. Hence substitution of ‘La3+’ and ‘Dy3+’ site of LaMnO3 and DyMnO3 by isovalent
non-magnetic ‘Bi3+’ without changing the effective Mn valency and/or introducing any magnetic exchange interaction will be interesting to explore for their structural and magnetic properties.Doping of ‘Bi3+’ in LaMnO3 induced structural transition from orthorhombic to
cubic phase for x≥ 0.3. The two magnetic transitions in the ZFC-FC plots decreased upon doping with ‘Bi’ which is correlated to the distortion induced by ‘Bi3+’ doping.Spin glass like feature was found to appear upon doping with ‘Bi’ within the orthorhombic phase and vanished for x≥ 0.3 in the cubic symmetry. At 10 K,coercivity decreased in orthorhombic phase, whereas it increased marginally in the cubic phase. Thus isovalent ‘Bi3+’ doping in LaMnO3 was found to induce structural change from orthorhombic to cubic which also reflected in the magnetic properties as a change over from hard to soft magnetic behavior.No structural change was observed in ‘Bi3+’ doped DyMnO3. It decreased the ‘a’ and ‘c’ parameters and increased the ‘b’ parameter. The overall effect is a decrease in the cell volume due to ‘Bi3+’ doping. The ZFC-FC plots become irreversible upon doping with ‘Bi’. Ferrimagnetic ordering of the Dy atoms decreased for x=0 to 0.10 from 8 K to 2 K. At 2 K, spin flop like transition observed in pure DyMnO3 gradually decreased and tend towards a ferromagnetic behavior upon doping with ‘Bi3+’. For x= 0.15 and 0.2, the ferrimagnetic Neel transition nearly disappear and a relatively sharp transitions emerge around 40 K. At 2 K,increase in coercivity and remnant magnetization with ‘Bi3+’ content imply change from soft to hard magnetic behavior contrary to the observation in ‘Bi3+’ doped LaMnO3. The specific heat capacity data imply that the ferroelectric transition Tlock vanished upon doping with ‘Bi’ and the ferrimagnetic transition (8 K) of the Dy ions and the antiferromagnetic transition at 40 K to shift to low and high temperature respectively.

keyword:LaMnO3;DyMnO3
論文目次 Contents
Chapter 1 Introduction
1.1 LaMnO3 .............................................1
1.2 DyMnO3 .............................................4
1.3 BiMnO3 .............................................6
1.4 Scope of the Work ..................................7
Chapter 2 Principle of Experimental and Characterization
2.1 Solid state reaction ...............................9
2.1.1 Reagents .........................................11
2.1.2 Mixing ...........................................11
2.1.3 Container material ...............................12
2.1.4 Heat treatment ...................................12
2.2 X-ray Diffraction ..................................13
2.3 Scanning Electron Microscope .......................15
2.4 Magnetization measurements using SQUID-VSM .........17
2.5 Heat-Capacity measurements using PPMS ..............23
2.6 Conclusion .........................................26
Chapter 3 Effects of Bi3+ substitution in LaMnO3
3.1 Motivation .........................................27
3.2 Sample preparation .................................28
3.3 Experimental Results and Discussion ................29
3.3.1 Structural Analysis ..............................29
3.3.2 Morphology Analysis ..............................37
3.3.3 Magnetization Results ............................38
3.4 Conclusion .........................................43
Chapter 4 Effect of Bi3+ substitution in DyMnO3
4.1 Motivation .........................................44
4.2 Sample preparation .................................44
4.3 Experimental Results and Discussion ................46
4.3.1 Structural Analysis ..............................46
4.3.2 Morphology Analysis ..............................52
4.3.3 Magnetization Results ............................54
4.3.4 Specific Heat Capacity Analysis ..................56
Chapter 5 Conclusions
Reference...............................................62

List of Figures
1.1 Schematic representation of the density of states for the ferromagnetic metal Ni
and ‘Sr’ doped half-metallic material (La2/3Sr1/3MnO3)....3
1.2 Perovskite unit cell of LaMnO3 and La(1-x)Sr(x)MnO3...4
1.3 Crystal structure of DyMnO3...........................5
2.1 Various steps involved in solid state reaction method to prepare polycrystalline compounds......................11
2.2 Illustration of X-ray diffraction.....................14
2.3 General schematics of a Scanning Electron Microscope..16
2.4 Vibrating sample magnetometer - Block diagram.........18
2.5 (a) Magnetometer unit. (b) Magnet coil and flux transformer...............................................21
2.6 Measurement coil group structure diagram in PPMS......24
2.7 Schematic diagram of heat-capacity set-up for PPMS....25
3.1 Schematics of the steps involved in the preparation of La1-xBixMnO3 (x=0-0.5)samples.............................29
3.2 X-ray diffraction patterns of La1-xBixMnO3 (x=0-0.5) samples showing structural change from orthorhombic (x=0-0.2) to cubic(x=0.3-0.5) system...........................31
3.3 The close view of the XRD patterns of La1-xBixMnO3 (x=0-0.5) samples from A) 20° to 27° and B) 29° to 37° showing systematic structural transformation from orthorhombic to cubic structure...........................................32
3.4 Rietveld refinement of the XRD patterns of La1-xBixMnO3 (x=0-0.2) samples fitted to the Pnma orthorhombic structure. The experimental data are represented by
square symbols, and the refined pattern is represented by the continuous line on thesame axis. The difference between the experimental and the refined pattern is shown by the lower continuous line. The marks indicate positions of the
Braggreflections..........................................33
3.5 Rietveld refinement of the XRD patterns of La1-xBixMnO3 (x=0.3-0.5) samples fitted to the cubic structure. The experimental data are represented by square symbols, and the refined pattern is represented by the continuous line on the same axis. The difference between the experimental and the refined pattern is shown by the lower continuous line. The marks indicate positions of the Bragg reflections...............................................35
3.6 Variation of lattice parameters and cell volume of La1-xBixMnO3 as a function of ‘Bi’ content for the orthorhombic and cubic crystal structures..............................36
3.7 SEM images of La1-xBixMnO3 (x=0-0.5) samples showing the surface morphology....................................38
3.8 ZFC-FC curves of La1-xBixMnO3 (x=0-0.5) measured in a magnetic field of100 Oe...................................41
3.9 Variation of T1 and T2 of La1-xBixMnO3 (x=0-0.5) samples...................................................42
3.10 M vs H curves of La1-xBixMnO3 (x=0-0.5) measured at 10 K in a field up to 5T.....................................42
3.11 Variation of HC and Mmax of La1-xBixMnO3 (x=0-0.5) at 10 K......................................................43
4.1 Schematics of the steps involved in the preparation of Dy1-xBixMnO3 (x=0-0.2)samples.............................46
4.2 X-ray diffraction patterns of Pnma orthorhombic Dy1-xBixMnO3 (x=0-0.2)samples.................................47
4.3 The close view of the XRD patterns of Pnma orthorhombic Dy1-xBixMnO3 (x=0-0.2) samples from 30° to 35° showing suppression and disappearance of the (210) plane..........48
4.4 Rietveld refinement of the XRD patterns of Dy1-xBixMnO3 (x=0-0.2) samples fitted to the Pnma orthorhombic structure. The experimental data are represented by
square symbols, and the refined pattern is represented by the continuous line on the same axis. The difference between the experimental and the refined pattern is
shown by the lower continuous line. The marks indicate
positionsoftheBraggreflections............................49
4.5 Variation of lattice parameters and cell volume of Dy1-xBixMnO3 as a function of ‘Bi’ content (x=0-0.2) for the Pnma orthorhombic structure...............................50
4.6 SEM images of Dy1-xBixMnO3 (x=0-0.2) samples showing the surface...............................................51
4.7 ZFC-FC curves of Dy1-xBixMnO3 (x=0-0.2) measured in a magnetic field of100 Oe...................................53
4.8 (A-E) M vs H curves of Dy1-xBixMnO3 (x=0-0.2) measured at 2 K in a field up to 3 T...............................55
4.9 Variation of HC and Mr of Dy1-xBixMnO3 (x=0-0.2) at 2 K.........................................................56
4.10 (A) Lattice contribution subtracted Cp of DMO. Inset is the Cm and entropy of pure DMO, (B) and (C) show the variation of specific heat capacity of Dy1-xBixMnO3 (x=0-0.15) at low temperatures.................................59

Table captions
Table 3.1. Rietveld refined lattice parameters of La1-xBixMnO3 (x=0-0.5) samples................................35
Table 4.1. Rietveld refined lattice parameters of Dy1-xBixMnO3 (x=0-0.5) samples................................50



參考文獻 REFERENCES
[1] Jonker G H and Van Santen J H Physica 16 337. (1950).
[2] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature (London) 426, 55 (2003).
[3] N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S.-W. Cheong, Nature (London) 429, 392 (2004).
[4] T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, Phys. Rev. Lett. 92, 257201 (2004).
[5] C. Zener, Phys. Rev. 82, 403 (1951).
[6] Hauback, B. C., Fjellvag H., Sakai, N. J. Solid State Chem., 124, 43 (1996).
[7] Mahendiran, R., Tiwary, S. K., Raychadhuri, A. K., Ramakrisnan, T. V., Mahesh, R., Raganvittal, N., Rao, C. N. R. Phys. Rew. B, 53, 3348 (1996).
[8] Rao, C. N. R., Cheetham, A. K. Science, 272, 369 (1996).
[9] Alonso, J. A., Martı´nez-Lope, M. J., Casais, M. T. Eur. J. Solid State Inorg. Chem, 33, 331 (1996).
[10] De Silva, P. S. I. P. N., Richards, F. M., Cohen, L. F., Alonso, J. A., Martı´nez-Lope, M. J., Casais, M. T., Thomas, K. A., MacManus- Driscoll, J. L. J. Appl. Phys, 83, 394 (1998).
[11] Ghivelder, L., Abrego-Castillo, I., Gusma˜o, M. A., Alonso, J.A; Cohen, L. F. Phys. ReV. B, 60, 12184 (1999).
[12]A. P Ramirez, J. Phys.: Condens. Matter 9, 8171–8199 (1997).
[13] H. Y. Hwang, S.-W. Cheong, N. P. Ong and B. Batlogg, Spin-Polarized Intergrain. Tunneling in La2/3Sr1/3MnO3, Phys. Rev. Lett. 77, 2041 (1996).
[14] Y. D. Zhao, Jonghyurk Park, R.-J. Jung, H.-J. Noh, S.-J. Oh, Journal of Magnetism and Magnetic Materials 280, 404–411 (2004).
[15] T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, Phys. Rev. Lett. 92, 257201 (2004).
[16] N. Kamegashira, H. Satoh, and S. Ashizuka, Mater. Sci. Forum 449-452, 1045 (2004).
[17] V. Y. Ivanov, A. A. Mukhin, A. S. Prokhorov, A. M. Balbashov, and L. D. Iskhakova, Phys. Solid State 48, 1726 (2006).
[18] Takanori Mori, Katsuyuki Aoki, Naoki Kamegashira, Toetsu Shishido, Tsuguo Fukuda, Materials Letters 42, 387–389 (2000).
[19]T. Kimura, G. Lawes, T. Goto, Y. Tokura, and A. P. Ramirez, Phys. Rev. B 71,
224425 (2005).
[20]T. Kimura, S. Ishihara, H. Shintani, T. Arima, K. T. Takahashi, K. Ishizaka, and Y. Tokura, Phys. Rev. B 68, 060403 (2003).
[21] J. Blasco, C. Ritter, J. García, J. M. de Teresa, J. Pérez-Cacho, and M. R. Ibarra, Phys. Rev. B 62, 5609 (2000).
[22] Ramesh R and Spaldin N A, Nat. Mater. 6 21 (2007).
[23] T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Phys. Rev. B 67, 180401 (2003).
[24] A. A. Belik, S. Iikubo, T. Yokosawa, K. Kodama, N. Igawa, S. Shamoto, M. Azuma, M. Takano, K. Kimoto, Y. Matsui, E. Takayama-Muromachi, J. Am. Chem. Soc. 129, 971 (2007).
[25] Sharan A, Lettieri J, Jia Y, Tian W, Pan X, Schlom D G and Gopalan V, Phys. Rev. B 69 214109 (2004).
[26] Son J Y, Kim B G, Kim C H and Cho J H, Appl. Phys. Lett. 84 4971 (2004).
[27] T. Atou, H. Chiba, K. Ohoyama, Y. Yamaguchi, Y. Syono, J. Solid State Chem. 145, 639 (1999).
[28] T. Atou, H. Chiba, K. Ohoyama, Y. Yamaguchi, and Y. Syono, J. Solid State Chem. 145, 639 (1999).
[29] A. A. Belik, S. Iikubo, T. Yokosawa, K. Kodama, N. Igawa, S. Shamoto, M. Azuma, M. Takano, K. Kimoto, Y. Matsui, et al., J. Am. Chem. Soc. 129, 971 (2007).
[30] E. Montanari, G. Calestani, L. Righi, E. Gilioli, F. Bolzoni, K. S. Knight, and P. G. Radaelli, Phys. Rev. B 75, 220101(R) (2007).
[31] A. A. Belik, T. Kolodiazhnyi, K. Kosuda, and E. Takayama-Muromachi, J. Mater. Chem. 19, 1593 (2009).
[32] Eerenstein W, Morrison F. D, Scott J F and Mathur N. D, Appl. Phys. Lett. 87 101906 (2005).
[33] Gajek M, Bibes M, Fusil S, Bouzehouane K, Fontcuberta J, Barthelemy A and Fert A, Nat. Mater. 6 296 (2007).
[34] Belik A A and Takayama-Muromachi E, Inorg. Chem. 45 10224 (2006).
[35] Laukin, V.; Fontcuberta, J.; Garcı´a-Mun˜oz, J. L.; Obradors, X. Phys. ReV. B , 56, 10009 (1997).
[36] T. Ogawa, H. Shindo, H. Takeuchi, Y. Koizumi, Jpn. J. Appl. Phys. 45, 8666 (2006)
[37] M. Filippi, B. Kundys, R. Ranjith, A.K. Kundu,W. Prelliera, Appl. Phys. Lett. 92, 212905 (2008).
[38] Damay F, Maignan A, Hervieu M, Nguyen N and Raveau B, C. R. Acad. Sci. Paris 322 573 (1996).
[39] R.D. Shannon, Acta Crystallogr., Sec. A 32, 751 (1976).
[40] C. Suryanarayana, and M. Grant Norton. Plenum Press, New York, (1998).
[41] B.D. Cullity, Elements of X-ray Diffraction 2nd Ed., Addison-Wesley, Ontario, (1977).
[42] A. Patterson, Phys Rev 56 (10) 978 (1939).
[43] A.C. Larson and R.B. Von Dreele, "General Structure Analysis System (GSAS)", Los Alamos National Laboratory Report LAUR 86-748 (2000).
[44] P.W. Hawkes, Ed., SEM- Physics of image formation and analysis, Springer Series in Optical Sciences, Springer-Verlag, Berlin, Vol.45, (1984).
[45] W. Zhou and Z. L. Wang, Ed., Scanning microscopy for nanotechnology, Springer, New York (2006).
[46] A. J. Garratt-Reed and D. C. Bell, Energy-Dispersive X-Ray Analysis in the Electron Microscope, BIOS Scientific, Oxford, UK (2003).
[47] K. Gramm, L. Lundgren and O. Beckman, ‘SQUID Magnetometer for Magnetization Measurements’ Physica Scripta. Vol. 13, 93-95, (1976).
[48] Physical Property Measurements System (PPMS XL), AC measurement System Option (ACMS) User's Manual, Quantum Design, San Diego, CA, USA, 1084-100A, (1996).
[49] PPMS Instruments manual, Quantum Design China Inc, (2011).
[50] Heat-capacity option user’s manual, Quantum Design, (2004).
[51] Damay F, Maignan A, Hervieu M, Nguyen N and Raveau B, C. R. Acad. Sci. Paris 322, 573 (1996).
[52] R.D. Shannon, Acta Crystallogr., Sec. A 32, 751 (1976).
[53] T. Ogawa, H. Shindo, H. Takeuchi, Y. Koizumi, Jpn. J. Appl. Phys. 45, 8666 (2006).
[54] Y.D. Zhao, J. Park, R.J. Jung, H.J. Noh, S.J. Oh, J. Magn. Magn. Mater. 280, 404 (2004).
[55] I.O. Troyanchuk, O.S. Mantytskaja, H. Szymczak, M.Y. Shvedun, Low Temp. Phys. 28, 569 (2002).
[56] M. Gajek, M. Bibes, F. Wyczisk, M. Varela, J. Fontcuberta, A. Barthélémy, Phys. Rev. B 75, 174417 (2007).
[57] Y.J. Wu • Y.Q. Lin • S.P. Gu • X.M. Chen, Appl. Phys A 97: 191–194 (2009).
[58] Peter Fleming, Richard A. Farrell, Justin D. Holmes, and Michael A. Morris, J. Am. Ceram. Soc., 93 (4) 1187–1194 (2010).
[59] R. Horyn´, A. Sikora, E. Bukowska, Journal of Alloys and Compounds 353, 153–169 (2003).
[60] J. Rodriguez-Carvajal, M. Hennion, F. Moussa, A.H. Mouden, Phys. Rev. B 57, R3189 (1998).
[61] J. B. A. A. Elemans, B. Van Laar, K. R. Van Der Veen, and B. O. Loopstra, J. Solid State Chem. 3, 238 (1971).
[62] P. Norby, I. G. Krogh Andersen, and E. Krogh Andersen, J. of Solid state Chem. 119, 191-196 (1995).
[63] Alonso, J. A., Martı´nez-Lope, M. J., Casais, M. T, M. T. Fernandez-Diaz, Inorg. Chem, 39, 917-923 (2000).
[64] Woodward, P. M.; Vogt, T.; Cox, D. E.; Arulraj, A.; Rao, C. N. R.; Karen, P.; Cheetham, A. K. Chem. Mater., 10, 3652 (1998).
[65] A.C. Larson and R.B. Von Dreele, "General Structure Analysis System (GSAS)", Los Alamos National Laboratory Report LAUR 86-748 (2000).
[66] Octavio Peña, Mona Bahout, Dionisio Gutierrez, Pedro Duran, Carlos Moure, Solid State Sciences 5, 1217–1227 (2000).
[67] J.A. Mydosh, Spin Glasses, Taylor & Francis, London, (1993).
[68] P.S.I.P.N. de Silva, F.M. Richards, L.F. Cohen, J.A. Alonso, M.J. Martinez-lope, M.T. Casais, K.A. Thomas, J.L. MacManus-Driscoll, J. Appl. Phys. 83, 394 (1998).
[69] Alonso, J. A., Martı´nez-Lope, M. J., Casais, M. T. Eur. J. Solid State Inorg. Chem. 33, 331 (1996).
[70] J. Topfer, J.B. Goodenough, J. Solid State Chem. 130, 117 (1997).
[71] Takanori Mori, Katsuyuki Aoki, Naoki Kamegashira, Toetsu Shishido, Tsuguo Fukuda, Materials Letters 42, 387–389 (2000).
[72] Alonso, J. A., Martı´nez-Lope, M. J., Casais, M. T, M. T. Fernandez-Diaz, Inorg. Chem. 39,917-923 (2000).
[73] Woodward, P. M.; Vogt, T.; Cox, D. E.; Arulraj, A.; Rao, C. N. R.; Karen, P.; Cheetham, A. K. Chem. Mater. 10, 3652 (1998).
[74] A.C. Larson and R.B. Von Dreele, "General Structure Analysis System (GSAS)", Los Alamos National Laboratory Report LAUR 86-748 (2000).
[75] Charles Kittel, Introduction to Solid state Physics 8th Ed, Hoboken, page 113 (2005).
[76] D. G. Tomuta, S. Ramakrishnan, G. J. Nieuwenhuys and J. A. Mydosh, J. Phys.: Condens. Matter 13, 4543 (2001).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-01-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-01-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw