進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0209201608021100
論文名稱(中文) 運用意見探勘技術探討影響享樂型App銷售之因素–以熱門遊戲及影音類App為例
論文名稱(英文) Exploring the Affecting Factors of Hedonic App Sales through Opinion Mining - As a Case Study on Top Game & Media Apps
校院名稱 成功大學
系所名稱(中) 電信管理研究所
系所名稱(英) Institute of Telecommunications and Management
學年度 104
學期 2
出版年 105
研究生(中文) 王姿棻
研究生(英文) Tzu-Fen Wang
學號 R96034018
學位類別 碩士
語文別 中文
論文頁數 78頁
口試委員 指導教授-林佐鼎
口試委員-蔡東峻
口試委員-楊宗璟
中文關鍵字 意見探勘  雙向傳播法  資訊系統成功模式  行動應用軟體 
英文關鍵字 opinion mining  double propagation  information system success model  app 
學科別分類
中文摘要 隨著網路普及、科技發展、以及行動智慧裝置數量的增加,促進行動應用軟體(Mobile Application, App)市場的成長。當使用者體驗App服務後,會將其使用經驗及感想發表於App商店中供其他前潛在用戶參考,而開發商也能透過這些評論了解使用者所在意的產品特性,以開發更符合消費者需求的行動應用軟體。
然而對於潛在消費者而言,龐大的評論數量可能使購買的決定變得困難,對開發商來說追蹤產品評論更是一個浩大的工程,因此本研究利用Qiu et al.在2011年提出的雙向傳播法(Double Propagation),利用特徵詞與意見詞間的語法關係反覆迭代擴展意見詞匯和擷取意見目標,輔以資訊系統成功模式並結合迴歸統計分析,有系統地分析顧客的評論,以瞭解吸引消費者下載及消費的軟體特徵。
行動應用軟體可以根據使用目的、動機、以及使用者的使用經驗等,分成功利型(Utilitarian)和享樂型(Hedonic)兩大類。本研究的研究目標鎖定為2015年度App Store熱銷享樂型App,其性質整理出23個排行榜內遊戲類別的App,以及15個影音類別的App作為享樂型應用軟體的代表。分別就其評論逐一進行意見探勘。
分析結果顯示,對遊戲類App而言,其下載量僅受服務品質的影響,與系統品質無關,而站內購買營收則與口碑的好壞無關。對影音類App而言,其服務品質的優劣和下載量與站內購買營收有關,且營收的高低同時受到系統品質的影響,代表使用者在決定是否購買影音類App的產品時,會考量該軟體系統和服務品質的優劣。
英文摘要 With the ubiquity of Internet, the development of technology, and the increasing number of mobile devices, app market grows intensively. After using app services, mobile users can share their own experience or opinions as a reference to potential customers on App Store. However, for potential consumers, a large number of comments may make purchasing decisions difficult; for app developers, tracking product reviews is a huge project as well. Thus, this study used opinion mining method called double propagation proposed by Qiu et al. in 2011 to expand opinion words and extract targets by several syntactic relations between them. With information system success model and regression analysis, we performed a systematic analysis of customer reviews to find out the software characteristics attracting consumers to download and consume in apps.
Mobile applications are categorized into utilitarian and hedonic segments based on the purpose, motivation and experience of users. In this study, we sorted out 23 top game and 15 media apps in 2015 as a representative of hedonic apps, and conducted the opinion mining on consumer reviews. The results showed that for the game apps, the download was affected by service quality but not system quality, and the IAP had nothing to do with the WOM. For media apps, service quality affected both downloads and IAP. Furthermore, the amount of IAP related to system quality as well. The statistical results said the reputation of service quality and system quality indeed affected consumer behavior of media apps.
論文目次 摘要 i
英文延伸摘要 ii
致謝 vi
目錄 vii
圖目錄 ix
表目錄 xi
第一章、緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究流程 4
第二章、文獻回顧 5
2.1 App營運研究 5
2.1.1 App商業模式 5
2.1.2影響App需求之主要因素 7
2.2口碑 11
2.2.1傳統口碑對銷售之影響 11
2.2.2線上口碑對銷售之影響 12
2.3意見探勘 13
2.3.1文字探勘技術 13
2.3.2意見探勘對App市場之應用 15
2.4資訊系統成功模式 17
2.5文獻評析 20
第三章、研究方法 22
3.1資料搜集部分 23
3.1.1研究範圍與限制 23
3.1.2爬蟲程式 25
3.2資訊系統成功模型之架構 26
3.3 前處理部分 28
3.3.1字根還原 28
3.3.2詞性標注 28
3.4 意見探勘 31
3.4.1語法關係辨識 32
3.4.2意見詞和意見目標的擷取規則 34
3.4.3演算法 37
3.4.4評論語句之極性分配 39
第四章、結果與分析 41
4.1資料蒐集過程與成果 41
4.1.1資料蒐集與分類 41
4.1.2爬取過程 43
4.2意見探勘 45
4.3特徵的選取與迴歸分析 49
4.3.1遊戲類App研究結果與分析 50
4.3.2影音類App研究結果與分析 56
4.3.3小結 63
第五章、結論與建議 67
5.1研究成果 68
5.2後續研究建議 71
參考文獻 72
中文部分 72
英文部分 74
參考文獻 【中文部分】
Inside (2015)。Google Play 應用程式數量首次超越 App Store。Inside 網摘。取自: https://share.inside.com.tw/posts/1420
何中文 (2010)。以資訊系統成功觀點探討影響App持續使用之因素。正修科技大學資訊管理學系研究所學位論文。pp. 1-91。
吳尚緯 (2013)。以文字探勘對行動遊戲進行軟體品質特徵分析。屏東科技大學工業管理系所學位論文。pp. 1-49。
吳凱群 (2012)。智慧型手機使用者下載軟體意願之研究-以享樂型應用軟體為例。東吳大學資訊管理學系學位論文。pp. 1-77。
吳銘弘 (2008)。線上遊戲之資訊系統成功模式。屏東商業技術學院研究所學位論文。pp. 1-95。
呂紹玉(2015)。2015行動應用產業報告:82%開發者靠廣告賺錢,仍有91%在用橫幅廣告。科技新報。取自:http://techmews.tw/2015/002/16/state-of-the-apps-industrys-snapshot-2015/
李漢昌 (2014)。APP在空氣品質警示應用之研究。南華大學資訊管理學系研究所v學位論文。pp. 1-95。
沈盈吟、顏瑄、林素珠 & 鄭仁富(2013)。驚!每人每日有1/8醒著的時間都在使用APP! 資策會FIND:LINE、FB等社群APP平均使用時間更超過1個小時。取自: http://www.find.org.tw/market_info.aspx?n_ID=8304
秀倩 (2012)。蘋果App排名算法調整背後:刷榜公司一夜沉寂。Sina新浪香港。取自http://tech.sina.com.cn/it/20120401/00466902747.shtml
凃郁忠 (2012)。影響消費者下載行動應用軟體意願之研究。 國立高雄師範大學資訊教育研究所學位論文。pp. 1-100。
書聿 (2015)。 Google Play開發者和應用數量首次超App Store。 Sina新浪香港。取自:http://digital.sina.com.hk/news/7/20150122/4246335/
郭盈琳 (2011)。探討資訊品質、系統品質與介面設計品質對購後行為意圖之影響-以智慧型手機為例。高雄第一科技大學行銷與流通管理學系研究所學位論文。pp. 1-95。
彭睿 (2014)。基於拓撲結構分析的小時延缺陷測試通路選擇方法研究。哈爾濱工業大學。pp. 1-96。
楊欽琮。(2013)。網路口碑對行動應用軟體銷售排名之影響—以 Apple App Store 之意見分析為例。中山大學資訊管理學系研究所學位論文。pp. 1-99。
劉籹君、黃興進 & 廖則竣 (2010)。決策支援系統使用績效之實證研究:結合任務-科技適配與資訊系統成功模式。電子商務學報, 12(3)。pp. 407-430。
蔣石蘭 (2012)。智慧型手機使用者應用程式持續使用意圖之研究-以iPhone App Store為例。華梵大學資訊管理學系研究所學位論文。pp. 1-95。

【英文部分】
Amblee, N. & Bui, T. (2008). Can Brand Reputation Improve the Odds of Being Reviewed On-line? International Journal of Electronic Commerce, 12(3), pp. 11-28.
Laudon, K. C., & Laudon, J. P. (2011). Management Information Systems. New Jersey: Prentice Hall.
Archak, N., Ghose, A. & Ipeirotis, P. G. (2007). Show Me the Money!: Deriving the Pricing Power of Product Features by Mining Consumer Reviews. Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 56-65.
Arndt, J. (1967). Role of Product-Related Conversations in the Diffusion of a New Product. Journal of marketing Research, pp. 291-295.
Buttle, F. A. (1998). Word of Mouth: Understanding and Managing Referral Marketing. Journal of Strategic Marketing, 6(3), pp. 241-254.
Carare, O. (2012). The Impact of Bestseller Rank on Demand: Evidence from the App Market. International Economic Review, 53(3), pp. 717-742.
Chen, Y., Liu, F., Ho, L.-M. & Lin, T. M. Y. (2012). Development of Word-of-Mouth Elasticity Measures for Tourism Product Categories. Scientific Research, 3, pp. 722-728.
Cheung, C. M. & Thadani, D. R. (2012). The Impact of Electronic Word-of-Mouth Communication: A Literature Analysis and Integrative Model. Decision Support Systems, 54(1), pp. 461-470.
Chevalier, J. A. & Mayzlin, D. (2006). The Effect of Word of Mouth on Sales: Online Book Reviews. Journal of Marketing Research, 43(3), pp. 345-354.
Cisco. (2015). Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2014-2019.
Dave, K., Lawrence, S. & Pennock, D. M. (2003). Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews. Proceedings of the 12th International Conference on World Wide Web, pp. 519-528.
Day, G. S. (1971). Attitude Change, Media and Word of Mouth. Journal of Advertising Research, 11(6), pp. 31-40.
Delone, W. H. & McLean, E. R. (2003). The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. Journal of Management Information Systems, 19(4), pp. 9-30.
Dinner, I. M., Van Heerde, H. J. & Neslin, S. (2015). Creating Customer Engagement via Mobile Apps: How App Usage Drives Purchase Behavior. SSRN 2669817.
Daisuke Wakabayashi (2015). Apple Says App Store Sales Rose 50% in 2014. The Wall Street journal. Retrieved from http://www.wsj.com/articles/apple-says-app-store-sales-rose-50-in-2014-1420738142
Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P. & Uthurusamy, R. (1996). Advances in Knowledge Discovery and Data Mining. Menlo Park: AAAI Press.
Franke, D., Kowalewski, S. & Weise, C. (2012). A Mobile Software Quality Model. 2012 12th International Conference on Quality Software, pp. 154-157.
Franke, D. & Weise, C. (2011). Providing a Software Quality Framework for Testing of Mobile Applications. 2011 Fourth IEEE International Conference on Software Testing, Verification and Validation, pp. 431-434.
Fu, B., Lin, J., Li, L., Faloutsos, C., Hong, J. & Sadeh, N. (2013). Why People Hate Your App: Making Sense of User Feedback in a Mobile App Store. Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1276-1284.
Garg, R. & Telang, R. (2012). Inferring App Demand from Publicly Available Data. SSRN 2163627.
Ghose, A. & Han, S. P. (2014). Estimating Demand for Mobile Applications in the New Economy. Management Science, 60(6), pp. 1470-1488.
Grewal, D., Gotlieb, J. & Marmorstein, H. (1994). The Moderating Effects of Message Framing and Source Credibility on the Price-Perceived Risk Relationship. Journal of Consumer Research, pp. 145-153.
Hartline, M. D. & Jones, K. C. (1996). Employee Performance Cues in a Hotel Service Environment: Influence on Perceived Service Quality, Value, and Word-of-Mouth Intentions. Journal of Business Research, 35(3), pp. 207-215.
Hearst, M. A. (1997). Text Data Mining: Issues, Techniques, and the Relationship to Information Access. Presentation Notes for UW/MS Workshop on Data Mining, pp. 112-117.
Hennig-Thurau, T., Gwinner, K. P., Walsh, G. & Gremler, D. D. (2004). Electronic Word-of-Mouth via Consumer-Opinion Platforms: What Motivates Consumers to Articulate Themselves on the Internet? Journal of Interactive marketing, 18(1), pp. 38-52.
Holbrook, M. B. & Hirschman, E. C. (1982). The Experiential Aspects of Consumption: Consumer Fantasies, Feelings, and Fun. Journal of Consumer Research, pp. 132-140.
Hu, M. & Liu, B. (2004a). Mining and Summarizing Customer Reviews. Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168-177.
Hu, M. & Liu, B. (2004b). Mining Opinion Features in Customer Reviews. AAAI, 4(4), pp. 755-760.
Khalid, H., Shihab, E., Nagappan, M. & Hassan, A. E. (2014). What Do Mobile App Users Complain About? Software, IEEE, 32(3), pp. 70-77.
Kiecker, P. & Cowles, D. (2002). Interpersonal Communication and Personal Influence on the Internet: A Framework for Examining Online Word-of-Mouth. Journal of Euromarketing, 11(2), pp. 71-88.
Kim, J., Park, Y., Kim, C. & Lee, H. (2014). Mobile Application Service Networks: Apple’s App Store. Service Business, 8(1), pp. 1-27.
Kim, S. M. & Hovy, E. (2004). Determining the Sentiment of Opinions. Proceedings of the 20th International Conference on Computational Linguistics, pp. 1367.
Kimbler, K. (2010). App Store Strategies for Service Providers. Intelligence in Next Generation Networks (ICIN), 2010 14th International Conference on, pp. 1-5.
Kotler, P., Saliba, S. & Wrenn, B. (1991). Marketing Management: Analysis, Planning, and Control: Instructor's Manual. Englewood Cliffs, New Jersey: Prentice-Hall.
Kroenke, D., Bunker, D. & Wilson, D. (2013). Experiencing MIS. Pearson Higher Education AU.
Lan, M.-Y., Liu, F., Fang, C.-H. & Lin, T. M. (2012). Understanding Word-of-Mouth in Counterfeiting. Psychology, 3(3), pp. 289-295.
Laudon, K. C. & Laudon, J. P. (2004). Management Information Systems: Managing the Digital Firm. International Journal of Computers, Communications & Control, 2(1), pp.103-105.
Lee, G. & Raghu, T. S. (2011). Product Portfolio and Mobile Apps Success: Evidence from App Store Market. Proceedings of the Seventeenth Americas Conference on Information Systems.
Lee, J. & Lee, J.-N. (2009). Understanding the Product Information Inference Process in Electronic Word-of-Mouth: An Objectivity–Subjectivity Dichotomy Perspective. Information & Management, 46(5), pp. 302-311.
Mangold, W. G. (1988). Use of Commercial Sources of Information in the Purchase of Professional Services: What the Literature Tells us. Journal of Professional Services Marketing, 3(1-2), pp. 5-17.
Mojica, I. J., Nagappan, M., Adams, B., Berger, T., Dienst, S. & Hassan, A. E. (2015). An Examination of the Current Rating System Used in Mobile App Stores. IEEE Software.
Murray, K. B. (1991). A Test of Services Marketing Theory: Consumer Information Acquisition Activities. The Journal of Marketing, pp. 10-25.
Oliver, R. L. (1997). Satisfaction: A Behavioral Perspective on the Customer. New York: McGraw Hill.
Pang, B. & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundations and Trends in Information Retrieval, 2(1-2), pp. 1-135.
Park, D.-H. & Kim, S. (2009). The Effects of Consumer Knowledge on Message Processing of Electronic Word-of-Mouth via Online Consumer Reviews. Electronic Commerce Research and Applications, 7(4), pp. 399-410.
Park, D.-H. & Lee, J. (2009). eWOM Overload and Its Effect on Consumer Behavioral Intention Depending on Consumer Involvement. Electronic Commerce Research and Applications, 7(4), pp. 386-398.
Pitt, L. F., Watson, R. T. & Kavan, C. B. (1995). Service Quality: A Measure of Information Systems Effectiveness. MIS Quarterly, 19(2), pp. 173-187.
Qiu, G., Liu, B., Bu, J. & Chen, C. (2011). Opinion Word Expansion and Target Extraction through Double Propagation. Computational Linguistics, 37(1), pp. 9-27.
Richins, M. L. & Root-Shaffer, T. (1988). The Role of Evolvement and Opinion Leadership in Consumer Word-of-Mouth: An Implicit Model Made Explicit. Advances in Consumer Research, 15, pp. 32-36.
Sawhney, M. S. & Eliashberg, J. (1996). A Parsimonious Model for Forecasting Gross Box-Office Revenues of Motion Pictures. Marketing Science, 15(2), pp. 113-131.
Shapiro, C. & Varian, H. R. (2013). Information Rules: A Strategic Guide to the Network Economy. Harvard Business Press.
Sheth, J. N. (1971). Word-of-Mouth in Low-Risk Innovations. Journal of Advertising Research, 11(3), pp. 15-18.
Simoudis, E. (1996). Reality Check for Data Mining. IEEE Intelligent Systems, 11(5), pp. 26-33.
Statista (2015a). Cumulative Number of Apps Downloaded from the Apple App Store from July 2008 to June 2015 (in Billions). Retrieved from http://www.statista.com/statistics/263794/number-of-downloads-from-the-apple-app-store/
Statista (2015b). Number of Apps Available in Leading App Stores as of July 2015. Retrieved from http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
Sukanya, M. & Biruntha, S. (2012). Techniques on Text Mining. Advanced Communication Control and Computing Technologies (ICACCCT), 2012 IEEE International Conference on, pp. 269-271.
Tan, A. H. (1999). Text Mining: The State of the Art and the Challenges. Proceedings of the PAKDD 1999 Workshop on Knowledge Disocovery from Advanced Databases, 8, pp. 65-70.
Trusov, M., Bucklin, R. E. & Pauwels, K. (2009). Effects of Word-of-Mouth versus Traditional Marketing: Findings from an Internet Social Networking Site. Journal of Marketing, 73(5), pp. 90-102.
Vikram, S. (2015). Forrester Research Mobile Application Spending Forecast, 2014 To 2019 (US). Retrieved from https://www.forrester.com/report/Forrester+Research+Mobile+Application+Spending+Forecast+2014+To+2019+US/-/E-RES121012
Villanueva, J., Yoo, S. & Hanssens, D. M. (2008). The Impact of Marketing-Induced vs. Word-of-Mouth Customer Acquisition on Customer Equity. Journal of Marketing Research, 45(1), pp. 48-59.
Vinodhini, G. & Chandrasekaran, R. (2012). Sentiment Analysis and Opinion Mining: a Survey. International Journal, 2(6), pp.282-292.
Wasserman, A. I. (2010). Software Engineering Issues for Mobile Application Development. Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research, pp. 397-400.
Westbrook, R. A. (1987). Product/Consumption-Based Affective Responses and Postpurchase Processes. Journal of Marketing Research, 24(3), pp. 258-270.


論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw