進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0209201615405100
論文名稱(中文) 以第一原理計算探討鋰離子電池中複合層狀富鋰正極材料之充放電機制
論文名稱(英文) Ab initio mechanistic study on charging/discharging behaviors of the lithium-rich layered composite cathode material in lithium-ion batteries
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 莊祐誠
研究生(英文) Yu-Cheng Chuang
電子信箱 N56034172@mail.ncku.edu.tw
學號 N56034172
學位類別 碩士
語文別 中文
論文頁數 196頁
口試委員 指導教授-林士剛
口試委員-方冠榮
口試委員-許文東
口試委員-黃炳照
口試委員-王致傑
中文關鍵字 複合層狀富鋰氧化物  正極材料  鋰離子電池  密度泛函理論  第一原理計算 
英文關鍵字 Lithium-rich composite-layered oxide  Lithium-ion batteries  Cathode material  Density functional theory  Ab initio calculation 
學科別分類
中文摘要 隨著科技日新月異的演進,人類對於能源的需求逐漸增加,但隨之而來如石油短缺與燃燒石油所造成的二氧化碳排放問題等等也逐漸成為全人類共同關注的議題。現今,除了發展乾淨的太陽能與風能等再生能源外,世界先進國家亦積極建立能源研究中心與推動各項再生能源獎助法案。另一方面,科學家同時體會到電池儲能技術必須與再生能源並行發展,強化移動式儲能電源,以擴大再生能源應用場域。在眾多能源材料中,鋰離子電池擁有能量密度高、電池性能佳、環境污染低等優點,可視為目前最能符合綠色科技的儲能元件之一。
複合層狀正極材料由富鋰氧化物xLi2MnO3•(1-x)LiM’O2 (M’=Ni, Co, Mn…etc)依不同組成比例而成之複合層狀材料,具有高電容量之優點。然而,此材料卻也擁有(1)首次不可逆電容量(Initial irreversible capacity)高、(2)電容量衰減(Capacity fading)快以及(3)倍率性能(Rate capability)低等問題,主要由於此材料晶體結構於充放電後形變而無法維持之缺點,嚴重掩蓋材料高電容量之優點以及影響其儲能技術之發展。
為了解決此問題,在過去的研究中,各領域之學者多利用實驗試誤式(Trial and error)之方式針對複合層狀富鋰氧化物進行材料之探索與改良,雖然已有相當多的文獻成果,但常由於傳統實驗方法需耗費大量時間、金錢與人力,甚至因各研究者之材料合成方法、組成比例、量測儀器不一,導致報導資料散亂且其解釋相互矛盾,難以有效歸納出一致的方法來提升層狀材料的結構穩定性、電容量、循環性能以及導電率。
本研究透過密度泛函理論(Density functional theory)與第一原理計算(Ab initio calculation)材料計算,對材料結構及其充放電機制有更深的了解。透過模擬的方式,首先建構出複合層狀富鋰氧化物之原子級模型(Atomistic model)以了解其結構組合及比例,並進一步藉由X-射線繞射計算(X-ray diffraction calculation)後與實驗結果比較確認其晶體結構。再者,透過鋰離子嵌出嵌入晶體之方式以模擬充放電曲線(Charging and discharging curve),並利用Bader電荷分析(Bader charge analysis)來計算出各元素於過程中之價數變化,以及觀察結構變異之相轉變情形(Phase transformation)。最後,利用晶體結構中添加氧缺陷之方式,並藉由缺陷生成能(Defect formation energy)計算以了解充放電過程中鋰氧共同嵌出之競爭機制,後分析歸納出複合層狀富鋰氧化物其電容量與電壓衰退之主因,用以提供快速且精確之計算數據至實驗端,幫助開發出高容量、高電壓與高穩定性複合層狀正極材料。
英文摘要 The lithium-rich composite-layered oxide, xLi2MnO3•(1-x)LiM’O2, where M’ is transition metals, is a promising cathode material with high capacity in lithium ion batteries. An unusual charge-discharge feature for this material with sloping and plateau regions in the first run has been reported; however, mechanistic interpretations for this phenomenon are controversial in literature. In this work, ab initio calculations based on density functional theory were performed to examine the lattice stability of xLi2MnO3•(1-x)Li(Ni1/3Co1/3Mn1/3)O2 composite-layered cathode materials during the first charging. The atomistic models based on both monoclinic (C2/m) and rhombohedral (R3m) structures for the pristine Li2MnO3 and Li(Ni1/3Co1/3Mn1/3)O2 phases were constructed, respectively. In addition, the atomistic models of xLi2MnO3•(1-x)Li(Ni1/3Co1/3Mn1/3)O2 with x = 0.0, 0.3, 0.5, and 0.7 were also proposed. The calculated X-ray diffraction patterns based on the optimized structures agrees closely with experiments. With these proposed atomistic models, the first charging process of the 0.4Li2MnO3•0.6Li(Ni1/3Co1/3Mn1/3)O2 cathode were investigated according to defect formation energy of Li or O vacancies and Bader charge analyses. The mechanisms of delithiation as well as oxygen evolution during the first charging process are proposed, which may provide fundamental understandings for developing novel cathode materials in energy storage technology.
論文目次 目錄
摘要 II
Abstract IV
誌謝 XVI
目錄 XVII
表目錄 XX
圖目錄 XXI
第一章 前言 1
第二章 文獻回顧 3
2.1 鋰離子電池 3
2.2負極材料 6
2.3電解質 10
2.4 隔離膜 11
2.5 正極材料 12
2.5.1 鋰鈷氧化物 15
2.5.2 鋰鎳氧化物 17
2.5.3 鋰錳氧化物 18
2.5.4 鋰鎳鈷錳氧化物 19
2.5.5 過量鋰 23
2.6 複合層狀富鋰氧化物 25
2.6.1 晶體結構 25
2.6.2 充放電機制 27
2.6.3 改善方法 33
2.7 研究動機 35
第三章 計算方法 39
3.1 密度泛函理論 39
3.2 Hohenberg-Kohn定理 41
3.3 Kohn-Sham定理 42
3.4 Exchange correlation functional 44
3.5 LDA+U與GGA+U方法 45
3.6 自洽場計算方法 46
3.7 VASP軟體計算函數與參數設定 48
第四章 結果與討論 52
4.1原子級模型的建立 54
4.1.1 常見層狀氧化物原子級模型建立 54
4.1.2 塊材基準計算 56
4.1.3 複合層狀富鋰氧化物原子級模型建立 62
4.1.3.1晶體接合方式探討 63
4.1.3.2界面原子排列方式探討 68
4.1.3.3 磁性自旋方向探討 73
4.1.4 xLi2MnO3•(1-x)Li(Ni1/3Co1/3Mn1/3)O2多樣比例計算 75
4.1.4.1 結構優化分析 75
4.1.4.2 X-ray繞射圖譜分析 77
4.2 充放電程序模擬 81
4.2.1 鋰嵌出之首次充電程序模擬 81
4.2.1.1 Convex hull分析 85
4.2.1.2 充放電曲線分析 87
4.2.1.3 Bader charge分析 90
4.2.1.4 結構相轉變分析 92
4.2.2 鋰嵌出與氧空缺生成之首次充電程序模擬 94
4.2.2.1 Chemical potential分析 97
4.2.2.2 以μO = -2.105 eV代入計算之Convex hull分析 126
4.2.2.3 以μO = -2.105 eV代入計算之充放電曲線分析 129
4.2.2.4 以μO = -1.200 eV代入計算之Convex hull分析 134
4.2.2.5 以μO = -1.200 eV代入計算之充放電曲線分析 136
4.2.3鋰嵌出與氧空缺生成之第二次充電程序模擬 139
4.2.3.1 Convex hull分析 141
4.2.3.2充放電曲線分析 142
第五章 結論 143
參考文獻 145
附錄 164

表目錄
表2.1-1 常見二次電池之特性比較表[2, 16, 17] 5
表2.2-1 常見鋰離子電池負極材料比較表[23, 25, 27, 28, 30-32] 9
表2.5-1 各晶體結構正極材料比較表[19, 38-42] 14
表3.4-1 常見簡單氧化物物理性質之計算與實驗比較表[117] 45
表4.1-1 各層狀材料於不同計算functional以及U值設定下所得計算晶格常數與文獻實驗、晶格常數比較表[43, 44, 53, 62, 63, 70, 103, 118, 134-138] 60
表4.1-2 不同界面原子排列方式結構之生成能計算比較表 72
表4.1-3 不同磁性自旋方向設定之生成能計算比較表 75
表4.1-4過渡金屬均勻混合排列與複合排列之兩者生成能計算比較表 79
表C.1-1 各金屬能量計算統整表 190
表C.2-1 各氧化物能量計算統整表 191

圖目錄
圖1-1 26650圓筒型磷酸鋰鐵電池材料成本分配示意圖[3] 2
圖2.1-1常見二次電池之功率密度對能量密度特性趨勢分布圖[15] 4
圖2.1-2鋰離子電池之結構與工作原理示意圖[18] 4
圖2.2-1 樹枝狀鋰結晶結構之SEM示意圖[24] 7
圖2.2-2 矽奈米粒子於充放電過程中形成之體積膨脹與電極脆裂示意圖[29] 7
圖2.2-3 各類負極材料其電容量對電壓之關係示意圖[10] 9
圖2.5-1 各類具潛力正極材料之工作電壓對電容量分布示意圖[37] 12
圖2.5-2 LiCoO2之單位晶胞原子級模型結構示意圖[43, 44] 16
圖2.5-3 LiM’O2 (M’=Co, Ni, V)層狀氧化物結構示意圖[45] 16
圖2.5-4 LiNiO2之單位晶胞原子級模型結構示意圖[43, 44] 17
圖2.5-5 LiMnO2之單位晶胞原子級模型結構示意圖[43, 44] 18
圖2.5-6 層狀氧化物中過渡金屬選用與含量對三大特性之關係示意圖[58] 20
圖2.5-7 各類正極材料其電容量對電壓之關係示意圖[10] 20
圖2.5-8 Li(Ni1/3Co1/3Mn1/3)O2之超晶胞原子級模型結構示意圖[62] 22
圖2.5-9 Li(Ni1/3Co1/3Mn1/3)O2之過渡金屬層中陽離子排列方式示意圖[62] 22
圖2.5-10 (a) LiMnO2單位晶胞原子級模型與(b) Li2MnO3單位晶胞原子級模型之Monoclinic結構比較示意圖[43, 44] 24
圖2.5-11 Li2MnO3之充放電曲線示意圖[72] 24
圖2.6-1 複合層狀富鋰氧化物之結構組成概念示意圖[37, 73, 74] 26
圖2.6-2 複合層狀富鋰氧化物之原子級模型示意圖[75] 26
圖2.6-3 複合層狀富鋰氧化物xLi2MnO3•(1-x)LiM’O2其充放電過程與組成變化所相對應的電化學反應路徑圖[76] 28
圖2.6-4 Li2Ru1-ySnyO3其充放電過程中(a)釕離子、(b)氧離子之XPS圖譜[77] 29
圖2.6-5 xLi2MnO3•(1-x)LiM’O2於充電過程之離子遷移示意圖[81] 30
圖2.6-6 xLi2MnO3•(1-x)LiM’O2其材料Pristine(a)1nm尺度、(b)2Å尺度與首次充放電後(c) 1nm尺度、(d)2Å尺度之HAADF示意圖[84] 31
圖2.6-7 xLi2MnO3•(1-x)LiM’O2其材料首次充放電前後之HAADF示意圖[85] 31
圖2.6-8 xLi2MnO3•(1-x)LiM’O2之充放電曲線示意圖[84] 32
圖2.7-1 0.5Li2MnO3•0.5Li(N1/3Co1/3Mn1/3)O2其材料充放電曲線示意圖[99] 36
圖2.7-2 0.5Li2MnO3•0.5Li(N1/3Co1/3Mn1/3)O2其Pristine材料之(a)TEM影像圖與(b)選區繞射圖(SADE) [99] 37
圖3.6-1 自洽場計算流程示意圖[121] 47
圖3.7-1真實波函數與贋勢波函數差異比較圖[123] 49
圖3.7-2 近似理論方法之分類示意圖[11] 49
圖3.7-3 鈣鈦礦(Perovskite)結構自旋方向示意圖[126] 51
圖3.7-4 LiCoO2材料其磁矩測試方法示意圖 51
圖4-1 本研究之計算流程示意圖 53
圖4.1-1 各層狀材料(a)LiCoO2、(b)LiNiO2、(c)LiMnO2、(d)Li2MnO3與(e)Li(Ni1/3Co1/3Mn1/3)O2原子級模型以及(e) Li(Ni1/3Co1/3Mn1/3)O2之過渡金屬層排列示意圖[43, 44, 62, 128] 55
圖4.1-2複合層狀副鋰氧化物於STEM-HAADF下所顯示之層狀LiM’O2與過鋰Li2MnO3分布情形示意圖[37] 62
圖4.1-3 Li2MnO3與LiMnO2兩材料以(a)水平接合與(b)垂直接合方式示意圖 63
圖4.1-4 水平接合與垂直接合於不同單位晶胞數量對生成能差異示意圖 67
圖4.1-5 0.4Li2MnO3•0.6Li(Ni1/3Co1/3Mn1/3)O2複合層狀材料Type1界面原子排列方式之(a)完整晶體結構與(b)Bottom過渡金屬層、(c)Middle過渡金屬層、(d)Top過度金屬層示意圖 68
圖4.1-6 0.4Li2MnO3•0.6Li(Ni1/3Co1/3Mn1/3)O2複合層狀材料Type2界面原子排列方式之(a)完整晶體結構與(b)Bottom過渡金屬層、(c)Middle過渡金屬層、(d)Top過度金屬層示意圖 69
圖4.1-7 0.4Li2MnO3•0.6Li(Ni1/3Co1/3Mn1/3)O2複合層狀材料Type3界面原子排列方式之(a)完整晶體結構與(b)Bottom過渡金屬層、(c)Middle過渡金屬層、(d)Top過度金屬層示意圖 69
圖4.1-8 複合層狀材料之磁矩測試方法示意圖 70
圖4.1-9 0.4Li2MnO3-0.6Li(Ni1/3Co1/3Mn1/3)O2之鐵磁自旋方向示意圖 73
圖4.1-10 0.4Li2MnO3-0.6Li(Ni1/3Co1/3Mn1/3)O2之C-type反鐵磁自旋方向示意圖 74
圖4.1-11 0.4Li2MnO3-0.6Li(Ni1/3Co1/3Mn1/3)O2之G-type反鐵磁自旋方向示意圖 74
圖4.1-12 0.5Li2MnO3-0.5Li(Ni1/3Co1/3Mn1/3)O2複合層狀材料其經結構優化前後之結構變化俯視示意圖 76
圖4.1-13 xLi2MnO3-(1-x) Li(Ni1/3Co1/3Mn1/3)O2於x分別為0.0、0.3、0.5與0.7等不同比例之(a)實驗[76]以及(b)理論X-ray繞射圖譜比較示意圖 77
圖4.1-14 xLi2MnO3-(1-x) Li(Ni1/3Co1/3Mn1/3)O2於x比例分別為0.0、0.4與1.0之理論X-ray繞射圖譜示意圖 78
圖4.1-15 0.4Li2MnO3-0.6Li(Ni1/3Co1/3Mn1/3)O2於複合與混合等二方式建構模型之理論X-ray繞射圖譜示意圖 80
圖4.2-1 鋰離子嵌出複合層狀材料之充電程序模擬概念示意圖 81
圖4.2-2 鋰離子嵌出電極之充電程序計算流程示意圖 84
圖4.2-3 LixNi0.167Co0.167Mn0.500O2 (x=0.0~1.167) 複合層狀材料之Convex hull示意圖 86
圖4.2-4 Li1.167Ni0.167Co0.167Mn0.500O2複合層狀材料之實驗[145]與計算充放電曲線示意圖 89
圖4.2-5 各鋰濃度下結構之(a)各離子之平均計算價數變化以及(b)氧離子分布於不同晶體區塊之平均計算價數與標準差變化示意圖 91
圖4.2-6 複合層狀材料於首次充電程序中之(a) Li1.167Ni0.167Co0.167Mn0.500O2、(b) Li1.000Ni0.167Co0.167Mn0.500O2、(c) Li0.833Ni0.167Co0.167Mn0.500O2、(d) Li0.500Ni0.167Co0.167Mn0.500O2等結構與文獻之尖晶石結構[81]示意圖 93
圖4.2-7 鈦酸鉛(PbTiO3)與鈦酸鋇(BaTiO3)其化學勢能圖(Chemical-potential diagram)[148] 95
圖4.2-8 固定Li2O、NiO與CoO以及僅變動MnO、MnO2、Mn2O3與Mn3O4之μLi對μO之Chemical-potential diagram繪製程序示意圖 101
圖4.2-9固定Li2O、NiO、CoO三氧化物其μLi對μO之Chemical-potential diagram示意圖 102
圖4.2-10 各μLi對μO之Chemical-potential diagram繪製程序示意圖 103
圖4.2-11 固定Li2O、NiO、Co2O3三氧化物其μLi對μO之Chemical-potential diagram示意圖 104
圖4.2-12 固定Li2O、NiO、Co3O4三氧化物其μLi對μO之Chemical-potential diagram示意圖 104
圖4.2-13 固定Li2O、NiO、MnO三氧化物其μLi對μO之Chemical-potential diagram示意圖 105
圖4.2-14 固定Li2O、NiO、MnO2三氧化物其μLi對μO之Chemical-potential diagram示意圖 105
圖4.2-15 固定Li2O、NiO、Mn2O3三氧化物其μLi對μO之Chemical-potential diagram示意圖 106
圖4.2-16 固定Li2O、NiO、Mn3O4三氧化物其μLi對μO之Chemical-potential diagram示意圖 106
圖4.2-17 上述各化合物之μO分布範圍統計示意圖 107
圖4.2-18 固定Li2O、NiO、CoO三氧化物其μNi對μO之Chemical-potential diagram示意圖 108
圖4.2-19 固定Li2O、NiO、Co2O3三氧化物其μNi對μO之Chemical-potential diagram示意圖 108
圖4.2-20 固定Li2O、NiO、Co3O4三氧化物其μNi對μO之Chemical-potential diagram示意圖 109
圖4.2-21 固定Li2O、NiO、MnO三氧化物其μNi對μO之Chemical-potential diagram示意圖 109
圖4.2-22 固定Li2O、NiO、MnO2三氧化物其μNi對μO之Chemical-potential diagram示意圖 110
圖4.2-23 固定Li2O、NiO、Mn2O3三氧化物其μNi對μO之Chemical-potential diagram示意圖 110
圖4.2-24 固定Li2O、NiO、Mn3O4三氧化物其μNi對μO之Chemical-potential diagram示意圖 111
圖4.2-25 固定Li2O、NiO、CoO三氧化物其μCo對μO之Chemical-potential diagram示意圖 111
圖4.2-26 固定Li2O、NiO、Co2O3三氧化物其μCo對μO之Chemical-potential diagram示意圖 112
圖4.2-27 固定Li2O、NiO、Co3O4三氧化物其μCo對μO之Chemical-potential diagram示意圖 112
圖4.2-28 固定Li2O、NiO、MnO三氧化物其μMn對μO之Chemical-potential diagram示意圖 113
圖4.2-29 固定Li2O、NiO、MnO2三氧化物其μMn對μO之Chemical-potential diagram示意圖 113
圖4.2-30 固定Li2O、NiO、Mn2O3三氧化物其μMn對μO之Chemical-potential diagram示意圖 114
圖4.2-31 固定Li2O、NiO、Mn3O4三氧化物其μMn對μO之Chemical-potential diagram示意圖 114
圖4.2-32 固定Li2O2、NiO、CoO三氧化物其μLi對μO之Chemical-potential diagram示意圖 115
圖4.2-33 固定Li2O2、NiO、Co2O3三氧化物其μLi對μO之Chemical-potential diagram示意圖 115
圖4.2-34 固定Li2O2、NiO、Co3O4三氧化物其μLi對μO之Chemical-potential diagram示意圖 116
圖4.2-35 固定Li2O2、NiO、MnO三氧化物其μLi對μO之Chemical-potential diagram示意圖 116
圖4.2-36 固定Li2O2、NiO、MnO2三氧化物其μLi對μO之Chemical-potential diagram示意圖 117
圖4.2-37 固定Li2O2、NiO、Mn2O3三氧化物其μLi對μO之Chemical-potential diagram示意圖 117
圖4.2-38 固定Li2O2、NiO、Mn3O4三氧化物其μLi對μO之Chemical-potential diagram示意圖 118
圖4.2-39 固定Li2O2、NiO、CoO三氧化物其μNi對μO之Chemical-potential diagram示意圖 118
圖4.2-40 固定Li2O2、NiO、Co2O3三氧化物其μNi對μO之Chemical-potential diagram示意圖 119
圖4.2-41 固定Li2O2、NiO、Co3O4三氧化物其μNi對μO之Chemical-potential diagram示意圖 119
圖4.2-42 固定Li2O2、NiO、MnO三氧化物其μNi對μO之Chemical-potential diagram示意圖 120
圖4.2-43 固定Li2O2、NiO、MnO2三氧化物其μNi對μO之Chemical-potential diagram示意圖 120
圖4.2-44 固定Li2O2、NiO、Mn2O3三氧化物其μNi對μO之Chemical-potential diagram示意圖 121
圖4.2-45 固定Li2O2、NiO、Mn3O4三氧化物其μNi對μO之Chemical-potential diagram示意圖 121
圖4.2-46 固定Li2O2、NiO、CoO三氧化物其μCo對μO之Chemical-potential diagram示意圖 122
圖4.2-47 固定Li2O2、NiO、Co2O3三氧化物其μCo對μO之Chemical-potential diagram示意圖 122
圖4.2-48 固定Li2O2、NiO、Co3O4三氧化物其μCo對μO之Chemical-potential diagram示意圖 123
圖4.2-49 固定Li2O2、NiO、MnO三氧化物其μMn對μO之Chemical-potential diagram示意圖 123
圖4.2-50 固定Li2O2、NiO、MnO2三氧化物其μMn對μO之Chemical-potential diagram示意圖 124
圖4.2-51 固定Li2O2、NiO、Mn2O3三氧化物其μMn對μO之Chemical-potential diagram示意圖 124
圖4.2-52 固定Li2O2、NiO、Mn3O4三氧化物其μMn對μO之Chemical-potential diagram示意圖 125
圖4.2-53鋰嵌出與氧空缺生成(μO = -2.105 eV)之首次充電程序示意圖 127
圖4.2-54 Li1.167-xNi0.167Co0.167Mn0.500O2-y (0.0 ≤ x ≤ 1.167) (0.0 ≤ y ≤ 2.0)複合層狀材料之Convex hull(μO = -2.105 eV)示意圖 128
圖4.2-55 Li1.167Ni0.167Co0.167Mn0.500O2複合層狀材料之實驗[145]與計算(μO = -2.105 eV)之充放電曲線示意圖 129
圖4.2-56 Li1.167Ni0.167Co0.167Mn0.500O2之首次充電鋰嵌出與氧空缺形成(μO = -2.105 eV)路徑示意圖 130
圖4.2-57 各鋰濃度下結構之氧缺陷生成能計算示意圖 132
圖4.2-58 Li1.167Ni0.167Co0.167Mn0.500O2之實驗[145]首次充電曲線分析示意圖 133
圖4.2-59 鋰嵌出與氧空缺生成(μO = -1.200 eV)之首次充電程序示意圖 134
圖4.2-60 Li1.167-xNi0.167Co0.167Mn0.500O2-y (0.0 ≤ x ≤ 1.167) (0.0 ≤ y ≤ 2.0)複合層狀材料之Convex hull(μO = -1.200 eV)示意圖 135
圖4.2-61 Li1.167Ni0.167Co0.167Mn0.500O2複合層狀材料之實驗[145]與計算(μO = -1.200 eV)之充放電曲線示意圖 136
圖4.2-62 Li1.167Ni0.167Co0.167Mn0.500O2之首次充電鋰嵌出與氧空缺形成(μO = -1.200 eV)路徑示意圖 137
圖4.2-63 Li1.167Ni0.167Co0.167Mn0.500O2複合層狀材料之實驗[145]與計算之充放電曲線示意圖 138
圖4.2-64 鋰嵌出與氧空缺生成之第二次充電程序示意圖 140
圖4.2-65 LixNi0.167Co0.167Mn0.500O1.972 (x=0.0~1.167) 複合層狀材料之Convex hull示意圖 141
圖4.2-66 Li1.167Ni0.167Co0.167Mn0.500O2複合層狀材料之實驗[145]與計算(SOC = 42%)充放電曲線示意圖 142
圖B.1-1 LiCoO2之k-point mesh對總能收斂測試示意圖 173
圖B.1-2 LiNiO2之k-point mesh對總能收斂測試示意圖 174
圖B.1-3 LiMnO2之k-point mesh對總能收斂測試示意圖 174
圖B.1-4 Li2MnO3之k-point mesh對總能收斂測試示意圖 175
圖B.1-5 Li(Ni1/3Co1/3Mn1/3)O2之k-point mesh對總能收斂測試示意圖 175
圖B.2-1 0.5Li2MnO3-0.5LiMnO2之2單位晶胞水平接合k-point mesh對總能收斂測試示意圖 176
圖B.2-2 0.5Li2MnO3-0.5LiMnO2之4單位晶胞水平接合k-point mesh對總能收斂測試示意圖 177
圖B.2-3 0.5Li2MnO3-0.5LiMnO2之6單位晶胞水平接合k-point mesh對總能收斂測試示意圖 177
圖B.2-4 0.5Li2MnO3-0.5LiMnO2之2單位晶胞垂直接合k-point mesh對總能收斂測試示意圖 178
圖B.2-5 0.5Li2MnO3-0.5LiMnO2之4單位晶胞垂直接合k-point mesh對總能收斂測試示意圖 178
圖B.2-6 0.5Li2MnO3-0.5LiMnO2之6單位晶胞垂直接合k-point mesh對總能收斂測試示意圖 179
圖B.3-1 鋰金屬單位晶胞之k-point mesh對總能收斂測試示意圖 180
圖B.3-2 錳金屬單位晶胞之k-point mesh對總能收斂測試示意圖 181
圖B.3-3 鎳金屬單位晶胞之k-point mesh對總能收斂測試示意圖 181
圖B.3-4 鈷金屬單位晶胞之k-point mesh對總能收斂測試示意圖 182
圖B.4-1 0.4Li2MnO3-0.6Li(Ni1/3Co1/3Mn1/3)O2複合層狀材料Type1結構之k-point mesh對總能收斂測試示意圖 183
圖B.5-1 Li2O之k-point mesh對總能收斂測試示意圖 184
圖B.5-2 Li2O2之k-point mesh對總能收斂測試示意圖 185
圖B.5-3 NiO之k-point mesh對總能收斂測試示意圖 185
圖B.5-4 CoO之k-point mesh對總能收斂測試示意圖 186
圖B.5-5 Co2O3之k-point mesh對總能收斂測試示意圖 186
圖B.5-6 Co3O4之k-point mesh對總能收斂測試示意圖 187
圖B.5-7 MnO之k-point mesh對總能收斂測試示意圖 187
圖B.5-8 MnO2之k-point mesh對總能收斂測試示意圖 188
圖B.5-9 Mn2O3之k-point mesh對總能收斂測試示意圖 188
圖B.5-10 Mn3O4之k-point mesh對總能收斂測試示意圖 189
圖D.1-1鋰離子於晶體中之位置標記分布示意圖 192
圖D.2-1鎳離子於晶體中之位置標記分布示意圖 193
圖D.3-1鈷離子於晶體中之位置標記分布示意圖 194
圖D.4-1錳離子於晶體中之位置標記分布示意圖 195
圖D.5-1氧離子於晶體中之位置標記分布示意圖 196
參考文獻 參考文獻
1. V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011. 4(9): p. 3243-3262.
2. M.M. Thackeray, C. Wolverton, and E.D. Isaacs, Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy & Environmental Science, 2012. 5(7): p. 7854-7863.
3. 陳金銘, 下世代高能量鋰電池與材料技術趨勢. 工業材料雜誌, 2012. 302.
4. I. Courtney, J. Tse, O. Mao, J. Hafner, and J. Dahn, Ab initio calculation of the lithium-tin voltage profile. Physical Review B, 1998. 58(23): p. 15583.
5. Z. Huang, S. Hu, X. Hou, Q. Ru, H. Yu, L. Zhao, and W. Li, Dead lithium phase investigation of Sn-Zn alloy as anode materials for lithium ion battery. Chinese Science Bulletin, 2009. 54(6): p. 1003-1008.
6. K. Persson, Y. Hinuma, Y.S. Meng, A. Van der Ven, and G. Ceder, Thermodynamic and kinetic properties of the Li-graphite system from first-principles calculations. Physical Review B, 2010. 82(12): p. 125416.
7. V. Shenoy, P. Johari, and Y. Qi, Elastic softening of amorphous and crystalline Li–Si phases with increasing Li concentration: a first-principles study. Journal of Power Sources, 2010. 195(19): p. 6825-6830.
8. Z. Chen, I. Belharouak, Y.K. Sun, and K. Amine, Titanium‐Based Anode Materials for Safe Lithium‐Ion Batteries. Advanced Functional Materials, 2013. 23(8): p. 959-969.
9. G.-N. Zhu, Y.-G. Wang, and Y.-Y. Xia, Ti-based compounds as anode materials for Li-ion batteries. Energy & Environmental Science, 2012. 5(5): p. 6652-6667.
10. N. Nitta, F. Wu, J.T. Lee, and G. Yushin, Li-ion battery materials: present and future. Materials Today, 2015. 18(5): p. 252-264.
11. D. Sholl and J.A. Steckel, Density functional theory: a practical introduction. 2011: John Wiley & Sons.
12. P.-c. Tsai, W.-D. Hsu, and S.-k. Lin, Atomistic structure and ab initio electrochemical properties of Li4Ti5O12 defect spinel for Li ion batteries. Journal of The Electrochemical Society, 2014. 161(3): p. A439-A444.
13. http://www.sonyenergy-devices.co.jp/en/keyword/.
14. D. Guyomard and J.M. Tarascon, Rocking‐chair or lithium‐ion rechargeable lithium batteries. Advanced materials, 1994. 6(5): p. 408-412.
15. X.-P. Gao and H.-X. Yang, Multi-electron reaction materials for high energy density batteries. Energy & Environmental Science, 2010. 3(2): p. 174-189.
16. Panasonic.com, Rechargeable Li-Ion OEM Battery Products.
17. http://www.BatteryUniversity.com.
18. M. Osiak, H. Geaney, E. Armstrong, and C. O'Dwyer, Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance. Journal of Materials Chemistry A, 2014. 2(25): p. 9433-9460.
19. M.S. Whittingham, Lithium batteries and cathode materials. Chemical reviews, 2004. 104(10): p. 4271-4302.
20. T. Ohzuku, Y. Iwakoshi, and K. Sawai, Formation of Lithium‐Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell. Journal of The Electrochemical Society, 1993. 140(9): p. 2490-2498.
21. J. Dahn, Phase diagram of Li x C 6. Physical Review B, 1991. 44(17): p. 9170.
22. M. Winter, J.O. Besenhard, M.E. Spahr, and P. Novak, Insertion electrode materials for rechargeable lithium batteries. Advanced materials, 1998. 10(10): p. 725-763.
23. A. Väyrynen and J. Salminen. Modular li-ion battery systems for electric and hybrid powertrains. in ICPC 2011, 6th AVL International Commercial Powertrain Conference. 2011.
24. H. Kim, G. Jeong, Y.-U. Kim, J.-H. Kim, C.-M. Park, and H.-J. Sohn, Metallic anodes for next generation secondary batteries. Chemical Society Reviews, 2013. 42(23): p. 9011-9034.
25. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J.-G. Zhang, Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 2014. 7(2): p. 513-537.
26. B. Rao, R. Francis, and H. Christopher, Lithium‐aluminum electrode. Journal of The Electrochemical Society, 1977. 124(10): p. 1490-1492.
27. N.A. Kaskhedikar and J. Maier, Lithium storage in carbon nanostructures. Advanced Materials, 2009. 21(25‐26): p. 2664-2680.
28. M. Levi and D. Aurbach, Diffusion coefficients of lithium ions during intercalation into graphite derived from the simultaneous measurements and modeling of electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphite electrodes. The Journal of Physical Chemistry B, 1997. 101(23): p. 4641-4647.
29. C.-H. Yim, F.M. Courtel, and Y. Abu-Lebdeh, A high capacity silicon–graphite composite as anode for lithium-ion batteries using low content amorphous silicon and compatible binders. Journal of Materials Chemistry A, 2013. 1(28): p. 8234-8243.
30. H. Li, X. Huang, L. Chen, Z. Wu, and Y. Liang, A high capacity nano Si composite anode material for lithium rechargeable batteries. Electrochemical and Solid-State Letters, 1999. 2(11): p. 547-549.
31. S. Scharner, W. Weppner, and P. Schmid‐Beurmann, Evidence of Two‐Phase Formation upon Lithium Insertion into the Li1. 33Ti1. 67 O 4 Spinel. Journal of the Electrochemical Society, 1999. 146(3): p. 857-861.
32. M.-S. Balogun, W. Qiu, W. Wang, P. Fang, X. Lu, and Y. Tong, Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. Journal of Materials Chemistry A, 2015. 3(4): p. 1364-1387.
33. 陳金銘. 葉定儒, 廖世傑, 高安全鋰電池電解液. 材料世界網, 2012.
34. D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J.S. Gnanaraj, and H.-J. Kim, Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochimica Acta, 2004. 50(2): p. 247-254.
35. 龔丹誠. 李治宏, 鋰電池隔離膜發展趨勢與近況. 世界材料網, 2015.
36. S.S. Zhang, A review on the separators of liquid electrolyte Li-ion batteries. Journal of Power Sources, 2007. 164(1): p. 351-364.
37. H. Yu and H. Zhou, High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. The journal of physical chemistry letters, 2013. 4(8): p. 1268-1280.
38. J. Cho, Y.W. Kim, B. Kim, J.G. Lee, and B. Park, A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles. Angewandte Chemie International Edition, 2003. 42(14): p. 1618-1621.
39. R. Gummow, A. De Kock, and M. Thackeray, Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics, 1994. 69(1): p. 59-67.
40. A. Yamada, S.-C. Chung, and K. Hinokuma, Optimized LiFePO4 for lithium battery cathodes. Journal of the Electrochemical Society, 2001. 148(3): p. A224-A229.
41. A. Yamada, M. Hosoya, S.-C. Chung, Y. Kudo, K. Hinokuma, K.-Y. Liu, and Y. Nishi, Olivine-type cathodes: achievements and problems. Journal of Power Sources, 2003. 119: p. 232-238.
42. Y.S. Meng and M.E. Arroyo-de Dompablo, First principles computational materials design for energy storage materials in lithium ion batteries. Energy & Environmental Science, 2009. 2(6): p. 589-609.
43. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, and G. Ceder, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. Apl Materials, 2013. 1(1): p. 011002.
44. S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson, and G. Ceder, Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Computational Materials Science, 2013. 68: p. 314-319.
45. M. Thackeray, Structural considerations of layered and spinel lithiated oxides for lithium ion batteries. Journal of The Electrochemical Society, 1995. 142(8): p. 2558-2563.
46. Y. Shao-Horn, L. Croguennec, C. Delmas, E.C. Nelson, and M.A. O'Keefe, Atomic resolution of lithium ions in LiCoO2. Nature materials, 2003. 2(7): p. 464-467.
47. J.N. Reimers and J. Dahn, Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in Li x CoO2. Journal of The Electrochemical Society, 1992. 139(8): p. 2091-2097.
48. A. Van der Ven, M. Aydinol, G. Ceder, G. Kresse, and J. Hafner, First-principles investigation of phase stability in Li x CoO 2. Physical Review B, 1998. 58(6): p. 2975.
49. 劉大軍, 鋰離子電池層狀LiMnO2正極材料的製備及其改性研究. 碩士論文, 2009.
50. J. Barker, R. Koksbang, and M.Y. Saidi, An electrochemical investigation into the lithium insertion properties of Li x NiO 2 (0≤ x≤ 1). Solid State Ionics, 1996. 89(1): p. 25-35.
51. T. Ohzuku, A. Ueda, and M. Nagayama, Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium cells. Journal of The Electrochemical Society, 1993. 140(7): p. 1862-1870.
52. H.A. Jahn and E. Teller. Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 1937. The Royal Society.
53. A.R. Armstrong and P.G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature, 1996. 381(6582): p. 499-500.
54. P. Bruce, A. áRobert Armstrong, and R. Gitzendanner, New intercalation compounds for lithium batteries: layered LiMnO 2. Journal of Materials Chemistry, 1999. 9(1): p. 193-198.
55. K. Barbalace, Periodic Table of Elements. Environmental Chemistry.com, 2007.
56. R. Longo, F. Kong, K. Santosh, M. Park, J. Yoon, D.-H. Yeon, J.-H. Park, S.-G. Doo, and K. Cho, Phase stability of Li–Mn–O oxides as cathode materials for Li-ion batteries: insights from ab initio calculations. Physical Chemistry Chemical Physics, 2014. 16(23): p. 11233-11242.
57. J. Reed, G. Ceder, and A. Van Der Ven, Layered-to-Spinel Phase Transition in Li x MnO2. Electrochemical and Solid-State Letters, 2001. 4(6): p. A78-A81.
58. H.-J. Noh, S. Youn, C.S. Yoon, and Y.-K. Sun, Comparison of the structural and electrochemical properties of layered Li [Ni x Co y Mn z] O 2 (x= 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of power sources, 2013. 233: p. 121-130.
59. Z.-R. CHANG, X. YU, H.-W. TANG, W.-Q. WEI, and D.-M. DAI, Influence of Al Doping Content on the Structure and Electrochemical Properties of LiNi1/3Co2/3-xAlxO2. Acta Physico-Chimica Sinica, 2010. 26(3): p. 567-572.
60. itwriter, 特斯拉汽車的電動復興之夢. 博客園網路新聞, 2013.
61. T. Ohzuku and Y. Makimura, Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries. Chemistry Letters, 2001(7): p. 642-643.
62. M.S. Park, First-principles study of native point defects in LiNi 1/3 Co 1/3 Mn 1/3 O 2 and Li 2 MnO 3. Physical Chemistry Chemical Physics, 2014. 16(31): p. 16798-16804.
63. K. Shaju, G.S. Rao, and B. Chowdari, Performance of layered Li (Ni 1/3 Co 1/3 Mn 1/3) O 2 as cathode for Li-ion batteries. Electrochimica Acta, 2002. 48(2): p. 145-151.
64. J.B. Goodenough and Y. Kim, Challenges for rechargeable Li batteries†. Chemistry of Materials, 2009. 22(3): p. 587-603.
65. R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, A review of advanced and practical lithium battery materials. Journal of Materials Chemistry, 2011. 21(27): p. 9938-9954.
66. S.K. Jung, H. Gwon, J. Hong, K.Y. Park, D.H. Seo, H. Kim, J. Hyun, W. Yang, and K. Kang, Understanding the degradation mechanisms of LiNi0. 5Co0. 2Mn0. 3O2 cathode material in lithium ion batteries. Advanced Energy Materials, 2014. 4(1).
67. Y. Meng, G. Ceder, C. Grey, W.-S. Yoon, M. Jiang, J. Breger, and Y. Shao-Horn, Cation Ordering in Layered O3 Li [Ni x Li1/3-2 x/3Mn2/3-x/3] O2 (0≤ x≤ 1/2) Compounds. Chemistry of Materials, 2005. 17(9): p. 2386-2394.
68. A. Riou, A. Lecerf, Y. Gerault, and Y. Cudennec, Etude structurale de Li2MnO3. Materials research bulletin, 1992. 27(3): p. 269-275.
69. P. Strobel and B. Lambert-Andron, Crystallographic and magnetic structure of Li2MnO3. Journal of Solid State Chemistry, 1988. 75(1): p. 90-98.
70. Y. Koyama, I. Tanaka, M. Nagao, and R. Kanno, First-principles study on lithium removal from Li 2 MnO 3. Journal of Power Sources, 2009. 189(1): p. 798-801.
71. R. Wang, X. He, L. He, F. Wang, R. Xiao, L. Gu, H. Li, and L. Chen, Atomic Structure of Li2MnO3 after Partial Delithiation and Re‐Lithiation. Advanced Energy Materials, 2013. 3(10): p. 1358-1367.
72. J. Rana, M. Stan, R. Kloepsch, J. Li, G. Schumacher, E. Welter, I. Zizak, J. Banhart, and M. Winter, Structural Changes in Li2MnO3 Cathode Material for Li‐Ion Batteries. Advanced Energy Materials, 2014. 4(5).
73. h.t.c. Edward Boatman. Available from: https://thenounproject.com/.
74. h.t.c. Anton Kovalev. Available from: https://thenounproject.com.
75. S.H. Lee, J.-S. Moon, M.-S. Lee, T.-H. Yu, H. Kim, and B.M. Park, Enhancing phase stability and kinetics of lithium-rich layered oxide for an ultra-high performing cathode in Li-ion batteries. Journal of Power Sources, 2015. 281: p. 77-84.
76. M.M. Thackeray, S.-H. Kang, C.S. Johnson, J.T. Vaughey, R. Benedek, and S. Hackney, Li 2 MnO 3-stabilized LiMO 2 (M= Mn, Ni, Co) electrodes for lithium-ion batteries. Journal of Materials Chemistry, 2007. 17(30): p. 3112-3125.
77. M. Sathiya, G. Rousse, K. Ramesha, C. Laisa, H. Vezin, M.T. Sougrati, M.-L. Doublet, D. Foix, D. Gonbeau, and W. Walker, Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nature materials, 2013. 12(9): p. 827-835.
78. A.R. Armstrong, M. Holzapfel, P. Novák, C.S. Johnson, S.-H. Kang, M.M. Thackeray, and P.G. Bruce, Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li [Ni0. 2Li0. 2Mn0. 6] O2. Journal of the American Chemical Society, 2006. 128(26): p. 8694-8698.
79. Z. Deng and A. Manthiram, Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathodes. The Journal of Physical Chemistry C, 2011. 115(14): p. 7097-7103.
80. S. Hy, F. Felix, J. Rick, W.-N. Su, and B.J. Hwang, Direct In situ Observation of Li2O Evolution on Li-Rich High-Capacity Cathode Material, Li [Ni x Li (1–2 x)/3Mn (2–x)/3] O2 (0≤ x≤ 0.5). Journal of the American Chemical Society, 2014. 136(3): p. 999-1007.
81. D. Mohanty, J. Li, D.P. Abraham, A. Huq, E.A. Payzant, D.L. Wood III, and C. Daniel, Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion. Chemistry of Materials, 2014. 26(21): p. 6272-6280.
82. D. Mohanty, A.S. Sefat, S. Kalnaus, J. Li, R.A. Meisner, E.A. Payzant, D.P. Abraham, D.L. Wood, and C. Daniel, Investigating phase transformation in the Li 1.2 Co 0.1 Mn 0.55 Ni 0.15 O 2 lithium-ion battery cathode during high-voltage hold (4.5 V) via magnetic, X-ray diffraction and electron microscopy studies. Journal of Materials Chemistry A, 2013. 1(20): p. 6249-6261.
83. A. Boulineau, L. Simonin, J.-F. Colin, C. Bourbon, and S. Patoux, First evidence of manganese–nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. Nano letters, 2013. 13(8): p. 3857-3863.
84. Y. Wu, C. Ma, J. Yang, Z. Li, L.F. Allard, C. Liang, and M. Chi, Probing the initiation of voltage decay in Li-rich layered cathode materials at the atomic scale. Journal of Materials Chemistry A, 2015. 3(10): p. 5385-5391.
85. A. Boulineau, L. Simonin, J.-F.o. Colin, E. Canévet, L. Daniel, and S.b. Patoux, Evolutions of Li1. 2Mn0. 61Ni0. 18Mg0. 01O2 during the initial charge/discharge cycle studied by advanced electron microscopy. Chemistry of Materials, 2012. 24(18): p. 3558-3566.
86. Y. Wu and A. Manthiram, Effect of surface modifications on the layered solid solution cathodes (1− z) Li [Li 1/3 Mn 2/3] O 2−(z) Li [Mn 0.5− y Ni 0.5− y Co 2y] O 2. Solid State Ionics, 2009. 180(1): p. 50-56.
87. W. He, D. Yuan, J. Qian, X. Ai, H. Yang, and Y. Cao, Enhanced high-rate capability and cycling stability of Na-stabilized layered Li 1.2 [Co 0.13 Ni 0.13 Mn 0.54] O 2 cathode material. Journal of Materials Chemistry A, 2013. 1(37): p. 11397-11403.
88. D. Wang, Y. Huang, Z. Huo, and L. Chen, Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li [Li 0.2 Ni 0.2 Mn 0.6] O 2 cathode material. Electrochimica Acta, 2013. 107: p. 461-466.
89. T. Zhao, L. Li, S. Chen, R. Chen, X. Zhang, J. Lu, F. Wu, and K. Amine, The effect of chromium substitution on improving electrochemical performance of low-cost Fe–Mn based Li-rich layered oxide as cathode material for lithium-ion batteries. Journal of Power Sources, 2014. 245: p. 898-907.
90. L.F. Jiao, M. Zhang, H.T. Yuan, M. Zhao, J. Guo, W. Wang, X. Di Zhou, and Y.M. Wang, Effect of Cr doping on the structural, electrochemical properties of Li [Li 0.2 Ni 0.2− x/2 Mn 0.6− x/2 Cr x] O 2 (x= 0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries. Journal of power sources, 2007. 167(1): p. 178-184.
91. G.-B. Liu, H. Liu, Y. Wang, Y.-F. Shi, and Y. Zhang, The electrochemical properties of Fe-and Ni-cosubstituted Li2MnO3 via combustion method. Journal of Solid State Electrochemistry, 2013. 17(9): p. 2437-2444.
92. F. Lian, M. Gao, W. Qiu, P. Axmann, and M. Wohlfahrt-Mehrens, Fe-doping effects on the structural and electrochemical properties of 0.5 Li2MnO3· 0.5 LiMn0. 5Ni0. 5O2 electrode material. Journal of Applied Electrochemistry, 2012. 42(6): p. 409-417.
93. H. Deng, I. Belharouak, H. Wu, D. Dambournet, and K. Amine, Effect of cobalt incorporation and lithium enrichment in lithium nickel manganese oxides. Journal of The Electrochemical Society, 2010. 157(7): p. A776-A781.
94. Z. Tang, Z. Wang, X. Li, and W. Peng, Preparation and electrochemical properties of Co-doped and none-doped Li [Li x Mn 0.65 (1− x) Ni 0.35 (1− x)] O 2 cathode materials for lithium battery batteries. Journal of Power Sources, 2012. 204: p. 187-192.
95. J.-H. Park, J. Lim, J. Yoon, K.-S. Park, J. Gim, J. Song, H. Park, D. Im, M. Park, and D. Ahn, The effects of Mo doping on 0.3 Li [Li 0.33 Mn 0.67] O 2· 0.7 Li [Ni 0.5 Co 0.2 Mn 0.3] O 2 cathode material. Dalton Transactions, 2012. 41(10): p. 3053-3059.
96. H. Yu and H. Zhou, Initial Coulombic efficiency improvement of the Li 1.2 Mn 0.567 Ni 0.166 Co 0.067 O 2 lithium-rich material by ruthenium substitution for manganese. Journal of Materials Chemistry, 2012. 22(31): p. 15507-15510.
97. Z. Tang, X. Li, and Z. Wang, Effects of Al doping for Li [Li0. 09Mn0. 65* 0.91 Ni0. 35* 0.91] O2 cathode material. Ionics, 2013. 19(11): p. 1495-1501.
98. J. Zheng, X. Wu, and Y. Yang, Improved electrochemical performance of Li [Li 0.2 Mn 0.54 Ni 0.13 Co 0.13] O 2 cathode material by fluorine incorporation. Electrochimica Acta, 2013. 105: p. 200-208.
99. 林威志, 相轉變對富鋰層狀結構氧化物正極材料的電化學性質影響之研究. 碩士論文, 2015.
100. D. Mohanty, A.S. Sefat, J. Li, R.A. Meisner, A.J. Rondinone, E.A. Payzant, D.P. Abraham, D.L. Wood III, and C. Daniel, Correlating cation ordering and voltage fade in a lithium–manganese-rich lithium-ion battery cathode oxide: a joint magnetic susceptibility and TEM study. Physical Chemistry Chemical Physics, 2013. 15(44): p. 19496-19509.
101. C.-H. Shen, S.-Y. Shen, F. Fu, C.-G. Shi, H.-Y. Zhang, M.J. Pierre, H. Su, Q. Wang, B.-B. Xu, and L. Huang, New insight into structural transformation in Li-rich layered oxide during the initial charging. Journal of Materials Chemistry A, 2015. 3(23): p. 12220-12229.
102. R. Xiao, H. Li, and L. Chen, Density functional investigation on Li2MnO3. Chemistry of Materials, 2012. 24(21): p. 4242-4251.
103. Y. Okamoto, Ambivalent effect of oxygen vacancies on Li2MnO3: A first-principles study. Journal of The Electrochemical Society, 2011. 159(2): p. A152-A157.
104. D. Qian, B. Xu, M. Chi, and Y.S. Meng, Uncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides. Physical Chemistry Chemical Physics, 2014. 16(28): p. 14665-14668.
105. S. Kim, C. Kim, Y.-I. Jhon, J.-K. Noh, S.H. Vemuri, R. Smith, K.Y. Chung, M.S. Jhon, and B.-W. Cho, Synthesis of layered–layered 0.5 Li 2 MnO 3· 0.5 LiCoO 2 nanocomposite electrode materials by the mechanochemical process and first principles study. Journal of Materials Chemistry, 2012. 22(48): p. 25418-25426.
106. J. Li, Y. Xu, X. Li, and Z. Zhang, Li 2 MnO 3 stabilized LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode with improved performance for lithium ion batteries. Applied Surface Science, 2013. 285: p. 235-240.
107. G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996. 6(1): p. 15-50.
108. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996. 54(16): p. 11169.
109. K. Momma and F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 2008. 41(3): p. 653-658.
110. H. Kragh, Quantum generations: A history of physics in the twentieth century. 2002: Princeton University Press.
111. E. Schrödinger, An undulatory theory of the mechanics of atoms and molecules. Physical Review, 1926. 28(6): p. 1049.
112. P. Hohenberg and W. Kohn, Inhomogeneous electron gas. Physical review, 1964. 136(3B): p. B864.
113. W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical review, 1965. 140(4A): p. A1133.
114. A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior. Physical review A, 1988. 38(6): p. 3098.
115. D.M. Ceperley and B. Alder, Ground state of the electron gas by a stochastic method. Physical Review Letters, 1980. 45(7): p. 566.
116. J.P. Perdew and W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Physical review B, 1986. 33(12): p. 8800.
117. M. Fuchs, Exchange-correlation energy: From LDA to GGA and beyond. 1998.
118. F. Zhou, M. Cococcioni, C.A. Marianetti, D. Morgan, and G. Ceder, First-principles prediction of redox potentials in transition-metal compounds with LDA+ U. Physical Review B, 2004. 70(23): p. 235121.
119. L. Wang, T. Maxisch, and G. Ceder, Oxidation energies of transition metal oxides within the GGA+ U framework. Physical Review B, 2006. 73(19): p. 195107.
120. A. Jain, G. Hautier, S.P. Ong, C.J. Moore, C.C. Fischer, K.A. Persson, and G. Ceder, Formation enthalpies by mixing GGA and GGA+ U calculations. Physical Review B, 2011. 84(4): p. 045115.
121. K. Schwarz, Chapter 10 Computation of Materials Properties at the Atomic Scale, in Selected Topics in Applications of Quantum Mechanics. 2015.
122. H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations. Physical Review B, 1976. 13(12): p. 5188.
123. P. Schwerdtfeger, The pseudopotential approximation in electronic structure theory. ChemPhysChem, 2011. 12(17): p. 3143-3155.
124. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999. 59(3): p. 1758.
125. P.E. Blöchl, Projector augmented-wave method. Physical Review B, 1994. 50(24): p. 17953.
126. http://folk.uio.no/ravi/activity/ordering/spinfig.html.
127. F. Xiong, H. Yan, Y. Chen, B. Xu, J. Le, and C. Ouyang, The atomic and electronic structure changes upon delithiation of LiCoO2: From first principles calculations. Int J Electrochem Sci, 2012. 7: p. 9390-9400.
128. S. Lee and S.S. Park, Atomistic simulation study of mixed-metal oxide (LiNi1/3Co1/3Mn1/3O2) cathode material for lithium ion battery. The Journal of Physical Chemistry C, 2012. 116(10): p. 6484-6489.
129. J. Kemp, P. Cox, and J. Hodby, Magnetic susceptibility studies of LiNiO2 and NaNiO2. Journal of Physics: Condensed Matter, 1990. 2(31): p. 6699.
130. K. Hoang, Defect physics, delithiation mechanism, and electronic and ionic conduction in layered lithium manganese oxide cathode materials. Physical Review Applied, 2015. 3(2): p. 024013.
131. J. Sugiyama, K. Mukai, H. Nozaki, M. Harada, M. Månsson, K. Kamazawa, D. Andreica, A. Amato, and A.D. Hillier, Antiferromagnetic spin structure and lithium ion diffusion in Li 2 MnO 3 probed by μ+ SR. Physical Review B, 2013. 87(2): p. 024409.
132. J.-K. Park, Principles and applications of lithium secondary batteries. 2012: John Wiley & Sons.
133. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical review letters, 1996. 77(18): p. 3865.
134. M. Ménétrier, D. Carlier, M. Blangero, and C. Delmas, On “really” stoichiometric LiCoO2. Electrochemical and Solid-State Letters, 2008. 11(11): p. A179-A182.
135. Y. Koyama, H. Arai, I. Tanaka, Y. Uchimoto, and Z. Ogumi, Defect Chemistry in Layered Li M O2 (M= Co, Ni, Mn, and Li1/3Mn2/3) by First-Principles Calculations. Chemistry of Materials, 2012. 24(20): p. 3886-3894.
136. R. Benedek, J. Vaughey, and M. Thackeray, Theory of overlithiation reaction in LiMO2 battery electrodes. Chemistry of materials, 2006. 18(5): p. 1296-1302.
137. J. Van Elp, J. Wieland, H. Eskes, P. Kuiper, G. Sawatzky, F. De Groot, and T. Turner, Electronic structure of CoO, Li-doped CoO, and LiCoO 2. Physical Review B, 1991. 44(12): p. 6090.
138. V. Massarotti, M. Bini, D. Capsoni, A. Altomare, and A. Moliterni, Ab initio structure determination of Li2MnO3 from x-ray powder diffraction data. Journal of applied crystallography, 1997. 30(2): p. 123-127.
139. C.G. Van de Walle and J. Neugebauer, First-principles calculations for defects and impurities: Applications to III-nitrides. Journal of Applied Physics, 2004. 95(8): p. 3851-3879.
140. W. Greiner, L. Neise, and H. Stöcker, Thermodynamics and statistical mechanics. 2012: Springer Science & Business Media.
141. J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 1993. 192(1): p. 55-69.
142. https://www.ill.eu/sites/fullprof/index.html.
143. M. Aydinol, A. Kohan, and G. Ceder, Ab initio calculation of the intercalation voltage of lithium-transition-metal oxide electrodes for rechargeable batteries. Journal of power sources, 1997. 68(2): p. 664-668.
144. C.-X. Zu and H. Li, Thermodynamic analysis on energy densities of batteries. Energy & Environmental Science, 2011. 4(8): p. 2614-2624.
145. M.Y. Son, Y.J. Hong, S.H. Choi, and Y.C. Kang, Effects of ratios of Li 2 MnO 3 and Li (Ni 1/3 Mn 1/3 Co 1/3) O 2 phases on the properties of composite cathode powders in spray pyrolysis. Electrochimica Acta, 2013. 103: p. 110-118.
146. G. Henkelman, A. Arnaldsson, and H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 2006. 36(3): p. 354-360.
147. W. Tang, E. Sanville, and G. Henkelman, A grid-based Bader analysis algorithm without lattice bias. Journal of Physics: Condensed Matter, 2009. 21(8): p. 084204.
148. Z. Alahmed and H. Fu, First-principles determination of chemical potentials and vacancy formation energies in Pb Ti O 3 and Ba Ti O 3. Physical Review B, 2007. 76(22): p. 224101.
149. K. Chang and B. Hallstedt, Thermodynamic assessment of the Li–O system. Calphad, 2011. 35(2): p. 160-164.
150. M. Zinkevich and F. Aldinger, Thermodynamic analysis of the ternary La–Ni–O system. Journal of alloys and compounds, 2004. 375(1): p. 147-161.
151. M. Chen, B. Hallstedt, and L.J. Gauckler, Thermodynamic assessment of the Co-O system. Journal of phase equilibria, 2003. 24(3): p. 212-227.
152. A.N. Grundy, B. Hallstedt, and L.J. Gauckler, Assessment of the Mn-O system. Journal of phase equilibria, 2003. 24(1): p. 21-39.
153. J. Chenavas, J. Joubert, and M. Marezio, Low-spin→ high-spin state transition in high pressure cobalt sesquioxide. Solid State Communications, 1971. 9(13): p. 1057-1060.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-09-02起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-09-02起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw