進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0209201620181500
論文名稱(中文) 利用定域化表面電漿共振生物感測器檢測細胞生長
論文名稱(英文) Cell growth detection using a localized surface plasmon resonance sensor
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 104
學期 2
出版年 105
研究生(中文) 鍾德泓
研究生(英文) Tak-Wang Chong
學號 L76014132
學位類別 碩士
語文別 中文
論文頁數 66頁
口試委員 指導教授-林俊宏
口試委員-張雯惠
口試委員-廖國智
口試委員-邱逸淳
口試委員-黃志嘉
中文關鍵字 定域化表面電漿共振  奈米壓印  細胞培養  細胞存活率分析 
英文關鍵字 Localized surface plasmon resonance  Nano-imprint  Cell culture  MTT assay 
學科別分類
中文摘要 細胞培養技術在生物技術領域中已經被廣泛應用。根據細胞的生長特性,動物細胞的生長能分成貼附型(Adherent)細胞或懸浮型(Suspension)細胞。一般而言,大部分的固體組織的細胞都是屬於貼附型。貼附型細胞是必需要附著在細胞培養容器的表面上來進行增殖和匯合(Confluent)。當細胞培養的密度達到最大值時,必須要繼代培養(Subcultured)。未能繼代培養的細胞即會減少有絲分裂指數(Mitotic index),最終使得細胞死亡。相反,如果過早的繼代培養將會導致有較長的遲緩時間(Lag time)。在傳統上,繼代培養的時間應該為細胞生長密度達75 % ~ 100 %。然而,此密度難以被量化,並隨著觀察者不同而有所變化。在隨著長時間的細胞培養過程中,沒有適當的繼代培養時間將改變細胞的生長,形態和遺傳特性等不利影響。因此,本實驗希望能開發出一種生物感測器來即時檢測合適的繼代培養的時間點。於本實驗中,我們利用氣體輔助UV壓印及舉離(Lift-off)製作金屬點陣列結構來進行細胞培養。基於定域化表面電漿共振(Localized surface plasmon resonance, LSPR)原理,藉由結構周圍的環境介質的變化使LSPR的頻譜訊號產生改變來即時檢測細胞的生長。
最後,本研究成功利用LSPR感測器來進行細胞生長的監測。並觀察到細胞增殖至死亡時的LSPR波長會有變化。進一步利用細胞存活率分析(MTT)證明頻譜的變化與細胞生長的關係。這種光學感測方法具有低成本、快速、即時、高靈敏度和無標記等優點,是一種有用的細胞即時監測技術。
英文摘要 Cell culture technology has found wide application in the field of biotechnology. Depending on their origin, animal cells grow either as an adherent monolayer or in suspension. Most cells derived from solid tissues are adherent. Adherent cells are anchorage-dependent and propagate as a monolayer attached to the cell culture vessel. This attachment is essential for proliferation.
When cells reach confluence, they must be subcultured or passaged. Failure to subculture confluent cells results in reduced mitotic index and eventually cell death. By contrast, passaging cells too early will result in a longer lag time. Traditionally, cultures should be 75% to 100% confluent when selected for subculture. However, the definition of confluence is difficult to be quantified and varies from the observer. Cells in culture will undergo changes in growth, morphology, and genetic characteristics over time. Such changes can adversely affect reproducibility of laboratory results.
Therefore, to develop a real-time biosensor to monitor the suitable time-point for subculture is necessary. An optical sensor based on localized surface plasmon resonance (LSPR) has low-cost, rapid, real-time, high sensitivity and label-free of advantages. The sensing principle relies on the LSPR spectral shifts caused by the surrounding dielectric environmental change in a binding event
In conclusion, cell growth monitoring was successfully achieved by using a LSPR sensor. The cell growth condition can be detected instantly from a spectral extinction measurement. This optical sensing approach, which is non-destructive, rapid, label-free, and real-time, can be a powerful method for in-situ monitoring the cell condition.
論文目次 摘要 I
誌謝 VIII
目錄 IX
表目錄 XI
圖目錄 XII
第一章 諸論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文架構 2
第二章 文獻回顧 4
2.1 奈米壓印微影術 4
2.2 表面電漿共振 4
2.2.1 傳播型表面電漿共振 5
2.2.2 區域型表面電漿共振 6
2.3 生物感測器 7
2.3.1 生物感測器之發展 8
2.3.2 表面電漿共振於生物感測器的應用 10
第三章 研究方法 21
3.1 金奈米點陣列感測器之製作 21
3.1.1 實驗材料 21
3.1.2 實驗設備 22
3.1.3 實驗流程 22
3.1.3.1 氣壓式奈米壓印 22
3.1.3.2 熱退火處理 24
3.2 光學量測系統 25
3.2.1 機台架構 25
3.2.2 感測器之靈敏度量測 25
3.3 細胞培養 25
3.3.1 實驗材料 26
3.3.2 實驗設備 27
3.3.3 細胞培養溶液之製備 27
3.3.4 樣品之預處理 27
3.3.5 不同細胞密度之培養 28
3.4 LSPR即時量測細胞生長曲線 29
3.5 細胞存活率分析 — MTT assay 29
3.5.1 實驗材料 29
3.5.2 實驗設備 30
3.5.3 實驗步驟 30
第四章 結果與討論 34
4.1金奈米點陣列結構 34
4.1.1奈米壓印製作週期性孔洞陣列 34
4.1.2 氣體輔助蝕刻製作底切結構 36
4.1.3 蒸鍍及舉離形成金奈米點陣列 36
4.1.4 熱退火處理 37
4.2 感測器之靈敏度量測 38
4.3 不同細胞濃度之培養 38
4.4 LSPR即時量測細胞生長曲線 40
4.5 細胞存活率分析—MTT assay 41
第五章 實驗總結與未來展望 56
5.1 實驗總結 56
5.2 未來展望 56
參考文獻 58

參考文獻 1. J. Zhang, T. Atay, and A. V. Nurmikko, "Optical detection of brain cell activity using plasmonic gold nanoparticles," Nano letters 9, 519-524 (2009).
2. V. Lioubimov, A. Kolomenskii, A. Mershin, D. V. Nanopoulos, and H. A. Schuessler, "Effect of varying electric potential on surface-plasmon resonance sensing," Applied optics 43, 3426-3432 (2004).
3. S. A. Kim, K. M. Byun, J. Lee, J. H. Kim, D.-G. A. Kim, H. Baac, M. L. Shuler, and S. J. Kim, "Optical measurement of neural activity using surface plasmon resonance," Optics letters 33, 914-916 (2008).
4. Y. Zhang, D. S. Bindra, M.-B. Barrau, and G. S. Wilson, "Application of cell culture toxicity tests to the development of implantable biosensors," Biosensors and Bioelectronics 6, 653-661 (1991).
5. A. J. Haes and R. P. Van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," Journal of the American Chemical Society 124, 10596-10604 (2002).
6. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors and Actuators B: Chemical 54, 3-15 (1999).
7. K. M. Mayer and J. H. Hafner, "Localized surface plasmon resonance sensors," Chemical reviews 111, 3828-3857 (2011).
8. A. J. Haes and R. P. V. Duyne, "Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics," Expert review of molecular diagnostics 4, 527-537 (2004).
9. A. J. Haes and R. P. Van Duyne, "A unified view of propagating and localized surface plasmon resonance biosensors," Analytical and bioanalytical chemistry 379, 920-930 (2004).
10. S. Hirst, "Airway smooth muscle cell culture: application to studies of airway wall remodelling and phenotype plasticity in asthma," European Respiratory Journal 9, 808-820 (1996).
11. B. D. Lindenbach, M. J. Evans, A. J. Syder, B. Wölk, T. L. Tellinghuisen, C. C. Liu, T. Maruyama, R. O. Hynes, D. R. Burton, and J. A. McKeating, "Complete replication of hepatitis C virus in cell culture," Science 309, 623-626 (2005).
12. D. Vollenbroich, G. Pauli, M. Ozel, and J. Vater, "Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis," Applied and Environmental Microbiology 63, 44-49 (1997).
59
13. S. Dolci, D. E. Williams, M. K. Ernst, J. L. Resnick, C. I. Brannan, L. F. Lock, S. D. Lyman, H. S. Boswell, and P. J. Donovan, "Requirement for mast cell growth factor for primordial germ cell survival in culture," Nature 352, 809-811 (1991).
14. R. K. Sharma, W. E. Orr, A. D. Schmitt, and D. A. Johnson, "A functional profile of gene expression in ARPE-19 cells," BMC ophthalmology 5, 1 (2005).
15. L. A. Greene and A. S. Tischler, "Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor," Proceedings of the National Academy of Sciences 73, 2424-2428 (1976).
16. D. W. Barnes, "Epidermal growth factor inhibits growth of A431 human epidermoid carcinoma in serum-free cell culture," The Journal of cell biology 93, 1-4 (1982).
17. S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, "Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating," Nanotechnology 21, 295303 (2010).
18. H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. Kim, and P. Nealey, "Sub-50 nm period patterns with EUV interference lithography," Microelectronic Engineering 67, 56-62 (2003).
19. Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, "Unconventional methods for fabricating and patterning nanostructures," Chemical reviews 99, 1823-1848 (1999).
20. S. Ahn, S. Kim, and H. Jeon, "Single-defect photonic crystal cavity laser fabricated by a combination of laser holography and focused ion beam lithography," Applied Physics Letters 96, 131101 (2010).
21. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint lithography with 25-nanometer resolution," Science 272, 85 (1996).
22. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," Journal of Vacuum Science & Technology B 14, 4129-4133 (1996).
23. S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, "Sub-10 nm imprint lithography and applications," Journal of Vacuum Science & Technology B 15, 2897-2904 (1997).
24. A. M. Munshi, D. L. Dheeraj, V. T. Fauske, D.-C. Kim, J. Huh, J. F. Reinertsen, L. Ahtapodov, K. Lee, B. Heidari, and A. Van Helvoort, "Position-controlled uniform GaAs nanowires on silicon using nanoimprint lithography," Nano letters 14, 960-966 (2014).
25. Y. Yang, K. Mielczarek, A. Zakhidov, and W. Hu, "Efficient low bandgap polymer solar cell with ordered heterojunction defined by nanoimprint lithography," ACS applied materials & interfaces 6, 19282-19287 (2014).
26. M. Leitgeb, D. Nees, S. Ruttloff, U. Palfinger, J. Götz, R. Liska, M. R. Belegratis, and B. Stadlober, "Multilength Scale Patterning of Functional Layers by Roll-to-Roll Ultraviolet-Light-Assisted Nanoimprint Lithography," ACS nano (2016).
60
27. C. Wang, J. Shao, H. Tian, X. Li, Y. Ding, and B. Q. Li, "Step-Controllable Electric-Field-Assisted Nanoimprint Lithography for Uneven Large-Area Substrates," ACS nano 10, 4354-4363 (2016).
28. H.-J. Choi, S. Choo, J.-H. Shin, K.-I. Kim, and H. Lee, "Fabrication of superhydrophobic and oleophobic surfaces with overhang structure by reverse nanoimprint lithography," The Journal of Physical Chemistry C 117, 24354-24359 (2013).
29. R. Wood, "XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 4, 396-402 (1902).
30. U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves)," JOSA 31, 213-222 (1941).
31. A. Hessel and A. Oliner, "A new theory of Wood’s anomalies on optical gratings," Applied Optics 4, 1275-1297 (1965).
32. E. Kretschmann and H. Raether, "Notizen: radiative decay of non radiative surface plasmons excited by light," Zeitschrift für Naturforschung A 23, 2135-2136 (1968).
33. A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik 216, 398-410 (1968).
34. I. Pockrand, J. Swalen, J. Gordon, and M. Philpott, "Surface plasmon spectroscopy of organic monolayer assemblies," Surface Science 74, 237-244 (1978).
35. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
36. J. Gordon and S. Ernst, "Surface plasmons as a probe of the electrochemical interface," Surface Science 101, 499-506 (1980).
37. G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Annalen der physik 330, 377-445 (1908).
38. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment," The Journal of Physical Chemistry B 107, 668-677 (2003).
39. E. A. Coronado, E. R. Encina, and F. D. Stefani, "Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale," Nanoscale 3, 4042-4059 (2011).
40. T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, "Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles," The Journal of Physical Chemistry B 103, 9846-9853 (1999).
41. L. C. Clark and C. Lyons, "Electrode systems for continuous monitoring in cardiovascular surgery," Annals of the New York Academy of sciences 102, 29-45 (1962).
61
42. S. Updike and G. Hicks, "The enzyme electrode," Nature 214, 986-988 (1967).
43. A. E. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. J. Aston, I. J. Higgins, E. V. Plotkin, L. D. Scott, and A. P. Turner, "Ferrocene-mediated enzyme electrode for amperometric determination of glucose," Analytical chemistry 56, 667-671 (1984).
44. G. Nagy, M. E. Rice, and R. N. Adams, "A new type of enzyme electrode: the ascorbic acid eliminator electrode," Life Sciences 31, 2611-2616 (1982).
45. G. G. Guilbault and J. G. Montalvo Jr, "Urea-specific enzyme electrode," Journal of the American Chemical Society 91, 2164-2165 (1969).
46. P. Bergveld, "Development of an ion-sensitive solid-state device for neurophysiological measurements," IEEE Transactions on Biomedical Engineering 1, 70-71 (1970).
47. P. Bergveld, "Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology," Biomedical Engineering, IEEE Transactions on, 342-351 (1972).
48. C.-S. Lee, S. K. Kim, and M. Kim, "Ion-sensitive field-effect transistor for biological sensing," Sensors 9, 7111-7131 (2009).
49. M. Yuqing, G. Jianguo, and C. Jianrong, "Ion sensitive field effect transducer-based biosensors," Biotechnology advances 21, 527-534 (2003).
50. J. Bausells, J. Carrabina, A. Errachid, and A. Merlos, "Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology," Sensors and Actuators B: Chemical 57, 56-62 (1999).
51. M. Hajmirzaheydarali, M. Akbari, A. Shahsafi, S. Soleimani-Amiri, M. Sadeghipari, S. Mohajerzadeh, A. Samaeian, and M. Malboobi, "Ultrahigh Sensitivity DNA Detection Using Nano-rods Incorporated ISFETs."
52. A. Senillou, N. Jaffrezic-Renault, C. Martelet, and S. Cosnier, "A miniaturized urea sensor based on the integration of both ammonium based urea enzyme field effect transistor and a reference field effect transistor in a single chip," Talanta 50, 219-226 (1999).
53. J. Kimura, N. Ito, T. Kuriyama, M. Kikuchi, T. Arai, N. Negishi, and Y. Tomita, "A novel blood glucose monitoring method an ISFET biosensor applied to transcutaneous effusion fluid," Journal of The Electrochemical Society 136, 1744-1747 (1989).
54. A. B. Kharitonov, M. Zayats, A. Lichtenstein, E. Katz, and I. Willner, "Enzyme monolayer-functionalized field-effect transistors for biosensor applications," Sensors and Actuators B: Chemical 70, 222-231 (2000).
55. A. Shons, F. Dorman, and J. Najarian, "An immunospecific microbalance," Journal of biomedical materials research 6, 565-570 (1972).
56. P. L. Konash and G. J. Bastiaans, "Piezoelectric crystals as detectors in liquid chromatography," Analytical chemistry 52, 1929-1931 (1980).
62
57. T. Nomura, "Single-drop method for determination of cyanide in solution with a piezoelectric quartz crystal," Analytica Chimica Acta 124, 81-84 (1981).
58. T. Nomura, F. Tanaka, T. Yamada, and H. Itoh, "Electrodeless piezoelectric quartz crystal and its behaviour in solutions," Analytica chimica acta 243, 273-278 (1991).
59. G. G. Guilbault, "Biosensors," Current opinion in biotechnology 2, 3-8 (1991).
60. R. L. Bunde, E. J. Jarvi, and J. J. Rosentreter, "Piezoelectric quartz crystal biosensors," Talanta 46, 1223-1236 (1998).
61. B. König and M. Grätzel, "Detection of human T-lymphocytes with a piezoelectric immunosensor," Analytica chimica acta 281, 13-18 (1993).
62. C. Fredriksson, S. Kihlman, M. Rodahl, and B. Kasemo, "The piezoelectric quartz crystal mass and dissipation sensor: a means of studying cell adhesion," Langmuir 14, 248-251 (1998).
63. E. Prusak-Sochaczewski, J. Luong, and G. Guilbault, "Development of a piezoelectric immunosensor for the detection of Salmonella typhimurium," Enzyme and microbial technology 12, 173-177 (1990).
64. C. Nylander, B. Liedberg, and T. Lind, "Gas detection by means of surface plasmon resonance," Sensors and Actuators 3, 79-88 (1982).
65. B. Liedberg, C. Nylander, and I. Lunström, "Surface plasmon resonance for gas detection and biosensing," Sensors and actuators 4, 299-304 (1983).
66. B. Liedberg, C. Nylander, and I. Lundström, "Biosensing with surface plasmon resonance—how it all started," Biosensors and Bioelectronics 10, i-ix (1995).
67. M. Ordal, L. Long, R. Bell, S. Bell, R. Bell, R. Alexander, and C. Ward, "Optical properties of the metals al, co, cu, au, fe, pb, ni, pd, pt, ag, ti, and w in the infrared and far infrared," Applied Optics 22, 1099-1119 (1983).
68. I. Lundström, "Real-time biospecific interaction analysis," Biosensors and Bioelectronics 9, 725-736 (1994).
69. H. N. Daghestani and B. W. Day, "Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors," Sensors 10, 9630-9646 (2010).
70. D. R. Mernagh, P. Janscak, K. Firman, and G. G. Kneale, "Protein-Protein and Protein-DNA Interactions in the Type I. Restriction Endonuclease R. EcoR124I," Biological chemistry 379, 497-504 (1998).
71. J. Homola, "Present and future of surface plasmon resonance biosensors," Analytical and bioanalytical chemistry 377, 528-539 (2003).
72. F. Yu, S. Tian, D. Yao, and W. Knoll, "Surface plasmon enhanced diffraction for label-free biosensing," Analytical chemistry 76, 3530-3535 (2004).
63
73. D. Cullen, R. Brown, and C. Lowe, "Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings," Biosensors 3, 211-225 (1988).
74. K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, and H. Ming, "Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity," Optics express 16, 18599-18604 (2008).
75. D. Cullen and C. Lowe, "A direct surface plasmon—polariton immunosensor: Preliminary investigation of the non-specific adsorption of serum components to the sensor interface," Sensors and Actuators B: Chemical 1, 576-579 (1990).
76. A. Brecht and G. Gauglitz, "Label free optical immunoprobes for pesticide detection," Analytica chimica acta 347, 219-233 (1997).
77. P. Sibille and A. D. Strosberg, "A FIV epitope defined by a phage peptide library screened with a monoclonal anti-FIV antibody," Immunology letters 59, 133-137 (1997).
78. J. S. Tung, J. Gimenez, C. T. Przysiecki, and G. Mark, "Characterization of recombinant hepatitis B surface antigen using surface plasmon resonance," Journal of pharmaceutical sciences 87, 76-80 (1998).
79. E. Kim, S. J. DeMarco, S. M. Marfatia, A. H. Chishti, M. Sheng, and E. E. Strehler, "Plasma membrane Ca2+ ATPase isoform 4b binds to membrane-associated guanylate kinase (MAGUK) proteins via their PDZ (PSD-95/Dlg/ZO-1) domains," Journal of Biological Chemistry 273, 1591-1595 (1998).
80. Y. Chen and H. Ming, "Review of surface plasmon resonance and localized surface plasmon resonance sensor," Photonic Sensors 2, 37-49 (2012).
81. R. Harris and J. S. Wilkinson, "Waveguide surface plasmon resonance sensors," Sensors and Actuators B: Chemical 29, 261-267 (1995).
82. J. Dostalek, J. Čtyroký, J. Homola, E. Brynda, M. Skalský, P. Nekvindova, J. Špirková, J. Škvor, and J. Schröfel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sensors and actuators B: Chemical 76, 8-12 (2001).
83. X. Chen, X. Yang, W. Zeng, and J. Wang, "Dynamic Mass Transfer of Hemoglobin at the Aqueous/Ionic-Liquid Interface Monitored with Liquid Core Optical Waveguide," Langmuir 31, 8379-8385 (2015).
84. K. Majer-Baranyi, N. Adányi, A. Nagy, O. Bukovskaya, I. Szendrő, and A. Székács, "Label-free immunosensor for monitoring vitellogenin as a biomarker for exogenous oestrogen compounds in amphibian species," International Journal of Environmental Analytical Chemistry 95, 481-493 (2015).
85. F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. Ramsden, M. Textor, N. Spencer, P. Tengvall, and J. Gold, "A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation," Colloids and Surfaces B: Biointerfaces 24, 155-170 (2002).
64
86. T.-H. Lee, D. J. Hirst, and M.-I. Aguilar, "New insights into the molecular mechanisms of biomembrane structural changes and interactions by optical biosensor technology," Biochimica et Biophysica Acta (BBA)-Biomembranes 1848, 1868-1885 (2015).
87. L. Fábián, A. Mathesz, and A. Dér, "New trends in biophotonics," Acta Biologica Szegediensis 59, 189-202 (2015).
88. L. M. Liz-Marzán, "Tailoring surface plasmons through the morphology and assembly of metal nanoparticles," Langmuir 22, 32-41 (2006).
89. A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, "A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer's disease," Nano Letters 4, 1029-1034 (2004).
90. W. P. Hall, S. N. Ngatia, and R. P. Van Duyne, "LSPR Biosensor Signal Enhancement Using Nanoparticle− Antibody Conjugates," The Journal of Physical Chemistry C 115, 1410-1414 (2011).
91. W. Zhou, Y. Ma, H. Yang, Y. Ding, and X. Luo, "A label-free biosensor based on silver nanoparticles array for clinical detection of serum p53 in head and neck squamous cell carcinoma," Int. J. nanomed 6, 381-386 (2011).
92. C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, "Gold nanoparticles in biology: beyond toxicity to cellular imaging," Accounts of chemical research 41, 1721-1730 (2008).
93. N. Nath and A. Chilkoti, "A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface," Analytical chemistry 74, 504-509 (2002).
94. N. Nath and A. Chilkoti, "Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size," Analytical Chemistry 76, 5370-5378 (2004).
95. F. Frederix, J.-M. Friedt, K.-H. Choi, W. Laureyn, A. Campitelli, D. Mondelaers, G. Maes, and G. Borghs, "Biosensing based on light absorption of nanoscaled gold and silver particles," Analytical Chemistry 75, 6894-6900 (2003).
96. K. Fujiwara, H. Watarai, H. Itoh, E. Nakahama, and N. Ogawa, "Measurement of antibody binding to protein immobilized on gold nanoparticles by localized surface plasmon spectroscopy," Analytical and bioanalytical chemistry 386, 639-644 (2006).
97. H.-H. Jeong, N. Erdene, J.-H. Park, D.-H. Jeong, H.-Y. Lee, and S.-K. Lee, "Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor," Biosensors and Bioelectronics 39, 346-351 (2013).
98. F. Liu, M. M.-K. Wong, S.-K. Chiu, H. Lin, J. C. Ho, and S. W. Pang, "Effects of nanoparticle size and cell type on high sensitivity cell detection using a localized surface plasmon resonance biosensor," Biosensors and Bioelectronics 55, 141-148 (2014).
99. A. H. Nguyen and S. J. Sim, "Nanoplasmonic biosensor: Detection and amplification of dual bio-signatures of circulating tumor DNA," Biosensors and Bioelectronics 67, 443-449 (2015).
65
100. S. M. Yoo, D.-K. Kim, and S. Y. Lee, "Aptamer-functionalized localized surface plasmon resonance sensor for the multiplexed detection of different bacterial species," Talanta 132, 112-117 (2015).
101. W. Hong, F. Liang, D. Schaak, M. Loncar, and Q. Quan, "Nanoscale Label-free Bioprobes to Detect Intracellular Proteins in Single Living Cells," Scientific reports 4(2014).
102. Y. Wang and L. Tang, "Multiplexed gold nanorod array biochip for multi-sample analysis," Biosensors and Bioelectronics 67, 18-24 (2015).
103. D.-Z. Lin, P.-C. Chuang, P.-C. Liao, J.-P. Chen, and Y.-F. Chen, "Increasing the spectral shifts in LSPR biosensing using DNA-functionalized gold nanorods in a competitive assay format for the detection of interferon-γ," Biosensors and Bioelectronics 81, 221-228 (2016).
104. Y. Li, Y. Zhang, M. Zhao, Q. Zhou, L. Wang, H. Wang, X. Wang, and L. Zhan, "A simple aptamer-functionalized gold nanorods based biosensor for the sensitive detection of MCF-7 breast cancer cells," Chemical Communications 52, 3959-3961 (2016).
105. S. K. Dondapati, T. K. Sau, C. Hrelescu, T. A. Klar, F. D. Stefani, and J. Feldmann, "Label-free biosensing based on single gold nanostars as plasmonic transducers," Acs Nano 4, 6318-6322 (2010).
106. S.-W. Lee, K.-S. Lee, J. Ahn, J.-J. Lee, M.-G. Kim, and Y.-B. Shin, "Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography," ACS nano 5, 897-904 (2011).
107. L. Soares, A. Csáki, J. Jatschka, W. Fritzsche, O. Flores, R. Franco, and E. Pereira, "Localized surface plasmon resonance (LSPR) biosensing using gold nanotriangles: detection of DNA hybridization events at room temperature," Analyst 139, 4964-4973 (2014).
108. Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, and X. Wang, "Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit," Nature communications 4(2013).
109. W. Li, X. Jiang, J. Xue, Z. Zhou, and J. Zhou, "Antibody modified gold nano-mushroom arrays for rapid detection of alpha-fetoprotein," Biosensors and Bioelectronics 68, 468-474 (2015).
110. C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, "Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection," Applied Physics Letters 100, 173114 (2012).
111. N. rae Jo, K. joong Lee, and Y.-B. Shin, "Enzyme-coupled nanoplasmonic biosensing of cancer markers in human serum," Biosensors and Bioelectronics 81, 324-333 (2016).
112. S. Zhu, H. Li, M. Yang, and S. W. Pang, "High sensitivity plasmonic biosensor based on nanoimprinted quasi 3D nanosquares for cell detection," Nanotechnology 27, 295101 (2016).
113. H.-C. Scheer, N. Bogdanski, M. Wissen, and S. Möllenbeck, "Impact of glass temperature for thermal nanoimprint," Journal of Vacuum Science & Technology B 25, 2392-2395 (2007).
66
114. J. Perumal, T. H. Yoon, H. S. Jang, J. J. Lee, and D. P. Kim, "Adhesion force measurement between the stamp and the resin in ultraviolet nanoimprint lithography—an investigative approach," Nanotechnology 20, 055704 (2009).
115. Z. Li, M. Yoshino, and A. Yamanaka, "Optical Properties of Multilayer Ordered Gold Nanodot Array Fabricated by a Thermal Dewetting Method," Procedia CIRP 5, 42-46 (2013).
116. D. Gerlier and N. Thomasset, "Use of MTT colorimetric assay to measure cell activation," Journal of immunological methods 94, 57-63 (1986).
117. Y. Xia and G. M. Whitesides, "Soft lithography," Annual review of materials science 28, 153-184 (1998).
118. C. F. Chin and F. M. Yeong, "Safeguarding entry into mitosis: the antephase checkpoint," Molecular and cellular biology 30, 22-32 (2010).
119. X. Liang, A. Liu, C. Lim, T. Ayi, and P. Yap, "Determining refractive index of single living cell using an integrated microchip," Sensors and Actuators A: Physical 133, 349-354 (2007).
120. P. Senthilraja and K. Kathiresan, "In vitro cytotoxicity MTT assay in Vero, HepG2 and MCF-7 cell lines study of Marine Yeast," J App Pharm Sci 5, 80-84 (2015).
121. Z. G. Al-Jassim, M. G. Al-Abbassi, and N. Y. Yaseen, "The Cytotoxic Effect of 2-Deoxy-D-Glucose Combination with 5-Fluorourasil and NO-Aspirin on Mammary Adenocacinoma Cell Line."
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw