進階搜尋


下載電子全文  
系統識別號 U0026-0212201216095600
論文名稱(中文) 聚乙烯基咔唑薄膜式液晶元件之特性:配向效應、熱反應、相位分離及其新穎應用
論文名稱(英文) Properties of Poly(N-vinylcarbazole) Film-Based Liquid Crystal Devices: Alignment Effects, Thermal Behaviors, Phase Separation, and Novel Applications
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 101
學期 1
出版年 101
研究生(中文) 陳園迪
研究生(英文) Yuan-Di Chen
電子信箱 o66850@gmail.com
學號 l78981131
學位類別 博士
語文別 英文
論文頁數 165頁
口試委員 指導教授-傅永貴
召集委員-張守進
口試委員-李佳榮
口試委員-吳俊傑
口試委員-黃啟炎
口試委員-郭啟東
口試委員-李偉
中文關鍵字 液晶  聚乙烯基咔唑  偶氮染料  微布朗運動  相分離  光致分子同分異構反應  光偏振轉變器  光閥 
英文關鍵字 liquid crystals  poly(N-vinylcarbazole)  azo dye  micro-Brownian motion  phase separation  photoisomerization  polarization converter  light shutter 
學科別分類
中文摘要 高分子聚乙烯基咔唑薄膜式液晶元件上具有許多複雜但有趣的特性,包括了摩擦配向引致液晶導軸排向與高分子主鏈垂直、熱致高分子鏈形變或是相分離等等。本研究主要著重於這些特性並用於製備各式液晶元件。
首先,根據聚乙烯基咔唑薄膜其摩擦配向方向與液晶導軸排向垂直的特性來開發三種放射配向液晶元件。特別是此元件的製程非常簡便、快速、便宜,更重要的是它適於大尺寸應用。元件的性能已經經過詳細測試,結果顯示此放射狀配向元件具有高度熱穩定性,並且在可見光波段沒有光損耗。另外我們可以藉由外加電壓來改變此元件內液晶的排向。因此,本元件可用來電控雷射光束的偏振或強度分佈。
我們的研究顯示聚乙烯基咔唑薄膜上的液晶配向可以用熱來切換,所選用的液晶決定了配向切換的起始溫度,這切換發生的原因是高分子側鏈受熱能的微布朗運動,此微布朗運動,會使得延著側鏈方向的自發性偶極配向力消失,最終冷卻到室溫後液晶分子將與高分子主鏈(摩擦方向)平行排列。由於高相變點液晶的切換能高於低相變點液晶,我們可以選擇適合的液晶來改善元件的熱穩定度。根據此特性,我們建立一個熱的梯度變化來製備線型與同心圓狀偏振旋轉器,這兩個偏振旋轉器性質均已詳細的檢驗,實驗與模擬結果非常吻合,因而証實了偏振轉換器的液晶配向分佈為連續的扭轉。
我們的研究成果也證實聚乙烯基咔唑會與各向同性態液晶互溶,冷卻到液晶相時會相分離。因為此特殊的製程,我們把此方法命名為特殊相分離法。製作出的樣品呈現出強烈散射,並可利用外加電壓來切換成透明態,因此,此元件可用作電控液晶光閥,且具備許多的優點,如低操作電壓、微米級的快速反應時間、偏振獨立,與高對比度(~300:1)。最後,根據這些基板的表面形貌,發現散射態的成因是由於粗糙表面引致液晶亂排列造成。
最後,我們在液晶盒內攙加少量的偶氮染料來改變液晶與聚乙烯基咔唑薄膜間的相分離過程。因為偶氮染料在照光下產生光致熱效應與光致同分異構化反應,這兩種反應可調變液晶與聚乙烯基咔唑間的溶解度與相分離過程。因此,我們可以利用不同的光強度控制高分子聚乙烯基咔唑薄膜式液晶元件的散射程度,製作出的元件可達成多個穩定態,其穩定的穿透度介於百分之0.1到百分之41.2之間。此外,可藉由特殊熱致相分離處理將各穩態切換回到原本的散射態。此機制可被用來製作光控液晶顯示器,或其他具有節能、多穩態特性的元件上。
英文摘要 Polymer-poly(N-vinylcarbazole) (PVK) film-based liquid crystal (LC) devices have complex, but interesting properties, which include rubbing induced the LC alignment being perpendicular to the main chain of the polymer, thermal-induced deformation of polymer chains, phase separation, and so on. This study mainly focuses on these properties and their uses for fabricating LC devices.
First, three radial LC devices have been developed according to the property of the rubbing direction being perpendicular to the LC director on a PVK film. Notably, the fabrication of these devices is easy, fast, and inexpensive. More importantly it is suitable for large-scale device fabrication. The performances of the devices have been examined in detail. The results indicate the radially aligned devices have high thermal stability, and exhibit no optical loss in the visible range. In addition, we can change the LC alignment by applying a voltage. Thus, the devices can be used to modulate the strength and polarization profile of a laser beam electrically.
Our investigations indicate LCs aligned by a PVK film can be switched thermally. The selected LC determines the onset temperature required to switch the LC alignment. The cause of the switching is due to the thermally-induced micro-Brownian motion of the side chains of the polymer. Such a micro-Brownian motion of the side chains causes the reduction of the spontaneous polarization along the side chains, which aligns LC molecules. Finally, LCs align parallel to the polymer main-chain (rubbing direction) after being cooled to the room temperature. Because the required thermal energy of a LC with a higher clearing temperature (Tc) is higher than that with a lower Tc, we can choose the proper LCs to improve the thermal stability of the device. Based on these properties, we establish a thermal gradient to fabricate linear and concentric polarization rotators. The properties of both the polarization rotators have been examined in detail. The experimental results agree well with the simulated ones confirming that the LC alignment of the polarization rotators present a continual twist.
Our investigations also verify that the PVK can be dissolved in an isotropic LC. Because of the specific process involved, we name such a method as a particular thermally induced phase separation (TIPS). The fabricated sample presents highly scattering and can be switched to the transparent state by applying a voltage. Thus, the device can be used as an electrically controllable LC light shutter, which possesses numerous good features, such as low driving voltage, fast response, independent of polarization, and high contrast ratio (~300:1). Finally, based on the surface morphologies of these substrates, we find that the cause of the scattering state is due to the rough surface inducing random alignments of the LCs.
Finally, we find that the azo dye doped in a LC cell can be used to change the phase separation processes of the LCs and PVK films. Because of photo-induced thermal and photoisomerization effects resulting from the doped azo dye, the two effects can modulate the solubility and phase separation process between the DDLCs and PVK. Thus, we can control the scattering performance of the PVK film-based LC device with light intensity. Experimentally, it is found that the device can achieve several stable states with transmittance ranging from 0.1% to 41.2%. Moreover, the particular TIPS mentioned above can be used to reverse the stable states back to the original scattering state. Thus, the mechanism can be applied for uses as optically controllable LC displays or other devices having features of low power consumption and multi-stability.
論文目次 摘要 I
Abstract IV
Acknowledgement VII
Contents VIII
List of tables XIII
List of figures XIV
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Liquid crystals 3
1.2.1 History of liquid crystals 3
1.2.2 Category of liquid crystals 4
1.2.3 Physics of nematic liquid crystals 8
1.2.4 External influences on liquid crystals 16
1.2.5 LC alignment-Rubbing 20
1.3 Azo dyes 27
1.3.1 Photo-isomerization 27
1.3.2 Light-induced thermal effect 28
Chapter 2 Device relating theory 30
2.1 The transmissive modes of LC cell 30
2.1.1 Twisted nematic (TN) liquid crystals 30
2.1.2 Homogeneous alignment mode 33
2.1.3 Vertical alignment (VA) mode 35
2.1.4 Hybrid aligned nematic (HAN) mode 36
2.1.5 Axially-symmetry aligned mode 37
2.2 Organic polymers-Poly(N-vinylcarbazole) 40
2.2.1 Liquid crystal alignment based on the poly(N-vinylcarbazole) film 40
2.2.2 Relaxation and thermodynamics in polymers 42
2.2.3 Thermally-switched liquid crystal alignments based on the micro-Brownian motion 47
2.2.4 Photoconductivity of the poly(N-vinylcarbazole) 50
2.3 The scattering mode LC light shutters 52
2.3.1 The phase separation methods of PDLC 52
2.3.2 Scattering properties of liquid crystal/polymer composites 59
2.3.3 Light scattering-Orientational fluctuations 61
2.4 Photo-induced molecular reorientation 65
2.4.1 Jánossy Effect: Positive Torque 65
2.4.2 Gibbons’ model: Negative Torque 66
Chapter 3 Experiment preparations 68
3.1 Materials used 68
3.1.1 Liquid crystals 68
3.1.2 Organic polymer-Poly(N-vinylcarbazole) 70
3.1.3 Azo dye-Disperse red 1 (DR1) 71
3.2 Fabrications of samples 73
3.3 Analyzing tools 77
3.3.1 Polarized optical microscope (POM) 77
3.3.2 Atomic force microscopy (AFM) 78
3.3.3 Scanning electron microscope (SEM) 80
3.3.4 Alpha-step profilometer 81
3.3.5 Temperature controller 82
3.3.6 Thermal imager 83
Chapter 4 Alignment effects based on the poly(N-vinylcarbazole) film and its applications 86
4.1 Introduction 86
4.2 Radial LC alignment 88
4.2.1 Reviews of the axially symmetric LC alignment 88
4.2.2 Experiments 89
4.2.3 Results and discussions 91
4.3 Thermally-switched LC alignments 99
4.3.1 Reviews of the thermally-switched LC alignments 99
4.3.2 Experiments 100
4.3.3 Results and discussions 101
4.4 Conclusions 109
Chapter 5 Phase separation induced LC scattering based on the poly(N-vinylcarbazole) films 111
5.1 Particular thermally induced phase separation and its application 111
5.1.1 Reviews of the particular thermally induced phase separation 111
5.1.2 Experiments 112
5.1.3 Results and discussions 113
5.2 Optically controllable light scattering based on dye-doped liquid
crystals 125
5.2.1 Reviews of the optically controllable light scattering 125
5.2.2 Experiments 127
5.2.3 Results and discussions 128
5.3 Conclusions 141
Chapter 6 Conclusions and future works 143
6.1 Conclusions 143
6.2 Future works 147
References 149
List of publications 163
參考文獻 1. F. Reinitzer, “Beiträge zur Kenntniss des Cholesterins,” Monatshefte für Chemie/ Chemical Monthly 9, 421–441 (1888).
2. P. G. d. Gennes and J. Prost, “The physics of liquid crystals,” 2nd ed. (Oxford, New York) (1993).
3. E. B. Priestley, P. J. Wojtowicz, and P. Sheng, “Introduction to liquid crystals,” (Plenum Press, New York) (1975).
4. S. Chandrasekhar, “Liquid Crystals,” 2nd ed. (Cambridge University Press) (1992).
5. G. W. Gray, “Molecular Structure and the Properties of Liquid Crystals,” (Academic Press, New York) (1962).
6. D. W. Berreman and T. J. Scheffer, “Bragg Reflection of Light from Single-Domain Cholesteric Liquid-Crystal Films,” Phys. Rev. Lett. 25, 577–581 (1970).
7. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z.Genack, “Low threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998).
8. P. J. Collings and M. Hird, “Introduction to Liquid Crystals,” (Taylor & Francis, London) (1997).
9. A. Buka and W. H. de Jeu, “Diamagnetism and orientational order of nematic liquid crystals,” J. Physique 43, 361-367 (1982).
10. J. Żywucki and W. Kuczyński, “The Orientational Order in Nematic Liquid Crystals From Birefringence Measurements,” IEEE T. Dielect. EL. IN. 8, 512–515 (2001).
11. Shen Jen, Noel A. Clark, P. S. Pershan, and E. B. Priestley, “Polarized Raman scattering studies of orientational order in uniaxial liquid crystalline phases,” J. Chem. Phys. 66, 4635–4661 (1977).
12. R. K. Sarna, V. G. Bhide, and B. Bahadur, “Refractive Indices, Density and Order Parameter of Some Liquid Crystals,” Mol. Cryst. Liq. Cryst. 88, 65–79 (1982).
13. F. M. Leslie, Continuum theory for nematic liquid crystals, Continuum Mechanics and Thermodynamics 4, 167–175. (1992).
14. A. Yariv, “Optical Electronics in Modern Communications,” 5th Ed. (Oxford University Press, New York) (1997).
15. B. Bahadur, “Liquid Crystals-Application and Uses,” (World Scientific Publishing, Singapore) (1990).
16. I. C. Khoo and S. T. Wu, “Optics and Nonlinear Optics of Liquid Crystals,” (World Scientific Publishing, Singapore) (1993).
17. C. Mauguin, “On the liquid crystals of Lehmann,” Bull. Soc. Fr. Mineral. 34, 71–117 (1911).
18. K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto, “Alignment Technologies and Applications of Liquid Crystal Devices,” (Taylor&Francis, London) (2005).
19. D. W. Berreman, “Alignment of Liquid Crystals by Grooved Surfaces,” Mol. Cryst. Liq. Cryst. 23, 215–231 (1973).
20. J. M. Geary, J.W. Goodby, A. R. Kmetz, and J. S. Patel, “The mechanism of polymer alignment of liquid‐crystal materials,” J. Appl. Phys. 62, 4100–4108 (1987).
21. E. S. Lee,Y. Saito and T. Uchida, “Detailed Morphology of Rubbed Alignment Layers and Surface Anchoring of Liquid Crystals,” Jpn. J. Appl. Phys. 32, L1822–L1825 (1993).
22. N. A. J. M. van Aerle, M. Barmentlo, and R.W. J. Hollering, “Effect of rubbing on the molecular orientation within polyimide orienting layers of liquid‐crystal displays,” J. Appl. Phys. 74, 3111–3120 (1993).
23. A. D. McNaught, A. Wilkinson, and International Union of Pure and Applied Chemistry., “Compendium of chemical terminology : IUPAC recommendations,” 2nd ed. (Oxford, New York) (1997).
24. W. Y. Y. Wong, T. M. Wong, and H. Hiraoka, “Polymer segmental alignment in polarized pulsed laser-induced periodic surface structures,” Appl. Phys. A 65, 519–523 (1997).
25. A. G. Chen and D. J. Brady, “Real-time holography in azo-dye-doped liquid crystals,” Opt. Lett. 17, 441–443 (1992).
26. C. T. Wang, H. C. Jau, and T. H. Lin, “Optically controllable bistable reflective liquid crystal display,” Opt. Lett. 37, 2370–2372 (2012).
27. N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett. 93, 113901 (2004).
28. C. K. Liu, W. L. Huang, Andy Y. G. Fuh, and K. T. Cheng, “Binary cholesteric/blue-phase liquid crystal textures fabricated using phototunable chirality in azo chiral-doped cholesteric liquid crystals,” J. Appl. Phys. 111, 103114 (2012)
29. P. Chaudhari, J. A. Lacey, S. C. A. Lien, and J. Speidell, “Atomic Beam Alignment of Liquid Crystals,” Jpn. J. Appl. Phys. 37, L55–L56 (1998).
30. J. L. Janning, “Thin film surface orientation for liquid crystals,” Appl. Phys. Lett. 21, 173–174 (1972).
31. Z. Ge and S. T. Wu, “Transflective Liquid Crystal Displays,” (Wiley, New York) (2010).
32. J. Cognard, “Alignment of nematic liquid crystals and their mixtures,” (Gordon and Breach Science Publishers, New York) (1982).
33.P. Yeh and C. Gu, “Optics of Liquid Crystal Displays,” (John Wiley & Sons, Inc., London) (1998).
34. S. T. Wu and D. K. Yang, “Reflective Liquid Crystal Displays,” (John Wiley & Sons, Inc. Ltd., Chichester) (2001).
35. C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ≤90 degrees,” J. Phys. D: Appl. Phys. 8, 1575–1584 (1975).
36. Y. Ito, R. Matsubara, R. Nakamura, M. Nagai, S. Nakamura, H. Mori, and K. Mihayashi, “OCB-WV film for fast-response-time and wide-viewingangle LCD-TVs,” SID Tech. Digest, 36, 986–989 (2005).
37. D. K. Yang and S. T. Wu, “Fundamentals of Liquid Crystal Devices,” (John Wiley & Sons, London) (2006).
38. J. Chen, K. H. Kim, J. J. Jyu, J. H. Souk, J. R. Kelly, and P. J. Bos, “Optimum Film Compensation Modes for TN and VA LCDS,” SID Symposium Digest of Technical Papers. 29, 315–318 (1998).
39. A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multidomain vertical alignment LCD by new rubbing-less technology,” SID Tech. Digest, 29, 1077–1080 (1998).
40. S. Matsumoto, M. Kawamoto, and K. Mizunoya, “Field-induced deformation of hybrid-aligned nematic liquid crystals: new multicolor liquid crystal display,” J. Appl. Phys. 47, 3842–3845 (1976).
41. K. Hosaki, T.Uesaka, S. Nishimura, and H. Mazaki, “Comparison of viewing angle performance of TN-LCD and ECB-LCD using hybrid-aligned nematic compensators,” SID Tech. Digest. 37, 721–724 (2006).
42. S. H. Lee, K. H. Park, J. S. Gwag, T. H. Yoon, and J. C. Kim, “A multimode-type transflective liquid crystal display using the hybrid-aligned nematic and parallel-rubbed vertically aligned modes,” Jpn. J Appl. Phys., Part I, 42, 5127–5132 (2003).
43. W. Z. Chen, Y. T. Tsai, and T. H. Lin, “Single-cell-gap transflective liquid-crystal display based on photo- and nanoparticle-induced alignment effects,” Opt. Lett. 34, 2545–2547 (2009).
44. K. Hosaki, T. Uesaka, S. Nishimura, and H. Mazaki, “Comparison of viewing angle performance of TN-LCD and ECB-LCD using hybrid-aligned nematic compensators,” SID Tech. Digest 37, 721–724 (2006).
45. C. K. Liu, C. L. Ting, M. S. Li, Andy Y. G. Fuh, and K. T. Cheng, “Optical simulation of axially symmetrical vertically aligned liquid crystal displays with circularly symmetric iso-contrast,” J. Display Tech. 7, 520–525 (2011).
46. Y. D. Chen, Andy Y. G. Fuh, C. K. Liu, and K. T. Cheng, “Radial liquid crystal alignment based on circular rubbing of a substrate coated with poly(N-vinyl carbazole) film”, J. Phys. D: Appl. Phys. 44, 215304 (2011).
47. S. W. Ko, T. H. Lin, H. C. Jau, S. C. Chu, Y. H. Huang, Y. Y. Chen, and Andy Y. G. Fuh, “Electrical Control of shape of laser beam using axially symmetric liquid crystal cells,” Appl. Opt. 51, 1540–1545 (2012).
48. R. L. Eriksen, V. R. Daria, and J. Glückstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express, 10, 597–602 (2002).
49. R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Japan. J. Appl. Phys. 28, 1730–1731 (1989).
50. I. Nishiyama, N. Yoshida, Y. Otani, and N. Umeda, “Direct Alignment of Liquid Crystal Molecules Using an Atomic Force Microscope,” Japan. J. Appl. Phys. 46, 729–731 (2007).
51. Y. Y. Tzeng, S. W. Ke, C. L. Ting, Andy Y. G. Fuh, and T. H. Lin, “Axially symmetric polarization converters based on photo-aligned liquid crystal films,” Opt. Express 16, 3768–3775 (2008).
52. Y. H. Wu, Y. H. Lin, H. Ren, X. Nie, J. H. Lee, and S. T. Wu, “Axially-symmetric sheared polymer network liquid crystals,” Opt. Express 13, 4638–4644 (2005).
53. H. Ren, Y. H. Lin, and S. T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett. 89, 051114 (2006).
54. M. Murayama, J. M. Howe, H. Hidaka, and S. Takaki, “Atomic-Level Observation of Disclination Dipoles in Mechanically Milled, Nanocrystalline Fe,” Science 29, 2433–2435 (2002).
55. http://dept.kent.edu/spie/liquidcrystals/textures1.html.
56. A. Saupe, “Disclinations and Properties of the Directorfield in Nematic and Cholesteric Liquid Crystals,” Mol. Cryst. Liquid Cryst. 21, 211–238 (1973).
57. N. V. Madhusudana and K. R. Sumathy, “Nematic Droplets With a New Structure,” Mol. Cryst. Liquid Cryst. 92, 179–185 (1983).
58. M. Kaczmarek and A. Dyadyusha, “Structured, photosensitive PVK and PVCN polymer layers for control of liquid crystal alignment,” J. Nonlinear Opt. Phys. Mater. 12, 547–555 (2003).
59. R. Bittner, “Basic Investigations on PVK-based Photorefractive Polymers Focussing on their Applicability as Mass Data Storage Media,” Kolin University, Germany (2003).
60. J. M. Pochan, D. F. Hinman, and R. Nash, “Dielectric relaxation studies of poly(Nvinylcarbazole) and poly(3chloroNvinylcarbazole) including the effects of sorbed oxygen,” J. Appl. Phys. 46, 4115–4119 (1975).
61. G. Giro, P.G. Di Marco, M. Pizzoli, and G. Ceccorulli, “Detection of polymer thermal transitions by excimer fluorescence, poly-n-vinylcarbazole,” Chem. Phys. Lett. 150, 159–164 (1988).
62. K. Nakajima, H. Wakemoto, S. Sato, F. Yokotani, S. Ishihara, and Y. Matsuo, “Polystyrene derivative films for liquid crystal alignment,” Mol. Cryst. Liq. Cryst. 180, 223–232 (1990).
63. Y. D. Chen, K. T. Cheng, C. K. Liu, and A. Y. G. Fuh, “Polarization rotators fabricated by thermally-switched liquid crystal alignments based on rubbed poly(N-vinyl carbazole) films,” Opt. Express 19, 7553–7558 (2011).
64. L. A. DeWerd and P. R. Moran, “Solid-state electrophotography with Al2O3,” Medical Physics 5, 23–26 (1978).
65. L. Kock-Yee, “Organic photoconductive materials: recent trends and developments,” Chem. Rev. 93, 449–486 (1993).
66. J. M. Pearson, “Vinylcarbazole polymers,” in Encyclopedia of Polymer Science and Engineering (Wiley, New York) (1989).
67. W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997).
68. Q. D. Ling, S. L. Lim, Y. Song, C. X. Zhu, D. S. H. Chan, E. T. Kang, and K. G. Neoh, “Nonvolatile Polymer Memory Device Based on Bistable Electrical Switching in a Thin Film of Poly(N-vinylcarbazole) with Covalently Bonded C60,” Langmuir, 23, 312–319 (2007).
69. D. K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett. 60, 3102–3104 (1992).
70. S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths,” Opt. Express 17, 11926–11934 (2009).
71. K. T. Cheng, C. K. Liu, C. L. Ting, and A. Y. G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express 15, 14078–14085 (2007).
72. J. W. Doane, “Polymer dispersed liquid crystal displays; Liquid crystals, applications and uses,” (World Scientific, Singapore) (1990).
73. R. A. M. Hikmet, “Electrically induced light scattering from anisotropic gels,” J. Appl. Phys. 68, 4406–4412 (1990).
74. R. A. M. Hikmet, “Electrically Induced Light Scattering from Anisotropic Gels with Negative Dielectric Anisotropy,” Mol. Cryst. Liq. Cryst. 213, 117–131 (1992).
75. R. Bao, C. M. Liu, and D. K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 2, 112401 (2009).
76. J. L Fergason, “Polymer encapsulated nematic liquid crystals for scattering and light control applications,” SID Intnl. Symp. Digest Tech. Papers 16, 68–70 (1985).
77. J. L. West, “Phase separation of liquid crystals in polymers,” Mol. Cryst. Liq. Cryst. 157, 427–441 (1988).
78. Y. Hirai, S. Niiyama, H. Kumai, and T. Gunjima, “Phase diagram and phase separation in LC/prepolymer mixture,” Proc. SPIE 1257, 2–8 (1990).
79. C. Kittel and H. Kroemer, “Thermal Physics,” (W. H. Freeman and Company, California) (1980).
80. G. Brown and A. Chakrabarti, “Phase separation dynamics in off-critical polymer blends,” J. Chem. Phys. 98, 2451–2458 (1993).
81. O. Olabisi, L. M. Robeson, and M. T. Shaw, “Polymer–Polymer Miscibility,” (Academic Press, London) (1978).
82. P. J. Flory, “Thermodynamics of high polymer solutions,” J. Chem. Phys. 10, 51–61 (1942).
83. M. L. Huggins, “Thermodynamic properties of solutions of long-chain compounds,” Ann. New York Acad. Sci. 43, 1–32 (1942).
84. C. Amra, “From light scattering to the microstructure of thin-film multilayers,” Appl. Optics 32, 5481–5491 (1993).
85. A. Duparre and S. Kassam, “Relation between light scattering and the microstructure of optical thin films,” Appl. Optics 32, 5475–5480 (1993).
86. P. Chatelain, “Étude théorique de la diffusion de la lumière par un fluide présentant un seul axe d'isotropie: application aux cristaux liquides du type nématique,” Acta Cryst. 4, 453–457 (1951).
87. P. G. de Gennes, “Nematic fluctuations and light scattering,” C. R. Acad. Sci. Paris 266, 15–28 (1968).
88. P. K. Challa, O. Curtiss, J. C. Williams, R. Twieg, J. Toth, S. McGill, A. Jakli, J. T. Gleeson, and S. N. Sprunt, “Light scattering from liquid crystal director fluctuations in steady magnetic fields up to 25 tesla,” Phys. Rev. E 86, 011708 (2012).
89. I. Jánossy, A. D. Lloyd, and B. S. Wherrett, “Anomalous optical Fréedericksz transition in an absorbing liquid-crystal,” Mol. Cryst. Liq. Cryst. 179, 1–12 (1990).
90. I. Jánossy and A. D. Lloyd, “Low-power optical reorientation in dyed nematics,” Mol. Cryst. Liq. Cryst. 203, 77–84 (1991).
91. I. Jánossy, L. Csillag, and A. D. Lloyd, “Temperature dependence of the optical Fréedericksz transition in dyed nematic liquid crystals,” Phys. Rev. A 44, 8410–8413, (1991).
92. I. Jánossy, “Molecular interpretation of the absorption-induced optical reorientation of nematic liquid crystals,” Phys. Rev. E 49, 2957–2963 (1994).
93. Dennis Gabor, “A New Microscopic Principle,” Nature 161, 777–778 (1948).
94. H. C. Lin, “Studies of Nonlinear Optical Properties of Azo-Dye-Doped Liquid Crystal Films Using Biphotonic Z-scan Technique,” National Cheng Kung University, Taiwan, R.O.C (2008).
95. K. M. Lang, D. A. Hite, R. W. Simmonds, R. McDermott, D. P. Pappas, and J. M. Martinis, “Conducting atomic force microscopy for nanoscale tunnel barrier characterization,” Review of Scientific Instruments 75, 2726–2731 (2004).
96. K. Max, “Aufladepotentiel und Sekundäremission elektronenbestrahlter Körper,” Zeitschrift für technische Physik 16, 467–475 (1935).
97. M. von Ardenne, “Das Elektronen-Rastermikroskop. Theoretische Grundlagen,” (in German).Zeitschrift für Physik 109, 553–572 (1938). .
98. M. von Ardenne, “Das Elektronen-Rastermikroskop. Praktische Ausführung,” (in German).Zeitschrift für technische Physik 19, 407–416 (1938).
99. M. von Ardenne, “Improvements in electron microscopes,” GB 511204, convention date (Germany) (1937).
100. http://www.geminibv.nl/labware/linkam-scientific-pe94-temperature-controller?set_language=en
101. http://www.irisys.co.uk/thermal-imaging/ir4010-themal-camera/
102. S. Y. Huang, T. C. Wung, A. Y. G. Fuh, H. C. Yeh, C. M. Ma, T. S. Mo, and C. R. Lee, “Electro- and photo-controllable spatial filter based on a liquid crystal film with a photoconductive layer,” Appl. Phys. B 97, 749–752 (2009).
103. C. Y. Huang, J. M. Ma, T. S. Mo, K. Y. Lo, S. Y. Huang, and C. R. Lee, “All-optical and polarization-independent spatial filter based on a vertically-aligned polymer stabilized liquid crystal film with a photoconductive layer,” Opt. Express 17, 22386–22392 (2009).
104. A. Golemme, B. Kippelen, and N. Peyghambarian, “Highly efficient photorefractive polymer-dispersed liquid crystals,” Appl. Phys. Lett. 73, 2408–2410 (1998).
105. Y. D. Chen, K. T. Cheng, C. K. Liu, and A. Y. G. Fuh, “Polarization rotators fabricated by thermally-switched liquid crystal alignments based on rubbed poly(N-vinyl carbazole) films,” Opt. Express 19, 7553–7558 (2011).
106. S. W. Ko, S. H. Huang, Andy Y. G. Fuh, and T. H. Lin, “Measurement of helical twisting power based on axially symmetrical photo-alignment using a dye-doped liquid crystal film,” Opt. Express 17, 15926–15931 (2009).
107. J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75, 859–861 (1999).
108. R. Yamaguchi, T. Nose, and S. Sato, “Liquid Crystal Polarizers with Axially Symmetrical Properties,” Japan. J. Appl. Phys. 28, 1730–1731 (1989).
109. I. Nishiyama, N. Yoshida, Y. Otani, and N. Umeda, “Direct Alignment of Liquid Crystal Molecules Using an Atomic Force Microscope,” Japan. J. Appl. Phys. 46, 729–731 (2007).
110. Y. Wang, “Photoconductivity of fullerene-doped polymers,” Nature 356, 585–587 (1992).
111. V. Freedericksz and V. Zolina, “Forces causing the orientation of an anisotropic liquid,” Trans. Faraday Soc. 29, 919–930 (1933).
112. H. Ren and S. T. Wu, “Liquid-crystal-based linear polarization rotator,” Appl. Phys. Lett. 90, 121123 (2007).
113. I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
114. P. S. Drzaic, “Liquid Crystal Dispersion,” (World Scientific, Singapore) (1995).
115. H. Ren, S. T. Wu, and Y. H. Lin, “In Situ Observation of Fringing-Field-Induced Phase Separation in a Liquid-Crystal–Monomer Mixture,” Phys. Rev. Lett. 100, 117801 (2008).
116. Y. H. Lin, H. Ren, and S. T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett. 84, 4083–4085 (2004).
117. L. Dierking, L. L. Kosbar, A. A. Ardakani, A. C. Lowe, and G. A. Held, “Two-stage switching behavior of polymer stabilized cholesteric textures,” J. Appl. Phys. 81, 3007–3014 (1997).
118. Y. D. Chen, Andy Y. G. Fuh, and K. T. Cheng, “Particular thermally induced phase separation of liquid crystal and poly(N-vinyl carbazole) films and its application,” Opt. Express 20, 16777–16784 (2012).
119. J. M. Jin, K. Parbhakar, and L. H. Dao, “Thermally induced phase separation of a liquid crystal in a polymer under microgravity: comparison with simulations,” Langmuir 12, 2096–2099 (1996).
120. L. Song, W. K. Lee, and X. Wang, “AC electric field assisted photo-induced high efficiency orientational diffractive grating in nematic liquid crystals,” Opt. Express 14, 2197–2202 (2006).
121. X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “AC electric field assisted orientational photorefractive effect in C60-doped nematic liquid crystal,” J. Phys. D: Appl. Phys. 40, 3348–3351 (2007).
122. M. S. Li, A. Y. G. Fuh, and S. T. Wu, “Optical switch of diffractive light from a BCT photonic crystal based on HPDLC doped with azo component,” Opt. Lett. 36, 3864–3866 (2011).
123. S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett. 88, 041104 (2006).
124. Y. D. Chen, Andy Y. G. Fuh, and K. T. Cheng, “Optically and thermally controllable light scattering based on dye-doped liquid crystals in poly(N-vinylcarbazole) films-coated liquid crystal cell,” Opt. Express 20, 26252–26260 (2012).
125. S. Y. Huang, T. C. Tung, C. L. Ting, H. C. Jau, M. S. Li, H. K. Hsu, and A. Y. G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl Phys B 104, 93–97 (2011).
126. Y. C. Hsiao, C. T. Hou, V. Y. Zyryanov, and W. Lee, “Multichannel photonic devices based on tristable polymer-stabilized cholesteric textures,” Opt. Express 19, 23952–23957 (2011).
127. S. A. Jewell, J. R. Sambles J. W. Goodby, A. W. Hall, and S. J. Cowling, “Optical waveguide characterization of a tristable antiferroelectric liquid crystal cell,” J. Appl. Phys. 95, 2246–2249 (2004).
128. J. H. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature 420, 159–162 (2002).
129. A. Y. G. Fuh, J. T. Chiang, Y. S. Chien, C. J. Chang, and H. C. Lin, “Multistable phase-retardation plate based on gelator-doped liquid crystals,” Appl. Phys. Express 5, 072503 (2012).
130. S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88, 251113 (2006).
131. A. Namdar and H. Tajalli, “Photoinduced dichroism in the films of DSR1-doped PMMA polymer,” Laser Phys. 14, 1520–1523 (2004).
132. N. Böhm, A. Materny, H. Steins, M. M. Müller, and G. Schottner, “Optically induced dichroism and birefringence of disperse red 1 in hybrid polymers,” Macromolecules 31, 4265–4271 (1998).
133. P. D. Garcia, R. Sapienza, L. S. Froufe-Perez, and C. Lopez, “Strong dispersive effects in the light-scattering mean free path in photonic gaps,” Phys. Rev. B 79, 241109 (2009).
134. P. O. Bussiere, A. Rivaton, S. Therias, and J. L. Gardette, “Multiscale Investigation of the Poly(N-vinylcarbazole) Photoageing Mechanism,” J. Phys. Chem. B 116, 802–812 (2011).
135. D. S. Seo and S. Kobayashi, “Effect of high pretilt angle for anchoring strength in nematic liquid crystal on rubbed polyimide surface containing trifluoromethyl moieties,” Appl. Phys. Lett. 66, 1202–1204 (1995).
136. K. T. Cheng, C. R. Lee, and Andy Y. G. Fuh, “Dynamics of biphotonic intensity holographic gratings based on dye-doped liquid crystal films,” Liquid Crystals 34, 95–100 (2007).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-12-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-12-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw