進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0209201916431100
論文名稱(中文) 製程參數對射出成型長玻纖複合材料之纖維長度、纖維排向、氣泡及拉伸強度之影響
論文名稱(英文) Effects of Process Parameters on Fiber Length, Fiber Orientation, Air Trap and Tensile Strength of Injection-Molded Long-Glass-Fiber-Reinforced Polypropylene
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 彭裕康
研究生(英文) Yu-Kang Peng
學號 N16061024
學位類別 碩士
語文別 中文
論文頁數 105頁
口試委員 指導教授-黃聖杰
口試委員-李輝煌
口試委員-彭信舒
口試委員-朱孝業
中文關鍵字 長纖維複合材料  製程參數  纖維長度  纖維排向  氣泡  射出成型 
英文關鍵字 long-fiber-reinforced thermoplastics  process parameters  fiber length  fiber orientation  air trap  injection molding 
學科別分類
中文摘要 在熱塑性塑膠材料射出成型製程中,為了加強產品機械性質,往往會在塑膠原料內添加纖維,使其具有強度高與重量輕等優點,此材料可以被用來取代部分傳統金屬零件。但因射出成型過程中纖維極易在塑化過程中被折斷,因此在射出熱塑性長纖補強複合材料時如何保持纖維不斷裂是個很重要的課題。本研究團隊已成功開發出新型長纖維補強塑膠射出成型機,其成品纖維長度比市面上射出成型的纖維複合材料來得長,機械性質也因此大幅提升。然而熔膠及纖維在射入模穴時的流動行為不易被觀察與預測,其流動行為會因材料流變特性、產品幾何形狀、加工設備種類與加工條件等不同而有所不同。因此,本研究經由所設計的兩組不同熔膠流動路徑,配合具有漸縮漸擴幾何形狀之拉伸試片來觀察與瞭解成品在成型後的纖維長度、排向、分散性、含纖量和氣泡等重要性質,藉由本團隊新發展的研磨後掃描取像的方法,得到內部一層層的研磨影像後再利用影像處理軟體Avizo做疊層,完成一個3D的模型並進行纖維長度、排向、含纖量及氣泡量分析。另外,本研究也探討研磨掃描取像與CT scan兩種方法對長纖補強複材影像分析結果的差異性,也驗證研磨掃描取像方法結果的正確性。此外,由於射出成型纖維補強複合材料之材料性質極易受到加工參數的影響,本研究探討長纖複材射出成型過程中,背壓、螺桿轉速及熔膠溫度三種製程參數對纖維長度、排向、分散性、纖維含量及氣泡含量的關係,進而觀察這些成型參數對拉伸強度的影響。由實驗結果得知增加背壓及螺桿轉速會提升射出螺桿熔膠剪切率,造成纖維斷裂情形較為嚴重,然而可同時提高熔膠內部壓力及其混煉性,進而降低成品氣泡含量。提升熔膠溫度亦有助於含纖維熔膠的流動性,增加材料的分散性,避免纖維分散不佳的狀況發生。另外,為了提升熔膠與纖維的混煉性,並驗證提升剪切率可減少氣泡的產生,本研究成功開發出具有barrier waving混煉元件之螺桿,並與原螺桿進行比較,經實驗及分析後驗證了新式螺桿在混煉性方面有所提升,且纖維斷裂情形不嚴重,可減少工件成型過程中氣泡的產生。最後,欲探討在不同工件厚度中纖維的流動情形,在研究中設計一副可以改變肋之厚度的模具,分析纖維在不同肋厚度下的纖維長度、纖維排向及纖維含量。
英文摘要 Long-fiber-reinforced thermoplastics (LFRTs) provide better mechanical performance than their short-fiber-reinforced counterparts. However, it is not an easy job to injection molding LFRTs since the fibers would be damaged when the LFRTs material is moving through a plastication screw. Besides that, fibers are also possible to be damaged when polymer melt moving through mold cavities because of gate, runner or cavity designs. Thus, maintaining long fiber during injection molding process is a challenge job.
This research used a novel design of LFRTs injection molding machine which was developed to have the capability to injection molding LFRTs and maintain fiber length during the molding process. However, it was found that besides machine and cavity design, different molding process parameters would also affect the fiber length, fiber orientation, air trap and mechanical properties of LFRTs parts. Thus, this paper is intended to study the influence of key processing parameters such as back pressure, screw speed, and melt temperature of injection molded LFRTs parts on their mechanical properties. Image processing technics such as optical microscope and CT scan were used to identify the fiber length, fiber orientation and air traps etc. Tensile material test system was used to measure the tensile strength of the parts. Different melt paths were designed to count the influence of cavity design on the mechanical performance of the parts. The results showed that high screw speed and back pressure could damage and shorten the fiber length in the injection molded parts. Higher melt temperature would decrease the viscosity of the polymer melt and increase fluidity thus better the mechanical performance of the parts. It was also found that parts at different mold cavity locations would exhibit different mechanical properties. Although the prediction of the mechanical properties of LFRTs parts is a complicated job, the results obtained from this research can provide a guidance for future development of LFRTs parts.
論文目次 摘要 I
Extended Abstract III
致謝 XXXII
目錄 XXXIII
表目錄 XXXVII
圖目錄 XXXVIII
符號說明 XLIV
第一章 緒論 1
1-1 前言 1
1-2 研究動機與方法 2
1-3 文獻回顧 3
1-4 論文架構 5
第二章 理論背景 7
2-1 射出成型製程簡介 7
2-2 纖維補強結構簡介 9
2-2-1 纖維排向 10
2-2-2 纖維長度 15
2-2-3 纖維含量 16
2-3 射出成型參數簡介 17
第三章 實驗設備及使用方法 20
3-1 材料 20
3-2 射出成型設備 20
3-2-1 長纖射出成型機 20
3-2-2 模具設計 23
3-3 研磨設備 25
3-3-1 鑲埋 25
3-3-2 研磨機 27
3-4 取像設備 29
3-4-1 顯微掃描機 29
3-4-2 影像拼接軟體 31
3-5 Avizo軟體 33
第四章 研磨影像 35
4-1 研磨影像位置 35
4-2 研磨影像圖特徵 37
4-3 實驗參數設定 39
4-4 研磨影像圖觀察與比較 41
4-4-1 不同位置之研磨圖比較 41
4-4-2 背壓改變之研磨圖比較 44
4-4-3 螺桿轉速改變之研磨圖比較 46
4-4-4 熔膠溫度改變之研磨圖比較 47
第五章 分析結果與討論 49
5-1 纖維長度分析結果 49
5-2 纖維排向分析結果 52
5-3 纖維含量分析結果 56
5-4 氣泡分析結果 58
5-5 拉伸強度分析結果 59
5-5-1 背壓與拉伸強度之關係 60
5-5-2 螺桿轉速與拉伸強度之關係 61
5-5-3 熔膠溫度與拉伸強度之關係 62
5-6 研磨影像與CT scan影像分析結果比較 63
5-7 具有barrier waving混煉元件之螺桿 74
5-8 肋度變化模具分析 83
第六章 結論與未來展望 92
6-1 結論 92
6-2 未來展望 96
參考文獻 98
索引 102

參考文獻 [1] Mariana D. Reale Batista, Lawrence T. Drzal, Alper Kiziltas, and Deborah Mielewski, “Hybrid cellulose-inorganic reinforcement polypropylene composites: Lightweight materials for automotive applications,” SPE ANTEC, Anaheim, California, USA, 2017.
[2] Eric Wollan, “Up engineering thermoplastics using glass and carbon fiber reinforcement,” Appliance Design, pp. 23-25, 2015.
[3] F. Folgar and C. L. Tucker III, “Orientation behavior of fibers in concentrated suspensions,” Journal of Reinforced Plastics and Composites, vol. 3, no. 2, pp. 98-119, 1984.
[4] S. G. Advani and C. L. Tucker III, “The use of tensors to describe and predict fiber orientation in short fiber composites,” Journal of Rheology, vol. 31, no. 8, pp. 751-784, 1987.
[5] R. S. Bay and C. L. Tucker III, “Fiber orientation in simple injection moldings. Part I: Theory and numerical methods,” Polymer Composites, vol. 13, no. 4, pp. 317-331, 1992.
[6] R. S. Bay and C. L. Tucker III, “Fiber orientation in simple injection moldings. Part II: Experimental results,” Polymer Composites, vol. 13, no. 4, pp. 332-341, 1992.
[7] S. G. Advani and C. L. Tucker III, “Closure approximations for three‐dimensional structure tensors,” Journal of Rheology, vol. 34, no. 3, pp. 367-386, 1990.
[8] R. S. Bay and C. L. Tucker III, “Stereological measurement and error estimates for three-dimensional fiber orientation,” Polymer Engineering & Science, vol. 32, no. 4, pp. 240-253, 1992.
[9] Yong Lee, Seok Lee, Jae Youn, Kwansoo Chung, and Tae Kang, “Characterization of fiber orientation in short fiber reinforced composites with an image processing technique,” Materials Research Innovations, vol. 6, issue 2, pp. 65-72, 2002.
[10] Suhara Panthapulakkal and Mohini Sain, “Injection-molded short hemp fiber/glass fiber-reinforced polypropylene hybrid composites—mechanical, water absorption and thermal properties,” Applied Polymer Science, vol. 103, issue 4, pp. 2432-2441, 2006.
[11] Fauzani Md. Salleh, Aziz Hassan, Rosiyah Yahya, and Ahmad Danial Azzahari, “Effects of extrusion temperature on the rheological, dynamic mechanical and tensile properties of kenaf fiber/HDPE composites,” Composites: Part B, vol. 58, pp. 259-266, 2014.
[12] Wenlong Tian, Lehua Qi, Jiming Zhou, and Juntao Guan, “Effects of the fiber orientation and fiber aspect ratio on the tensile strength of Csf/Mg composites,” Computational Materials Science, vol. 89, pp. 6-11, 2014.
[13] Po-Wei Huang, Hsin-Shu Peng, Sheng-Jye Hwang, Chao-Tsai Huang, Po-Chih Chen, Yi-Yu Ke, Pei-Sheng Pan, Chih-Che Wu, and Chun-I Tu, “Study of the effect of process parameters on fiber length, fiber orientation and tensile strength of long glass fiber reinforced polypropylene molding,” SPE ANTEC, Detroit, Michigan, USA, 2019.
[14] Gui-Yang Lu, Yao Li, and Guang-Ye Xu, “Study on influence of injection process on long glass fiber reinforced PP,” Engineering Plastics Application, vol. 40, no. 7, pp. 46-49, 2012.
[15] Ulku Yilmazer and Murat Cansever, “Effects of processing conditions on the fiber length distribution and mechanical properties of glass fiber reinforced nylon-6,” Polymer Composites, vol. 23, issue 1, pp. 61-71, 2002.
[16] E. Lafranche and P. Krawczak, “Injection moulding of long glass fibre reinforced thermoplastics (LFT): Structure/processing conditions/mechanical properties relationship,” ESAFORM, Glasgow, UK, 2006.
[17] Jan Teuwsen, “Impact of the process-induced microstructure on the mechanical performance of injection molded long glass fiber reinforced polypropylene,” SPE ANTEC, Anaheim, California, USA, 2017, pp. 626-635.
[18] Rahul Aditya, Observation of Fiber Orientation in Injection Molded Long-Fiber Reinforced Composites, Master’s Thesis, Department of Mechanical Engineering, National Cheng Kung University, January, 2018.
[19] C. R. Chiang, “A statistical theory of the tensile strength of short-fiber-reinforced composites,” Composites Science and Technology, vol. 50, issue 4, pp. 479-482, 1994.
[20] 張榮語, Ed. 射出成型模具設計-操作實務 (CAE-MOLD系列叢書). 高立圖書有限公司, 1998.
[21] D. V. Rosato and M. G. Rosato, Injection Molding Handbook. Springer Science & Business Media, 2012.
[22] S. G. Advani and E. M. Sozer, Process Modeling in Composites Manufacturing. CRC Press, 2002.
[23] S. Kenig, “Fiber orientation development in molding of polymer composites,” Polymer Composites, vol. 7, no. 1, pp. 50-55, 1986.
[24] S. Goris, U. Gandhi, Y. Y. Song, and T. A. Osswald, “Analysis of the process-induced microstructure in injection molding of long glass fiber-reinforced thermoplastics,” in ANTEC 2016 Conference Proceedings, 2016.
[25] R. Von Turkovich and L. Erwin, “Fiber fracture in reinforced thermoplastic processing,” Polymer Engineering & Science, vol. 23, no. 13, pp. 743-749, 1983.
[26] L. Mondy, H. Brenner, S. Altobelli, J. Abbott, and A. Graham, “Shear‐induced particle migration in suspensions of rods,” Journal of Rheology, vol. 38, no. 2, pp. 444-452, 1994.
[27] Xiang-Lan Peng, Study of the Orientation and Breakage History of Fibers through Runner and Cavity in Injection Molded Reinforced Thermoplastics, Master’s Thesis, Department of Mechanical Engineering, National Cheng Kung University, July, 2017.
[28] Yan-Ming Lan, Development of a Long-Fiber-Composite Polisher with Automatic Thickness Detection and Force Control, Master’s Thesis, Department of Mechanical Engineering, National Cheng Kung University, July, 2018.
[29] E. Lafranche, P. Krawczak, J. Ciolczyk, and J. Maugey, “Injection moulding of long glass fibre reinforced polyamide 6-6: guidelines to improve flexural properties,” Express Polymer Letters, vol. 1, no. 7, pp. 456-466, 2007.
[30] Jiri Vlcek, Luke Miller, and C. T. Huang, “Simulation of screws for injection molding,” SPE ATCE, New Orleans, Louisana, USA, 2009.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-06-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-06-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw