進階搜尋


下載電子全文  
系統識別號 U0026-0211201302340700
論文名稱(中文) 無線寬頻存取網路上以效能為導向的資料遞送之研究
論文名稱(英文) Study of Performance-Driven Data Delivery over Broadband Wireless Access Networks
校院名稱 成功大學
系所名稱(中) 電腦與通信工程研究所
系所名稱(英) Institute of Computer & Communication
學年度 102
學期 1
出版年 102
研究生(中文) 余佳育
研究生(英文) Chia-Yu Yu
學號 Q38941137
學位類別 博士
語文別 英文
論文頁數 110頁
口試委員 指導教授-謝錫堃
口試委員-曾黎明
口試委員-黃文祥
口試委員-黃悅民
口試委員-楊竹星
口試委員-陳俊良
口試委員-周立德
口試委員-林志敏
中文關鍵字 寬頻無線存取  全球互通微波存取  資料遞送  視頻傳輸  需求/答允 
英文關鍵字 BWA  WiMAX  Data Delivery  Video Transmission  Request-Grant 
學科別分類
中文摘要 因為全球互通微波存取網路的傳輸資源是有限的,為了有效率的使用傳輸資源,全球互通微波存取網路使用適應性調變與編碼技術,然而,當在全球互通微波存取的視頻群播中使用適應性調變與編碼技術時,視頻品質及頻寬使用效率會存在一個權衡。因為視頻品質對於視頻群播是很重要的,所以傳統上都會使用最強健的方式來確保所有用戶都能夠獲得完整的視頻品質,但是這種方式卻不顧及網路的頻寬使用效率,因此非適應性群播機制被使用來改進在全球互通微波存取網路上視頻群播的頻寬使用效率,但因其只根據視頻資料的重要性並沒有根據網路狀態來決定調變方式,因此只獲得一個次佳的效能表現。
因此,我們提出了一個被稱作以效能為導向的強健視頻群播的機制來解決上面所提及的問題,以效能為導向的強健視頻群播結合了適應性群播以及前向糾錯機制,在此機制中,基地台會把視頻資料根據重要性來分類,並且根據網路狀態來決定不同視頻資料的調變方式以及前向糾錯機制的比率,而為了求得這些參數,視頻品質及頻寬使用效率的數學分析模型也在這篇博士論文中被推導出,而後,藉著我們所發展的MyEvalvid_RTP網路模擬器驗證所推導出的數學分析模型及評估其效能,結果顯示數學分析模型是很精確的,而且也顯示出以效能為導向的強健視頻群播機制的確能夠確保在全球互通微波存取網路的視頻群播中,在大部分的用戶都會有好的視頻品質情況下,還能夠盡力的去改善網路的頻寬使用效率。
而全球互通微波存取網路為了避免傳輸時產生碰撞,因此採用需求/答允機制來分配傳輸資源以有效率地使用傳輸資源,有些論文針對頻寬要求時槽數目進行研究,但卻沒考慮到頻寬要求時槽數目的使用效率,因此浪費了傳輸時槽,也因而讓基地台沒法很精確的來分配傳輸資源而降低頻寬使用效率,此外,當談到有關要求時槽數目的研究時,大部分研究均假設每個SS只會有一個連線,對於寬頻存取網路而言,這是不切實際的,因此為了符合實際需求及提高頻寬要求時槽的使用效率,我們也提出了以效能為導向的頻寬要求機制,藉ON-OFF模型來分析連線的行為並藉以提高頻寬要求時槽的使用效率而達到更有效率的使用傳輸資源,以效能為導向的頻寬要求機制會根據網路狀態來選擇適合的頻寬要求方法及分配適合的頻寬要求時槽數目,而我們也以數學方式分析了頻寬要求時槽的使用效率,最後藉由模擬的方式來評估分析的正確性及其效能,結果顯示數學分析是精確的且以效能為導向的頻寬要求機制可以提高頻寬要求時槽的使用效率。
在這篇博士論文中,我們提出了兩個方法來提高全球互通微波存取網路傳輸資源的使用效率,以效能為導向的強健視頻群播能夠確保視頻群播時,在大部分的用戶都會有好的視頻品質情況下,還能夠盡力的去改善網路的頻寬使用效率。而以效能為導向的頻寬要求機制則可以提高頻寬要求時槽的使用效率,因而提高網路頻寬的使用效率,藉著這兩個機制,全球互通微波存取網路上的傳輸資源可以更加有效率的被使用,藉以容納更多的用戶。
英文摘要 Because transmission resources are limited in WiMAX networks, Adaptive Modulation and Coding (AMC) is employed to utilize transmission resources efficiently. However, when AMC is employed in video multicast, a tradeoff exists between the video quality and the bandwidth utilization efficiency. Because video quality is very important for video multicast, the most robust modulation scheme is conventionally employed to ensure that all SSs are able to acquire full video quality without regard to bandwidth utilization efficiency. Non-adaptive multicast is proposed to improve the bandwidth utilization efficiency, but it decides modulation scheme in accordance with the importance of the data without regard to network status and thus a sub-optimal transmission performance is obtained.
In this dissertation, a scheme, called Performance-Driven Robust Video Multicast (PDRVM), is proposed to address these problems. PDRVM combines adaptive multicast and Forward Error Correction (FEC). In PDRVM, the BS would classify all video traffic into several types of traffic with different levels of importance and then adaptively decide modulation scheme and FEC ratio based on network status. To acquire these parameters, the video quality and bandwidth utilization efficiency are analyzed mathematically. MyEvalvid_RTP is used to verify the mathematical analyses and evaluate the performance of PDRVM. From results, it is shown that the mathematical analyses are very precise and PDRVM is able to improve bandwidth utilization efficiency as much as possible while the average video quality is good simultaneously for video multicast over WiMAX networks.
To avoid traffic collision and utilize transmission resources efficiently, WiMAX employs request-grant scheme to allocate transmission resources. Some studies propose the number of BR slots without regard to the utilization efficiency of the BR slots and result in low bandwidth utilization efficiency. When it comes to the number of BR slots, studies usually assume that each SS has only one connection. It is unrealistic over WiMAX networks. To address the problems, Efficiency-Driven Selection of Bandwidth Request (EDSBR) is proposed in this dissertation. The number of active connections is analyzed based on ON-OFF model. Then EDSBR would select the mechanism to request bandwidth and the number of BR slots adaptively in accordance with the mathematical analysis. Simulations are conducted to verify the analysis and evaluate the performance of EDSBR. From results, it is shown that the mathematical analysis is precise and EDSBR is able to improve the utilization efficiency of the BR slots.
In this dissertation, two schemes are proposed to improve the bandwidth utilization efficiency in WiMAX. By these two schemes, WiMAX network is able to utilize transmission resources efficiently and thus each WiMAX network is able to serve more SSs.
論文目次 Abstract I
摘要 III
誌謝 V
Contents VI
Figures VIII
Tables XI
Chapter 1 Introduction 1
1.1 Introduction of Wireless Networks and IPTV 1
1.2 Motivation 7
1.3 Organization of The Dissertation 11
Chapter 2 Background 12
2.1 IEEE 802.16 (WiMAX) 12
2.2 MPEG 22
2.3 Error Recovery Mechanisms 24
Chapter 3 Related Works 26
3.1 Video Delivery 26
3.1.1 Scheme for Video Delivery 26
3.1.2 Simulation for Video Delivery 31
3.2 BW-Request Delivery 35
Chapter 4 Performance-Driven Robust Video Multicast 37
4.1 Multicast for Video Transmission over WiMAX Networks 37
4.2 The Mathematical Analyses 39
4.2.1 Bandwidth Utilization Efficiency 41
4.2.2 Video Quality 44
4.3 Algorithm 50
4.4 MyEvalvid_RTP 55
Chapter 5 Efficiency-Driven Selection of Bandwidth Request 57
5.1 The Mathematical Analysis for The Utilization Efficiency of The BR Slots 57
5.2 Algorithm 63
Chapter 6 Results and Discussions 65
6.1 Simulation Model 65
6.2 Verification of Mathematical Analyses of PDRVM 68
6.3 Performance Evaluation of PDRVM 74
6.4 Verification of Mathematical Analysis of EDSBR 90
6.5 Performance Evaluation of EDSBR 94
Chapter 7 Conclusions and Future Work 100
7.1 Conclusions 100
7.2 Future Work 103
Bibliography 105
參考文獻 [1] “IEEE Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications”, IEEE Std. 802.11, Pages 1-457, 1997.
[2] B.P. Crow; I. Widjaja; J. G. Kim; P. T. Sakai, “IEEE 802.11 Wireless Local Area Networks”, in IEEE Communications Magazine, Volume 35, Issue 9, Pages 116-126, 1997.
[3] Infonetics Research, http://www.infonetics.com/, 2013.

[4] Youtube, http://www.youtube.com/, 2013.
[5] Netflix, http://www.netflix.com, 2013.
[6] W. Honcharenko; J. P. Kruys; D. Y. Lee; N. J. Shah, “Broadband wireless access”, in IEEE Communications Magazine, Volume 35, Issue 1, Pages 20-26, 1997.
[7] H. Matsue; S. Kubota; H. Hojo; K. Watanabe; T. Saito; S. Aikawa; A. Sato, “Future systems and technologies for broadband wireless access services”, in IEEE Topical Conference on Wireless Communication Technology, Pages 156-157, 2003.
[8] B. Bing, “Broadband Wireless Access-The Next Wireless Revolution”, in Proceedings of the 4th Annual Communication Networks and Services Research Conference, Pages 14, 2006.
[9] “IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems”, IEEE Std. 802.16-2004, Pages 1-857, 2004.
[10] “IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1”, IEEE Std. 802.16e-2005, Pages 1-822, 2005.
[11] G. S. Chu; D. Wang; S. Mei, “A QoS architecture for the MAC protocol of IEEE 802.16 BWA system”, in IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions, Volume 1, Pages 435-439, 2002.
[12] D. H. Cho; J. H. Song; M. S. Kim; K. J. Han, “Performance analysis of the IEEE 802.16 wireless metropolitan area network”, in First International Conference on Distributed Frameworks for Multimedia Applications, Pages 130-136, 2005.
[13] Z. Saffer; S. Andreev, “Delay analysis of IEEE 802.16 wireless metropolitan area network”, in International Conference on Telecommunications, Pages 1-5, 2008.
[14] J. She; F. Hou; P. H. Ho; L. L. Xie, “IPTV over WiMAX: Key Success Factors, Challenges, and Solutions [Advances in Mobile Multimedia]”, in IEEE Communications Magazine, Volume 45, Issue 8, Pages 87-93, 2007.
[15] F. E. Retnasothie; M. K. Ozdemir; T. Yucek; H. Celebi; J. Zhang; R. Muththaiah, “Wireless IPTV over WiMAX: Challenges and Applications”, in IEEE Annual Wireless and Microwave Technology Conference, Pages 1-5, 2006.
[16] Yankee Group, http://www.yankeegroup.com/home.do, 2013.
[17] Cisco VNI Mobile, http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html, 2013.
[18] “IEEE Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements”, IEEE Std. 802.11e-2005, Pages 1-189, 2005.
[19] A. N. Netravali; B. G. Haskell, "Digital Pictures: Representation, Compression and Standards", 2nd Edition, Springer, 1995.
[20] J. She; X. Yu; F. Hou; P. H. Ho; E. H. Yang, “A Framework of Cross-Layer Superposition Coded Multicast for Robust IPTV Services over WiMAX”, in IEEE Wireless Communications and Networking Conference, Pages 3139-3144, 2008.
[21] J. She; X. Yu; P. H. Ho; E. H. Yang, “A cross-layer design framework for robust IPTV services over IEEE 802.16 networks”, in IEEE Journal on Selected Areas in Communications, Volume 27, Issue 2, Pages 235-245, 2009.
[22] C. K. Shieh; C. Y. Yu; C. H. Lin; C. H. Ke, “Performance-Driven Robust Video Multicast over Broadband Wireless Access Networks”, in Journal of High Speed Networks, 2013.
[23] C. Y. Yu; C. H. Ke; R. S. Chen; C. K. Shieh; B. Munir; N. Chilamkurti, “MyEvalvid_RTP: a New Simulation Tool-set toward More Realistic Simulation”, in International Journal of Software Engineering and Its Applications, Volume 2, No. 2, Pages 21-32, 2008.
[24] S. M. Oh; J. H. Kim, “The analysis of the optimal contention period for broadband wireless access network”, in IEEE International Conference on Pervasive Computing and Communications Workshops, Pages 215-219, 2005.
[25] W. Lu; W. Jia; W. Du; L. Lin, “A Base Station-Coordinated Contention Resolution for IEEE 802.16 PMP Networks”, in International Conference on Ubiquitous Intelligence and Computing, Pages 605-614, 2006.
[26] C. K. Shieh; C. Y. Yu; C. H. Lin; J. Morris Chang, “Efficiency-driven selection of bandwidth request mechanism in broadband wireless access networks“, in Computer Networks, 2013.
[27] Y. Yang; A. Arcia-Moret; N. Montavont; D. Ros, “On the Impact of IEEE 802.16 Bandwidth Request-Grant Mechanisms on TCP”, in IEEE Global Telecommunications Conference, Pages 1-6, 2010.
[28] F. Yin; G. Pujolle, “Efficient Polling Mechanism in WiMAX Network”, in IEEE Wireless Communications and Networking Conference, Pages 1-6, 2009.
[29] A. Vinel; Y. Zhang; M. Lott; A. Tiurlikov, “Performance Analysis of the Random Access in IEEE 802.16”, in IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, Volume 3, Pages 1596-1600, 2005.
[30] N. Golmie; Y. Saintillan; D. H. Su, “A review of contention resolution algorithms for IEEE 802.14 networks”, in IEEE Communications Surveys & Tutorials, Volume 2, Issue 1, Pages 2-12, 1999.
[31] J. Delicado; Q. Ni; F. M. Delicado; L. Orozco-Barbosa, “New Contention Resolution Schemes for WiMAX”, in IEEE Wireless Communications and Networking Conference, Pages 1-6, 2009.
[32] B. J. Kwak; N. O. Song; L. E. Miller, “Performance analysis of exponential backoff”, in IEEE/ACM Transactions on Networking, Volume 13, Issue 2, Pages 343-355, 2005.
[33] T. Jiang; W. Xiang; H. H. Chen; Q. Ni, “Multicast Broadcast Services Support in OFDMA-Based WiMAX Systems [Advances in Mobile Multimedia]”, in IEEE Communications Magazine, Volume 45, Issue 8, Pages 78-86, 2007.
[34] P. N. Tudor, “MPEG-2 video compression”, in Electronics & Communication Engineering Journal, Volume 7, Issue 6, Pages 257-264, 1995.
[35] J. Naoum-Sawaya; B. Ghaddar; S. Khawam; H. Safa; H. Artail; Z. Dawy, “Adaptive approach for QoS support in IEEE 802.11e wireless LAN”, in IEEE International Conference on Wireless And Mobile Computing, Networking And Communications, Volume 2, Pages 167-173, 2005.
[36] H. Liu; Y. Zhao, “Adaptive EDCA Algorithm Using Video Prediction for Multimedia IEEE 802.11e WLAN”, in International Conference on Wireless and Mobile Communications, Pages 10, 2006.
[37] M. Chatterjee; S. Sengupta; S. Ganguly, “Feedback-based real-time streaming over WiMax”, in IEEE Wireless Communications, Volume 14, Issue 1, Pages 64-71, 2007.
[38] M. Pereira; M. Antonini; M. Barlaud, “Multiple description coding for Internet video streaming”, in International Conference on Image Processing, Volume 2, Pages 281-284, 2003.
[39] Video traffic trace files, http://trace.eas.asu.edu/, 2013.
[40] T. Betchaku; N. Sato; H. Murakami, “Subjective evaluation methods of facsimile image quality”, in IEEE International Conference on Communications, Volume 2, Pages 966-970, 1993.
[41] NS2 simulator, http://www.isi.edu/nsnam/ns/, 2013.
[42] J. Klaue; B. Rathke; A. Wolisz, "EvalVid - A Framework for Video Transmission and Quality Evaluation", in Proc. of the 13th International Conference on Modelling Techniques and Tools for Computer Performance Evaluation, 2003.
[43] C. H. Lin; C. K. Shieh; N. K. Chilamkurti; C. H. Ke; W. S. Hwang, “A RED-FEC Mechanism for Video Transmission Over WLANs”, in IEEE Transactions on Broadcasting, Volume 54, Issue 3, Pages 517-524, 2008.
[44] C. H. Lin; C. K. Shieh; W. S. Hwang, “An Access Point-Based FEC Mechanism for Video Transmission Over Wireless LANs”, in IEEE Transactions on Multimedia Volume 15, Issue 1, Pages 195-206, 2013.
[45] VLC, http://www.videolan.org/vlc/, 2013.
[46] RTPtools, http://www.cs.columbia.edu/IRT/software/rtptools/, 2013.
[47] J. W. Ding; S. Y. Tseng; Y. M. Huang, “Packet Permutation: A Robust Transmission Technique for Continuous Media Streaming Over the Internet”, in Multimedia Tools and Applications, Volume 21, Issue 3, Pages 281-305, 2003.
[48] Q. Li; R. Q. Hu; Y. Qian; G. Wu, “Cooperative communications for wireless networks: techniques and applications in LTE-advanced systems”, in IEEE Wireless Communications, Volume 19, Issue 2, 2012.
[49] C. Zhang; S. L. Ariyavisitakul; M. Tao, “LTE-advanced and 4G wireless communications”, in IEEE Communications Magazine, Volume 50 , Issue 2, Pages 102-103, 2012.
[50] S. D. Muruganathan; W. A. Krzymien; A. B. Sesay, “A Null-Subcarrier-Aided Reference Symbol Mapping Scheme for 3GPP LTE Downlink in High-Mobility Scenarios”, in IEEE Transactions on Vehicular Technology, Volume 61, Issue 2, Pages 624-638, 2012.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-11-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-11-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw