進階搜尋


 
系統識別號 U0026-0209201413324000
論文名稱(中文) 電阻抗斷層影像重建應用於水泥基複合材料之理論解析極限
論文名稱(英文) Theoretical Sensing Limits of EIT Image Reconstruction of Cementitious Composites
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 黃相文
研究生(英文) Shiang-Wen Huang
學號 n66011451
學位類別 碩士
語文別 中文
論文頁數 163頁
口試委員 指導教授-侯琮欽
口試委員-王雲哲
口試委員-黃忠信
口試委員-鍾興陽
口試委員-楊士賢
中文關鍵字 電阻抗斷層影像  解析度  準確度  接觸阻抗 
英文關鍵字 Electrical impedance tomography  resolution  accuracy  contact impedance 
學科別分類
中文摘要 在水泥基複合材料的非破壞檢測上,電阻抗斷層影像重建是鮮少人使用的方法,而且應用在土木領域的研究也不多,主要原因是混凝土的電阻率太大,導致資料擷取的技術需求較為嚴格,而在前人研究中曾經嘗試於水泥基材料中加入少量的鋼纖維,不但提升混凝土的強度及延展性,且使材料具有可量測的導電性範圍,並使混凝土的電阻抗斷層影像重建具有可行性。本研究主要探討電阻抗斷層影像重建應用於水泥基複合材料的各種相關特性,以期能推廣到水泥基材料的非破壞檢測的研究領域。本論文研究架構為利用程式語言工具MATLAB分別模擬不同電極數目的電極系統和不同幾何形狀的網格模型的電阻抗斷層影像,針對重建結果進行比較,分別討論重建影像的解析度以及準確度的關係,並討論接觸阻抗的大小對圖像所造成之影響。
結果顯示,電極數目越高的系統,由於量測的資訊越多,影像的解析度及準確度皆有明顯提升的情形。另外,在電極的接觸阻抗增加的情況下,重建影像的誤差越明顯,並且在電極數目越高的系統,接觸阻抗的容忍極限值越小。
英文摘要 Electrical impedance tomography image reconstruction is a seldom used method in non-destructive testing of cement-based composite materials, and research in the field of civil engineering is not much. The main reason is that the resistivity of concrete is too large, resulting in data collection technical requirements are more stringent. This study investigates the electrical impedance tomography image reconstruction used in cement-based composite materials to all relevant characteristics in order to be able to promote research in the field of non-destructive testing of cementitious composites. This thesis research framework for the use of the programming language “MATLAB” to simulate electrical impedance tomography, respectively, different number of electrodes systems and grid models of different geometry, compare the results for the reconstruction, discuss the relationship between resolution and accuracy of the reconstructed image and discuss the impact of the size of the contact impedance of the image caused. The results show that the higher the number of electrodes system, because the more information measurements, resolution and accuracy of the image are obviously enhance the situation. Furthermore, the contact impedance at the electrode is increased, the more significant the error of reconstruction image, and the higher the number of electrodes , the smaller the contact impedance tolerance limit.
論文目次 摘要 I
目錄 IX
表目錄 XII
圖目錄 XIII
第一章 緒論 1
1.1研究動機與目的 1
1.2 研究方法 1
1.3 論文架構 2
第二章 文獻回顧 4
2.1混凝土之非破壞檢測 4
2.2混凝土的電學性質 5
2.2.1 阻抗 5
2.2.2 電導率 6
2.2.3混凝土的電阻率 6
2.3電阻抗成像 6
2.3.1 正問題與逆問題 7
2.3.2 重建圖像演算法 7
2.4 資料擷取法 9
2.4.1 相鄰法(adjacent configuration) 9
2.4.2 交叉法(cross configuration) 10
2.4.3 相對法(opposite configuration) 11
2.4.4 適應法(adaptive method) 12
2.5 電阻抗成像的土木應用 13
2.5.1 混凝土的電阻抗成像 13
2.5.2 FRCC的電阻抗成像 15
2.5.3 磚牆的電阻抗成像 16
2.5.4 其餘相關應用 17
2.6 電阻抗成像的解析度 19
2.7 電阻抗成像的誤差 21
第三章 電阻抗成像法之基本原理 23
3.1 正問題數學模型 23
3.2 有限元素法 (Finite element method, FEM) 25
3.2.1有限元素法求解正問題程序 25
3.3 逆問題解 26
3.4 完全電極模式 27
3.5 牛頓—拉夫遜法 28
第四章 模擬方法 30
4.1 二維網格生成 30
4.2 選定異質物大小及位置 30
4.3 逆問題圖像重建 33
4.4 空間解析度評估 34
4.5 準確度評估 36
4.6 接觸阻抗對圖像之影響評估 37
第五章 結果分析 41
5.1 電極數目對空間解析度之影響 41
5.1.1 圓形網格系統 41
5.1.2 方形網格系統 56
5.2電極數目對準確度之影響 72
5.2.1 圓形網格系統 72
5.2.2 方形網格系統 90
5.3 接觸阻抗對圖像之影響 108
5.3.1 圓形網格系統 109
5.3.2 方形網格系統 133
第六章 結論與建議 157
6.1 結論 157
6.2 建議 158
參考文獻 159




參考文獻 1.Swanson, D.K. Measurement errors and origin of electrical impedance changes in the limb. 1976.
2.Henderson, R.P. and J.G. Webster, An impedance camera for spatially specific measurements of the thorax. Biomedical Engineering, IEEE Transactions on, 1978(3): p. 250-254.
3.No, T.C.S., Guidebook on non-destructive testing of concrete structures. 2002.
4.Hou, T.-C. and J.P. Lynch. Tomographic imaging of crack damage in cementitious structural components. in Proceedings of the 4th International Conference on Earthquake Engineering, Taipei, Taiwan. 2006.
5.Hope, B.B., A.K. Ip, and D.G. Manning, Corrosion and electrical impedance in concrete. Cement and concrete research, 1985. 15(3): p. 525-534.
6.徐鳳明, 旋轉式電阻抗斷層攝影系統性能改善與應用. 中央大學電機工程學系學位論文, 2007: p. 1-88.
7.Webster, J.G., Electrical impedance tomography. 1990: Taylor & Francis Group.
8.WahLoh, W. and F. Dickin, Improved modified Newton-Raphson algorithm for electrical impedance tomography. Electronics Letters, 1996. 32(3): p. 206-207.
9.Grootveld, C., A. Segal, and B. Scarlett, Regularized modified Newton‐Raphson technique applied to electrical impedance tomography. International journal of imaging systems and technology, 1998. 9(1): p. 60-65.
10.鄧娟, 王妍, 呂婧華和任超世, 三種 EIT 算法重建圖像評價的仿真研究. 醫療衛生裝備, 2010. 31(5): p. 1-3.
11.Li, Y. and W. Yang, Image reconstruction by nonlinear Landweber iteration for complicated distributions. Measurement Science and Technology, 2008. 19(9): p. 094014.
12.Yang, W., D. Spink, T. York, and H. McCann, An image-reconstruction algorithm based on Landweber's iteration method for electrical-capacitance tomography. Measurement Science and Technology, 1999. 10(11): p. 1065.
13.Vauhkonen, M., D. Vadasz, P.A. Karjalainen, E. Somersalo, and J.P. Kaipio, Tikhonov regularization and prior information in electrical impedance tomography. Medical Imaging, IEEE Transactions on, 1998. 17(2): p. 285-293.
14.Jing, L., S. Liu, L. Zhihong, and S. Meng, An image reconstruction algorithm based on the extended Tikhonov regularization method for electrical capacitance tomography. Measurement, 2009. 42(3): p. 368-376.
15.Yorkey, T.J., J.G. Webster, and W.J. Tompkins, Comparing reconstruction algorithms for electrical impedance tomography. Biomedical Engineering, IEEE Transactions on, 1987(11): p. 843-852.
16.Blott, B., G. Daniell, and S. Meeson, Electrical impedance tomography with compensation for electrode positioning variations. Physics in medicine and biology, 1998. 43(6): p. 1731.
17.Nissinen, A., V. Kolehmainen, and J.P. Kaipio, Compensation of modelling errors due to unknown domain boundary in electrical impedance tomography. Medical Imaging, IEEE Transactions on, 2011. 30(2): p. 231-242.
18.Kim, H.-C., C.-J. Boo, and Y.-J. Lee, Image reconstruction using simulated annealing algorithm in EIT. Int. J. of Control, Automation, and Systems, 2005. 3: p. 211-216.
19.Cheng, K.-S. and B.-H. Chen. Simulated annealing and genetic algorithms based methods for impedance image reconstruction. in Bioelectromagnetism, 1998. Proceedings of the 2nd International Conference on. 1998. IEEE.
20.尋洋洋, 范助文, 張衛東和楊磊, 濾波逆投影法在 CT 圖像重建中的研究與實現. 中國礦業大學信息與電氣工程學院, 2009.
21.Wang, M., J. Zhao, S. Zhang, and G. Wang. Electrical impedance tomography based on filter back projection improved by means method. in Biomedical Engineering and Informatics (BMEI), 2010 3rd International Conference on. 2010. IEEE.
22.Zhu, Q., C. Luo, Z. Zhong, and M. Chen. An improved back-projection algorithm for electrical impedance tomography. in Automation Congress, 2008. WAC 2008. World. 2008. IEEE.
23.Olmi, R., M. Bini, and S. Priori, A genetic algorithm approach to image reconstruction in electrical impedance tomography. Evolutionary Computation, IEEE Transactions on, 2000. 4(1): p. 83-88.
24.Hou, W. and Y. Mo, Increasing image resolution in electrical impedance tomography. Electronics Letters, 2002. 38(14): p. 701-702.
25.Luo, C.Y., Algorithm of Electrical Impedance Tomography and Experiment Research Based on Fast Newton's One Step Error Reconstructor, 2005, Chongqing University.
26.Luo, C., M. Chen, P. Wang, and W. He. A novel voltage measurement approach for image reconstruction of Electrical impedance tomography. in Automation Congress, 2008. WAC 2008. World. 2008. IEEE.
27.Bera, T.K. and J. Nagaraju, Resistivity imaging of a reconfigurable phantom with circular inhomogeneities in 2D-electrical impedance tomography. Measurement, 2011. 44(3): p. 518-526.
28.Nasehi Tehrani, J., T.I. Oh, C. Jin, A. Thiagalingam, and A. McEwan, Evaluation of different stimulation and measurement patterns based on internal electrode: Application in cardiac impedance tomography. Computers in biology and medicine, 2012. 42(11): p. 1122-1132.
29.Gisser, D., D. Isaacson, and J. Newell, Current topics in impedance imaging. Clinical Physics and Physiological Measurement, 1987. 8(4A): p. 39.
30.Gisser, D., D. Isaacson, and J. Newell, Theory and performance of an adaptive current tomography system. Clinical Physics and Physiological Measurement, 1988. 9(4A): p. 35.
31.徐東亮, 李卓球, 宋顯輝和呂泳, 機敏混凝土 ERT 實驗系统設計. 測控技術, 2006. 25(9): p. 22-24.
32.Karhunen, K., A. Seppänen, A. Lehikoinen, J. Kaipio, and P. Monteiro, Locating reinforcing bars in concrete with Electrical Resistance Tomography. Concrete Repair, Rehabilitation and Retrofitting II–Alexander et al (eds), 2009.
33.Karhunen, K., A. Seppänen, A. Lehikoinen, P.J. Monteiro, and J.P. Kaipio, Electrical resistance tomography imaging of concrete. Cement and Concrete Research, 2010. 40(1): p. 137-145.
34.Hou, T.-C. and J.P. Lynch, Electrical impedance tomographic methods for sensing strain fields and crack damage in cementitious structures. Journal of Intelligent Material Systems and Structures, 2009. 20(11): p. 1363-1379.
35.Hola, J., Z. Matkowski, K. Schabowicz, J. Sikora, K. Nita, and S. Wójtowicz, Identification of moisture content in brick walls by means of impedance tomography. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2012. 31(6): p. 1774-1792.
36.BIERNAT, K., A. IDZIASZEK-GONZALEZ, K. Nita, J. Sikora, and S. Wójtowicz. Nondestructive impedance method of brickwork damp identification. in 42nd International Conference and NDT Exhibition NDE for Safety/Defektoskopie. 2012.
37.Bouchette, G., P. Church, J.E. Mcfee, and A. Adler, Imaging of Compact Objects Buried in Underwater Sediments Using Electrical Impedance Tomography. Geoscience and Remote Sensing, IEEE Transactions on, 2014. 52(2): p. 1407-1417.
38.Loyola, B.R., V. Saponara, K.J. Loh, T.M. Briggs, G. O'Bryan, and J.L. Skinner, Spatial Sensing Using Electrical Impedance Tomography. Sensors Journal, IEEE, 2013. 13(6): p. 2357-2367.
39.Allers, A. and F. Santosa, Stability and resolution analysis of a linearized problem in electrical impedance tomography. Inverse problems, 1991. 7(4): p. 515.
40.Dobson, D.C. and F. Santosa, Resolution and stability analysis of an inverse problem in electrical impedance tomography: dependence on the input current patterns. SIAM Journal on Applied Mathematics, 1994. 54(6): p. 1542-1560.
41.Wheeler, J.L., W. Wang, and M. Tang, A comparison of methods for measurement of spatial resolution in two-dimensional circular EIT images. Physiological measurement, 2002. 23(1): p. 169.
42.Kolehmainen, V., M. Lassas, and P. Ola, Electrical impedance tomography problem with inaccurately known boundary and contact impedances. Medical Imaging, IEEE Transactions on, 2008. 27(10): p. 1404-1414.
43.Holder, D.S., Electrical impedance tomography: methods, history and applications. 2010: CRC Press.
44.Chen, L., Programming of Finite Element Methods in Matlab. Preprint, University of California Irvine, 2011.
45.Woo, E., P. Hua, J. Webster, and W. Tompkins, Finite-element method in electrical impedance tomography. Medical and Biological Engineering and Computing, 1994. 32(5): p. 530-536.
46.Popovics, J.S., Recent developments in NDT and SHM in the united states. Non-Destructive Testing in Civil Engineering, NDTCE, 2009. 9.
47.Cheng, K.-S., D. Isaacson, J. Newell, and D.G. Gisser, Electrode models for electric current computed tomography. Biomedical Engineering, IEEE Transactions on, 1989. 36(9): p. 918-924.
48.Vauhkonen, P.J., M. Vauhkonen, T. Savolainen, and J.P. Kaipio, Three-dimensional electrical impedance tomography based on the complete electrode model. Biomedical Engineering, IEEE Transactions on, 1999. 46(9): p. 1150-1160.
49.Somersalo, E., M. Cheney, and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography. SIAM Journal on Applied Mathematics, 1992. 52(4): p. 1023-1040.
50.Gautschi, W., Numerical analysis. 2011: Springer.
51.Whiting, D.A. and M.A. Nag, Electrical Resistivity of Concrete -A Literature Review. 2003: Portland Cement Association.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-11起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-09-11起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw