進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0212201611394600
論文名稱(中文) 運用生物力學及影像分析探討肱骨外上髁炎
論文名稱(英文) Study of Lateral Epicondylitis Using Biomechanical and Ultrasonographic Image Analysis
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 105
學期 1
出版年 105
研究生(中文) 李淑雅
研究生(英文) Su-Ya Lee
學號 P88981055
學位類別 博士
語文別 英文
論文頁數 104頁
口試委員 指導教授-蘇芳慶
口試委員-孫永年
口試委員-王士豪
召集委員-安介南
口試委員-周一鳴
口試委員-郭藍遠
中文關鍵字 等速測力儀  肌力  肌肉活化  超音波  肱骨外上髁炎 
英文關鍵字 Isokinetic dynamometer  Muscle strength  Muscle activity  Ultrasound  Lateral Epicondylitis 
學科別分類
中文摘要 不良的腕關節姿勢與不熟練的動作技巧會造成肱骨外上髁炎的產生。肱骨外上髁炎會影響在執行功能性動作時的肌肉表現,並且改變伸腕肌群的共同肌腱之超音波影像學表現。而全面性的探討腕關節肌群的動態表現、伸腕肌群的共同肌腱之超音波影像與肌腱的力學特性,可以更進一步幫助臨床了解肌腱病變的病因。
首先,本研究透過客製化的雙平面等速肌力儀探討複合腕關節姿勢下與不同等速動作速度下對於腕關節肌群的動態表現影響,共有三十位健康受試者進行了伸腕肌群等速肌力測試。結果發現於自然姿勢下之伸腕肌的肌肉活化程度、伸腕肌群肌力、伸腕肌群與屈腕肌群肌力比值皆大於尺側偏移與橈側偏移。此外,於慢速等速肌力動作下,伸腕肌與屈腕肌之肌肉活化比值與伸腕肌群與屈腕肌群之肌力比值皆產生較高的比值。複合腕關節姿勢與等速動作之速度可視為影響動態表現的因子,若長時間處於複合腕關節姿勢與快速動作下可能會進一步導致肘關節之肌肉骨骼系統的傷害。
其次,本研究探討肱骨外上髁炎患者之超音波影像資訊與動態動作表現間的關係性,共有十九位健康受試者與十九位肱骨外上髁炎患者進行伸腕和屈腕肌群等速肌力測試與量測伸腕肌群的共同肌腱之超音波影像。肱骨外上髁炎患者於等速肌力評估下會有較高的伸腕肌群與屈腕肌群肌力,此外,患者會有較低的伸腕肌與屈腕肌之肌肉活化比值。於超音波影像表現上,患者之伸腕肌群的共同肌腱有顯著的低超音波回音表現、較厚的厚度與較大的橫截面積。並且,患者之超音波回音表現與於橈側偏移之伸腕肌等速肌力評估下其伸腕肌群肌力呈現顯著性的關係性。透過建立動態表現與超音波影像關係性,未來可透過量測非侵入性超音波之參數來進一步提供患者之動態肌群表現資訊。
最後,本研究運用老鼠阿基里斯肌腱之肌腱病變模型,探討不同肌腱病變受傷後之時間點於組織學、力學與超音波影像學之表現,並透過老鼠肌腱病變模型建立與驗證上述三者間的關係性。四十二隻老鼠左腳阿基里斯腱接受超音波導引之膠原蛋白脢注射,右腳接受空針穿刺,而在受傷後第四周、第八周與第十二周,阿基里斯腱會接受力學、組織學與超音波影像學量測。結果顯示肌腱病變之肌腱有顯著較高的組織學分數、較低的楊氏係數與較高的超音波影像分數。所有受傷的肌腱於受傷後十二周仍然呈現無法復原之情形。而力學參數與超音波回音和超音波影像分數皆有良好的關係性,其中,血管新生分數與斷裂應力和楊氏係數有顯著負相關,並且最大超音波回音值與勁力有邊界性的負相關。因此,血管新生與最大超音波回音值對於肌腱的力學參數扮演著重要的角色,未來可做為量測肌腱病變之參數之ㄧ。本研究透過建立肱骨外上髁炎患者之超音波影像資訊與動態動作表現間的關係性,並且更進一步建立肌腱病變之肌腱生物力學特性與超音波影像學資訊相關性,將有助於改進肌腱病變的評估方式、診斷方式與治療介入方式。
英文摘要 The use of awkward wrist postures and unskilled techniques might induce lateral epicondylitis, which then leads to changes in muscular performances in functional activities, and also alters the ultrasonographic (US) characteristics of the common extensor tendon. Obtaining more comprehensive information about the dynamic performances of the wrist muscles, US characteristics and biomechanical properties of the tendon would improve current understanding of the pathology of tendinopathy. This study thus first investigated the effects of coupling posture and movement velocity on the dynamic performances of the wrist muscles via a custom-made bi-planar isokinetic dynamometer. Thirty subjects were recruited to perform the isokinetic testing. The muscle activity of the extensor digitorum communis (EDC), normalized peak torque (PT) of extensors, and ratio of normalized PT between wrist extensors and flexors, were all greater in the neutral position (NP) than in radial deviation (RD) and ulnar deviation (UD) in all isokinetic contractions. Nevertheless, a significantly higher ratio of muscle activity between EDC and flexor digitorum superficialis (FDS), and the ratio of normalized PT between wrist extensors and flexors, were found at the slow velocity in all isokinetic contractions. The coupling postures and movement velocity of the wrist joint should thus be considered as influential factors which might alter the dynamic performances, and may result in further injury of the elbow joint. Secondly, this study investigated the relationship between the dynamic muscular performances and US characteristics in lateral epicondylitis patients. Nineteen healthy subjects and nineteen lateral epicondylitis patients were recruited to perform the isokinetic testing and measure the US characteristics of the common extensor tendon. The patient group had the higher normalized PT of wrist extensors and wrist flexors during the isokinetic contraction. The patient group also showed decreased co-activation between EDC and FDS during the isokinetic contractions, and had significantly lower echo intensity of the common extensor tendon. Furthermore, the echo intensity was significantly correlated with the normalized PT of wrist extensors under RD during the isokinetic contraction in the patient group. Therefore, the non-invasive US factor presented in this work may provide the useful information about the dynamic performances of wrist extensors in lateral epicondylitis. Thirdly, the purpose of this study was to investigate the dynamic changes in histopathology, biomechanical properties, echo intensity, and US features in the collagenase-induced tendinopathy model of rat Achilles tendons, and to examine the associations among these features. Forty-two rats received an ultrasound-guided collagenase injection on their left Achilles tendons, with needle puncture on the right ones as the control. At four, eight and twelve weeks of post-injury, the tendons were examined via measuring biomechanical properties, histopathological and US characteristics. The injured tendons showed significantly higher histopathological scores, lower Young’s modulus, and higher US feature scores than the control ones throughout the study. Up to week 12, all injured tendons showed defective healing. The biomechanical properties correlate well with the findings of echo intensity, and the US feature scores. The neovascularization score had a significant negative linear association with the failure stress and Young’s modulus. Maximum normalized echo intensity had a borderline negative linear association with stiffness. Therefore, the neovascularization and maximum normalized echo intensity are critical factors to alter the mechanical properties of tendons. The knowledge obtained in this study may provide evidence-based data to better understand the pathology of tendinopathy, since this can provide biomechanics and US information to assess and treat the tendinopathy in clinics.
論文目次 Contents
中文摘要 I
Abstract III
誌謝 V
List of Tables X
List of Figures XI
Chapter 1 General Introduction 1
1.1 Research Background 1
1.1.1 Lateral Epicondylitis 1
1.1.2 Outcome Evaluation in Lateral Epicondylitis 3
1.1.2.1 Questionnaire Assessment 3
1.1.2.2 Grip Strength and Muscle Strength 4
1.1.2.3 Ultrasonographic Characteristics 6
1.1.3 Animal Models in Tendinopathy 7
1.1.4 Mechanical Properties of Tendon in vitro 13
1.1.4.1 Tendon Clamp for Tensile Testing 13
1.1.4.2 Biomechanical Properties in Tendinopathy 15
1.1.4.3 Ultrasonographic Assessment: Tendon Mechanical Properties 18
1.2 Motivations 18
1.3 Specific Aims 20
1.3.1 Specific Aim I 20
1.3.2 Specific Aim II 20
1.3.3 Specific Aim III 21
Chapter 2 The Potential Risk Factors Relevant to Lateral Epicondylitis by Wrist Coupling Posture 22
2.1 Brief Introduction 22
2.2 Materials and Methods 24
2.2.1 Ethics Statement 24
2.2.2 Participants 24
2.2.3 Instruments 24
2.2.4 Experimental Procedure 25
2.2.5 Data Analysis 27
2.2.6 Statistics 27
2.3 Results 28
2.3.1 Normalized PT of Wrist Extensors 28
2.3.2 Ratio of Normalized PT between Wrist Extensors and Flexors 30
2.3.3 EMG results in Wrist Extensor 31
2.3.4 Ratio of Muscle Activity between Wrist Extensor and Flexor 34
Chapter 3 Relationship between Isokinetic Performances and Ultrasonographic Characteristics in Patients with Lateral epicondylitis 42
3.1 Brief Introduction 42
3.2 Materials and Methods 44
3.2.1 Ethic Statement 44
3.2.2 Participants 44
3.2.3 Instruments 45
3.2.4 Experimental Procedure 46
3.2.5 Data Analysis 47
3.2.6 Statistics 49
3.3 Results 49
3.3.1 Normalized PT of Wrist Extensors 49
3.3.2 Normalized PT of Wrist Flexors 52
3.3.3 Ratio of Muscle Activity between Wrist Extensor and Wrist Flexor 54
3.3.4 Ultrasonographic Characteristics 57
3.3.5 Correlation between Echo Intensity and Dynamic Performances of Wrist Muscles 58
3.4 Discussion 61
Chapter 4 What Assists in Indicating Tendinopathy? Relations between Biomechanics and Sonography in a Rat Achilles Model 66
4.1 Brief Introduction 66
4.2 Materials and Methods 68
4.2.1 Ethic Statement 68
4.2.2 Collagenase-induced Tendinopathy Animal Model 68
4.2.3 Scoring of Ultrasonographic Features and Histopathological Characteristics 70
4.2.4 Biomechanical Testing 71
4.2.5 Echo Intensity Measurement 72
4.2.6 Statistics 73
4.3 Results 74
4.3.1 Histopathological Results 74
4.3.2 Biomechanical Properties 76
4.3.4 Ultrasonographic Feature Scores 77
4.3.5 Echo Intensity 79
4.3.6 Correlation between Biomechanical Properties and Ultrasonographic Characteristics 81
4.3.7 Association between Biomechanical Properties and Ultrasonographic Characteristics 83
4.4 Discussion 84
Chapter 5 Summary and Future work 90
References 92
參考文獻 1. Aagaard, P., Simonsen, E. B., Magnusson, S. P., Larsson, B., & Dyhre-Poulsen, P. (1998). A new concept for isokinetic hamstring: quadriceps muscle strength ratio. Am J Sports Med, 26(2), 231-237.
2. Abraham, T., Fong, G., & Scott, A. (2011). Second harmonic generation analysis of early Achilles tendinosis in response to in vivo mechanical loading. BMC Musculoskelet Disord, 12, 26. doi: 10.1186/1471-2474-12-26
3. Alizadehkhaiyat, O., Fisher, A. C., Kemp, G. J., & Frostick, S. P. (2007a). Pain, functional disability, and psychologic status in tennis elbow. Clin J Pain, 23(6), 482-489. doi: 10.1097/AJP.0b013e31805f70fa
4. Alizadehkhaiyat, O., Fisher, A. C., Kemp, G. J., & Frostick, S. P. (2007b). Strength and fatigability of selected muscles in upper limb: assessing muscle imbalance relevant to tennis elbow. J Electromyogr Kinesiol, 17(4), 428-436. doi: 10.1016/j.jelekin.2006.04.007
5. Alizadehkhaiyat, O., Fisher, A. C., Kemp, G. J., Vishwanathan, K., & Frostick, S. P. (2007). Upper limb muscle imbalance in tennis elbow: a functional and electromyographic assessment. J Orthop Res, 25(12), 1651-1657. doi: 10.1002/jor.20458
6. Bazzucchi, I., Sbriccoli, P., Marzattinocci, G., & Felici, F. (2006). Coactivation of the elbow antagonist muscles is not affected by the speed of movement in isokinetic exercise. Muscle Nerve, 33(2), 191-199. doi: 10.1002/mus.20462
7. Beck, T. W., Housh, T. J., Johnson, G. O., Weir, J. P., Cramer, J. T., Coburn, J. W., & Malek, M. H. (2004). Mechanomyographic and electromyographic amplitude and frequency responses during fatiguing isokinetic muscle actions of the biceps brachii. Electromyogr Clin Neurophysiol., 44(7), 431-441.
8. Bilodeau, M., Schindler-Ivens, S., Williams, D. M., Chandran, R., & Sharma, S. S. (2003). EMG frequency content changes with increasing force and during fatigue in the quadriceps femoris muscle of men and women. J Electromyogr Kinesiol, 13(1), 83-92.
9. Chamberlain, C. S., Duenwald-Kuehl, S. E., Okotie, G., Brounts, S. H., Baer, G. S., & Vanderby, R. (2013). Temporal healing in rat achilles tendon: ultrasound correlations. Ann Biomed Eng, 41(3), 477-487. doi: 10.1007/s10439-012-0689-y
10. Cheung, J. T., & Zhang, M. (2006). A serrated jaw clamp for tendon gripping. Med Eng Phys, 28(4), 379-382. doi: 10.1016/j.medengphy.2005.07.010
11. Chourasia, A. O., Buhr, K. A., Rabago, D. P., Kijowski, R., Irwin, C. B., & Sesto, M. E. (2012). Effect of lateral epicondylosis on grip force development. J Hand Ther, 25(1), 27-36; quiz 37. doi: 10.1016/j.jht.2011.09.003
12. Clarke, A. W., Ahmad, M., Curtis, M., & Connell, D. A. (2010). Lateral elbow tendinopathy: correlation of ultrasound findings with pain and functional disability. Am J Sports Med, 38(6), 1209-1214. doi: 10.1177/0363546509359066
13. Connell, D., Datir, A., Alyas, F., & Curtis, M. (2009). Treatment of lateral epicondylitis using skin-derived tenocyte-like cells. Br J Sports Med, 43(4), 293-298. doi: 10.1136/bjsm.2008.056457
14. Cram, J. R., Kasman, G. S., & Holtz, J. (1998). Introduction to surface electromyography. Gaithersburg, Maryland: Aspen.
15. Crevier-Denoix, N., Ruel, Y., Dardillat, C., Jerbi, H., Sanaa, M., Collobert-Laugier, C., . . . Pourcelot, P. (2005). Correlations between mean echogenicity and material properties of normal and diseased equine superficial digital flexor tendons: an in vitro segmental approach. J Biomech, 38(11), 2212-2220. doi: 10.1016/j.jbiomech.2004.09.026
16. Croisier, J. L., Foidart-Dessalle, M., Tinant, F., Crielaard, J. M., & Forthomme, B. (2007). An isokinetic eccentric programme for the management of chronic lateral epicondylar tendinopathy. Br J Sports Med, 41(4), 269-275. doi: 10.1136/bjsm.2006.033324
17. Dahlgren, L. A., van der Meulen, M. C., Bertram, J. E., Starrak, G. S., & Nixon, A. J. (2002). Insulin-like growth factor-I improves cellular and molecular aspects of healing in a collagenase-induced model of flexor tendinitis. J Orthop Res, 20(5), 910-919. doi: 10.1016/S0736-0266(02)00009-8
18. Dallaudiere, B., Lempicki, M., Pesquer, L., Louedec, L., Preux, P. M., Meyer, P., . . . Serfaty, J. M. (2013). Efficacy of intra-tendinous injection of platelet-rich plasma in treating tendinosis: comprehensive assessment of a rat model. Eur Radiol. doi: 10.1007/s00330-013-2926-7
19. Dorf, E. R., Chhabra, A. B., Golish, S. R., McGinty, J. L., & Pannunzio, M. E. (2007). Effect of elbow position on grip strength in the evaluation of lateral epicondylitis. J Hand Surg Am, 32(6), 882-886. doi: 10.1016/j.jhsa.2007.04.010
20. Dudley, G. A., Harris, R. T., Duvoisin, M. R., Hather, B. M., & Buchanan, P. (1990). Effect of voluntary vs. artificial activation on the relationship of muscle torque to speed. J Appl Physiol (1985), 69(6), 2215-2221.
21. Duenwald-Kuehl, S., Kobayashi, H., Lakes, R., & Vanderby, R., Jr. (2012). Time-dependent ultrasound echo changes occur in tendon during viscoelastic testing. J Biomech Eng, 134(11), 111006. doi: 10.1115/1.4007745
22. Duenwald-Kuehl, S., Lakes, R., & Vanderby, R., Jr. (2012). Strain-induced damage reduces echo intensity changes in tendon during loading. J Biomech, 45(9), 1607-1611. doi: 10.1016/j.jbiomech.2012.04.004
23. Duenwald, S., Kobayashi, H., Frisch, K., Lakes, R., & Vanderby, R., Jr. (2011). Ultrasound echo is related to stress and strain in tendon. J Biomech, 44(3), 424-429. doi: 10.1016/j.jbiomech.2010.09.033
24. Ellenbecker, T. S., Roetert, E. P., & Riewald, S. (2006). Isokinetic profile of wrist and forearm strength in elite female junior tennis players. Br J Sports Med, 40(5), 411-414. doi: 10.1136/bjsm.2005.023358
25. Evangelidis, P. E., Pain, M. T., & Folland, J. (2015). Angle-specific hamstring-to-quadriceps ratio: a comparison of football players and recreationally active males. J Sports Sci, 33(3), 309-319. doi: 10.1080/02640414.2014.942680
26. Fagarasanu, M., Kumar, S., & Narayan, Y. (2004). Measurement of angular wrist neutral zone and forearm muscle activity. Clin Biomech (Bristol, Avon), 19(7), 671-677. doi: 10.1016/j.clinbiomech.2004.05.004
27. Fan, J. Z., Liu, X., & Ni, G. X. (2014). Angular velocity affects trunk muscle strength and EMG activation during isokinetic axial rotation. Biomed Res Int, 2014, 623191. doi: 10.1155/2014/623191
28. Fan, Z. J., Silverstein, B. A., Bao, S., Bonauto, D. K., Howard, N. L., Spielholz, P. O., . . . Viikari-Juntura, E. (2009). Quantitative exposure-response relations between physical workload and prevalence of lateral epicondylitis in a working population. Am J Ind Med, 52(6), 479-490. doi: 10.1002/ajim.20700
29. Friedman, P. J. (1998). Isokinetic peak torque in women with unilateral cumulative trauma disorders and healthy control subjects. Arch Phys Med Rehabil, 79(7), 816-819.
30. Garg, R., Kraszewski, A. P., Stoecklein, H. H., Syrkin, G., Hillstrom, H. J., Backus, S., . . . Wolfe, S. W. (2014). Wrist kinematic coupling and performance during functional tasks: effects of constrained motion. J Hand Surg Am, 39(4), 634-642 e631. doi: 10.1016/j.jhsa.2013.12.031
31. Glazebrook, M. A., Wright, J. R., Jr., Langman, M., Stanish, W. D., & Lee, J. M. (2008). Histological analysis of achilles tendons in an overuse rat model. J Orthop Res, 26(6), 840-846. doi: 10.1002/jor.20546
32. Godbout, C., Ang, O., & Frenette, J. (2006). Early voluntary exercise does not promote healing in a rat model of Achilles tendon injury. J Appl Physiol, 101(6), 1720-1726. doi: 10.1152/japplphysiol.00301.2006
33. Grewal, R., MacDermid, J. C., Shah, P., & King, G. J. (2009). Functional outcome of arthroscopic extensor carpi radialis brevis tendon release in chronic lateral epicondylitis. J Hand Surg Am, 34(5), 849-857. doi: 10.1016/j.jhsa.2009.02.006
34. Grimby, G. (1985). Progressive resistance exercise for injury rehabilitation. Special emphasis on isokinetic training. Sports Med, 2(5), 309-315.
35. Gulch, R. W. (1994). Force-velocity relations in human skeletal muscle. Int J Sports Med, 15 Suppl 1, S2-10. doi: 10.1055/s-2007-1021103
36. Haahr, J. P., & Andersen, J. H. (2003). Physical and psychosocial risk factors for lateral epicondylitis: a population based case-referent study. Occup Environ Med, 60(5), 322-329.
37. Heinemeier, K. M., Skovgaard, D., Bayer, M. L., Qvortrup, K., Kjaer, A., Kjaer, M., . . . Kongsgaard, M. (2012). Uphill running improves rat Achilles tendon tissue mechanical properties and alters gene expression without inducing pathological changes. J Appl Physiol, 113(5), 827-836. doi: 10.1152/japplphysiol.00401.2012
38. Herquelot, E., Bodin, J., Roquelaure, Y., Ha, C., Leclerc, A., Goldberg, M., . . . Descatha, A. (2013). Work-related risk factors for lateral epicondylitis and other cause of elbow pain in the working population. Am J Ind Med, 56(4), 400-409. doi: 10.1002/ajim.22140
39. Hiemstra, L. A., Webber, S., MacDonald, P. B., & Kriellaars, D. J. (2004). Hamstring and quadriceps strength balance in normal and hamstring anterior cruciate ligament-reconstructed subjects. Clin J Sport Med, 14(5), 274-280.
40. Huang, T. F., Perry, S. M., & Soslowsky, L. J. (2004). The effect of overuse activity on Achilles tendon in an animal model: a biomechanical study. Ann Biomed Eng, 32(3), 336-341.
41. Huxley, A. F., & Simmons, R. M. (1971). Proposed mechanism of force generation in striated muscle. Nature, 233(5321), 533-538.
42. Itoh, A., Ueno, E., Tohno, E., Kamma, H., Takahashi, H., Shiina, T., . . . Matsumura, T. (2006). Breast disease: clinical application of US elastography for diagnosis. Radiology, 239(2), 341-350. doi: 10.1148/radiol.2391041676
43. Jaen-Diaz, J. I., Cerezo-Lopez, E., Lopez-de Castro, F., Mata-Castrillo, M., Barcelo-Galindez, J. P., De la Fuente, J., & Balius-Mata, R. (2010). Sonographic findings for the common extensor tendon of the elbow in the general population. J Ultrasound Med, 29(12), 1717-1724.
44. Kannus, P. (1997). Tendons--a source of major concern in competitive and recreational athletes. Scand J Med Sci Sports, 7(2), 53-54.
45. Kellis, E., & Baltzopoulos, V. (1998). Muscle activation differences between eccentric and concentric isokinetic exercise. Med Sci Sports Exerc., 30(11), 1616-1623.
46. Khan, K. M., Cook, J. L., Bonar, F., Harcourt, P., & Astrom, M. (1999). Histopathology of common tendinopathies. Update and implications for clinical management Sports Med, 27(6), 393-408.
47. Kiss, M. O., Hagemeister, N., Levasseur, A., Fernandes, J., Lussier, B., & Petit, Y. (2009). A low-cost thermoelectrically cooled tissue clamp for in vitro cyclic loading and load-to-failure testing of muscles and tendons. Med Eng Phys, 31(9), 1182-1186. doi: 10.1016/j.medengphy.2009.06.008
48. Kobayashi, H., & Vanderby, R. (2007). Acoustoelastic analysis of reflected waves in nearly incompressible, hyper-elastic materials: forward and inverse problems. J Acoust Soc Am, 121(2), 879-887.
49. Kong, P. W., & Burns, S. F. (2010). Bilateral difference in hamstrings to quadriceps ratio in healthy males and females. Phys Ther Sport, 11(1), 12-17. doi: 10.1016/j.ptsp.2009.09.004
50. Kornecki, S. (1992). Mechanism of muscular stabilization process in joints. J Biomech, 25(3), 235-245.
51. Kraushaar, B. S., & Nirschl, R. P. (1999). Tendinosis of the elbow (tennis elbow). Clinical features and findings of histological, immunohistochemical, and electron microscopy studies. J Bone Joint Surg Am, 81(2), 259-278.
52. Lamoreaux, L., & Hoffer, M. M. (1995). The effect of wrist deviation on grip and pinch strength. Clin Orthop Relat Res(314), 152-155.
53. Lee, M. H., Cha, J. G., Jin, W., Kim, B. S., Park, J. S., Lee, H. K., & Hong, H. S. (2011). Utility of sonographic measurement of the common tensor tendon in patients with lateral epicondylitis. AJR Am J Roentgenol, 196(6), 1363-1367. doi: 10.2214/AJR.10.5769
54. Lee, S. U., Joo, S. Y., Kim, S. K., Lee, S. H., Park, S. R., & Jeong, C. (2016). Real-time sonoelastography in the diagnosis of rotator cuff tendinopathy. J Shoulder Elbow Surg. doi: 10.1016/j.jse.2015.10.019
55. Lee, S. Y., Chieh, H. F., Lin, C. J., Jou, I. M., Kuo, L. C., & Su, F. C. (2016). The Potential Risk Factors Relevant to Lateral Epicondylitis by Wrist Coupling Posture. PLoS One, 11(5), e0155379. doi: 10.1371/journal.pone.0155379
56. Ljung, B. O., Friden, J., & Lieber, R. L. (1999). Sarcomere length varies with wrist ulnar deviation but not forearm pronation in the extensor carpi radialis brevis muscle. J Biomech., 32(2), 199-202.
57. Loren, G. J., Shoemaker, S. D., Burkholder, T. J., Jacobson, M. D., Friden, J., & Lieber, R. L. (1996). Human wrist motors: biomechanical design and application to tendon transfers. J Biomech, 29(3), 331-342.
58. Lucado, A. M., Kolber, M. J., Cheng, M. S., & Echternach, J. L., Sr. (2012). Upper extremity strength characteristics in female recreational tennis players with and without lateral epicondylalgia. J Orthop Sports Phys Ther, 42(12), 1025-1031. doi: 10.2519/jospt.2012.4095
59. Lui, P. P., Chan, L. S., Fu, S. C., & Chan, K. M. (2010). Expression of sensory neuropeptides in tendon is associated with failed healing and activity-related tendon pain in collagenase-induced tendon injury. Am J Sports Med, 38(4), 757-764. doi: 10.1177/0363546509355402
60. Lui, P. P., Chan, L. S., Lee, Y. W., Fu, S. C., & Chan, K. M. (2010). Sustained expression of proteoglycans and collagen type III/type I ratio in a calcified tendinopathy model. Rheumatology (Oxford), 49(2), 231-239. doi: 10.1093/rheumatology/kep384
61. Lui, P. P., Maffulli, N., Rolf, C., & Smith, R. K. (2011). What are the validated animal models for tendinopathy? Scand J Med Sci Sports., 21(1), 3-17. doi: 10.1111/j.1600-0838.2010.01164.x.
62. Machova Urdzikova, L., Sedlacek, R., Suchy, T., Amemori, T., Ruzicka, J., Lesny, P., . . . Jendelova, P. (2014). Human multipotent mesenchymal stem cells improve healing after collagenase tendon injury in the rat. Biomed Eng Online, 13, 42. doi: 10.1186/1475-925X-13-42
63. Marsolais, D., Cote, C. H., & Frenette, J. (2001). Neutrophils and macrophages accumulate sequentially following Achilles tendon injury. J Orthop Res, 19(6), 1203-1209. doi: 10.1016/S0736-0266(01)00031-6
64. Marsolais, D., Cote, C. H., & Frenette, J. (2007). Pifithrin-alpha, an inhibitor of p53 transactivation, alters the inflammatory process and delays tendon healing following acute injury. Am J Physiol Regul Integr Comp Physiol, 292(1), R321-327. doi: 10.1152/ajpregu.00411.2005
65. Morse, J. L., Jung, M. C., Bashford, G. R., & Hallbeck, M. S. (2006). Maximal dynamic grip force and wrist torque: the effects of gender, exertion direction, angular velocity, and wrist angle. Appl Ergon, 37(6), 737-742. doi: 10.1016/j.apergo.2005.11.008
66. Ng, G. Y., Chung, P. Y., Wang, J. S., & Cheung, R. T. (2011). Enforced bipedal downhill running induces Achilles tendinosis in rats. Connect Tissue Res, 52(6), 466-471. doi: 10.3109/03008207.2011.562334
67. Nirschl, R. P. (1992). Elbow tendinosis/tennis elbow. Clin Sports Med, 11(4), 851-870.
68. Ooi, C. C., Malliaras, P., Schneider, M. E., & Connell, D. A. (2014). "Soft, hard, or just right?" Applications and limitations of axial-strain sonoelastography and shear-wave elastography in the assessment of tendon injuries. Skeletal Radiol, 43(1), 1-12. doi: 10.1007/s00256-013-1695-3
69. Poltawski, L., Ali, S., Jayaram, V., & Watson, T. (2012). Reliability of sonographic assessment of tendinopathy in tennis elbow. Skeletal Radiol, 41(1), 83-89. doi: 10.1007/s00256-011-1132-4
70. Reichard, B., Katz-Leurer, M., Rubinstein, M., Croisier, J. L., & Dvir, Z. (2010). Short range of motion isokinetic testing of wrist flexor and extensor strength in normal subjects and patients with carpal tunnel syndrome. J Strength Cond Res, 24(7), 1866-1873. doi: 10.1519/JSC.0b013e3181def440
71. Riek, S., Chapman, A. E., & Milner, T. (1999). A simulation of muscle force and internal kinematics of extensor carpi radialis brevis during backhand tennis stroke: implications for injury. Clin Biomech (Bristol, Avon), 14(7), 477-483.
72. Riemersa, D. J., & Schamhardt, H. C. (1982). The cryo-jaw, a clamp designed for in vitro rheology studies of horse digital flexor tendons. J Biomech, 15(8), 619-620.
73. Ring, D., Kadzielski, J., Fabian, L., Zurakowski, D., Malhotra, L. R., & Jupiter, J. B. (2006). Self-reported upper extremity health status correlates with depression. J Bone Joint Surg Am, 88(9), 1983-1988. doi: 10.2106/JBJS.E.00932
74. Roman-Liu, D., & Bartuzi, P. (2013). The influence of wrist posture on the time and frequency EMG signal measures of forearm muscles. Gait Posture, 37(3), 340-344. doi: 10.1016/j.gaitpost.2012.07.027
75. Rompe, J. D., Overend, T. J., & MacDermid, J. C. (2007). Validation of the Patient-rated Tennis Elbow Evaluation Questionnaire. J Hand Ther, 20(1), 3-10; quiz 11. doi: 10.1197/j.jht.2006.10.003
76. Shah, V., Bendele, A., Dines, J. S., Kestler, H. K., Hollinger, J. O., Chahine, N. O., & Hee, C. K. (2013). Dose-response effect of an intra-tendon application of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) in a rat Achilles tendinopathy model. J Orthop Res, 31(3), 413-420. doi: 10.1002/jor.22222
77. Shi, D., Wang, D., Wang, C., & Liu, A. (2012). A novel, inexpensive and easy to use tendon clamp for in vitro biomechanical testing. Med Eng Phys, 34(4), 516-520. doi: 10.1016/j.medengphy.2011.11.019
78. Shiri, R., Viikari-Juntura, E., Varonen, H., & Heliovaara, M. (2006). Prevalence and determinants of lateral and medial epicondylitis: a population study. Am J Epidemiol, 164(11), 1065-1074. doi: 10.1093/aje/kwj325
79. Silva, R. D., Glazebrook, M. A., Campos, V. C., & Vasconcelos, A. C. (2011). Achilles tendinosis: a morphometrical study in a rat model. Int J Clin Exp Pathol, 4(7), 683-691.
80. Smidt, N., van der Windt, D. A., Assendelft, W. J., Mourits, A. J., Deville, W. L., de Winter, A. F., & Bouter, L. M. (2002). Interobserver reproducibility of the assessment of severity of complaints, grip strength, and pressure pain threshold in patients with lateral epicondylitis. Arch Phys Med Rehabil, 83(8), 1145-1150.
81. Soderberg, J., Grooten, W. J., & Ang, B. O. (2012). Effects of eccentric training on hand strength in subjects with lateral epicondylalgia: a randomized-controlled trial. Scand J Med Sci Sports, 22(6), 797-803. doi: 10.1111/j.1600-0838.2011.01317.x
82. Sullo, A., Maffulli, N., Capasso, G., & Testa, V. (2001). The effects of prolonged peritendinous administration of PGE1 to the rat Achilles tendon: a possible animal model of chronic Achilles tendinopathy. J Orthop Sci, 6(4), 349-357. doi: 10.1007/s0077610060349
83. Toprak, U., Baskan, B., Ustuner, E., Oten, E., Altin, L., Karademir, M. A., & Bodur, H. (2012). Common extensor tendon thickness measurements at the radiocapitellar region in diagnosis of lateral elbow tendinopathy. Diagn Interv Radiol, 18(6), 566-570. doi: 10.4261/1305-3825.DIR.5575-12.2
84. Tucker, J. J., Riggin, C. N., Connizzo, B. K., Mauck, R. L., Steinberg, D. R., Kuntz, A. F., . . . Bernstein, J. (2016). Effect of overuse-induced tendinopathy on tendon healing in a rat supraspinatus repair model. J Orthop Res, 34(1), 161-166. doi: 10.1002/jor.22993
85. Unyo, C., Chaler, J., Rojas-Martinez, M., Pujol, E., Muller, B., Garreta, R., & Mananas, M. A. (2013). A cross-sectional study comparing strength profile of dorsal and palmar flexor muscles of the wrist in epicondylitis and healthy men. Eur J Phys Rehabil Med, 49(4), 507-515.
86. Walz, D. M., Newman, J. S., Konin, G. P., & Ross, G. (2010). Epicondylitis: pathogenesis, imaging, and treatment. Radiographics, 30(1), 167-184. doi: 10.1148/rg.301095078
87. Warden, S. J. (2007). Animal models for the study of tendinopathy. Br J Sports Med, 41(4), 232-240. doi: 10.1136/bjsm.2006.032342
88. Webber, S., & Kriellaars, D. (1997). Neuromuscular factors contributing to in vivo eccentric moment generation. J Appl Physiol (1985), 83(1), 40-45.
89. Welter, T. G., Bobbert, M. F., van Bolhuis, B. M., Gielen, S. C., Rozendaal, L. A., & Veeger, D. H. (2000). Relevance of the force-velocity relationship in the activation of mono- and Bi-articular muscles in slow arm movements in humans. Motor Control, 4(4), 420-438.
90. Werner, R. A., Franzblau, A., Gell, N., Hartigan, A., Ebersole, M., & Armstrong, T. J. (2005). Predictors of persistent elbow tendonitis among auto assembly workers. J Occup Rehabil., 15(3), 393-400.
91. Wieloch, P., Buchmann, G., Roth, W., & Rickert, M. (2004). A cryo-jaw designed for in vitro tensile testing of the healing Achilles tendons in rats. J Biomech, 37(11), 1719-1722. doi: 10.1016/j.jbiomech.2004.01.027
92. Wu, P. T., Jou, I. M., Kuo, L. C., & Su, F. C. (2016). Intratendinous Injection of Hyaluronate Induces Acute Inflammation: A Possible Detrimental Effect. PLoS One., 11(5), e0155424. doi: 0155410.0151371/journal.pone.0155424. eCollection 0152016.
93. Xavier, M., David, D. R., de Souza, R. A., Arrieiro, A. N., Miranda, H., Santana, E. T., . . . Albertini, R. (2010). Anti-inflammatory effects of low-level light emitting diode therapy on Achilles tendinitis in rats. Lasers Surg Med, 42(6), 553-558. doi: 10.1002/lsm.20896
94. Yoo, S. D., Choi, S., Lee, G. J., Chon, J., Jeong, Y. S., Park, H. K., & Kim, H. S. (2012). Effects of extracorporeal shockwave therapy on nanostructural and biomechanical responses in the collagenase-induced Achilles tendinitis animal model. Lasers Med Sci, 27(6), 1195-1204. doi: 10.1007/s10103-011-1049-0
95. Zhi, H., Ou, B., Luo, B. M., Feng, X., Wen, Y. L., & Yang, H. Y. (2007). Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions. J Ultrasound Med, 26(6), 807-815.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-12-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw