進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0209201222140900
論文名稱(中文) 以有機金屬氣相磊晶法成長寬能隙三族氮化物光電元件之研究
論文名稱(英文) Wide Bandgap III-Nitride-based Optoelectronic Devices Grown by Metalorganic Vapor Phase Epitaxy
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 100
學期 2
出版年 101
研究生(中文) 彭立琪
研究生(英文) Li-Chi Peng
學號 l78961042
學位類別 博士
語文別 英文
論文頁數 122頁
口試委員 指導教授-賴韋志
口試委員-許進恭
口試委員-張守進
口試委員-李清庭
口試委員-紀國鐘
口試委員-洪瑞華
口試委員-郭政煌
口試委員-簡奉任
中文關鍵字 有機金屬氣相磊晶法  氮化鎵  氮化鋁鎵  發光二極體  蕭特基光檢測器 
英文關鍵字 MOVPE  GaN  AlGaN  light emitting diodes  Schottky-type photodetectors 
學科別分類
中文摘要 本論文以有機金屬氣相磊晶法製研三族氮化物之光電元件。首先使用製程改善方式來提升氮化鎵藍色發光二極體之發光效率。側邊粗化與微米尺度導光柱之表面粗化結構應用於氮化鎵藍色發光二極體上,藉由降低元件內部全反射可有效提升發光效率約26%。再者,結合反射式金屬p/n型電極-銀/鉻/金(Ag/Cr/Au)、側邊粗化及微米尺度導光柱之表面粗化結構與圖案化藍寶石基板於氮化鎵發光二極體上,其光電轉換效率可較傳統之氮化鎵發光二極體提升約80%。
成長氮化鎵/氮化鋁鎵多層結構於圖案化n型氮化鎵上,利用材料其光學折射係數差異形成之散射層(light scattering layer)可有效提升發光二極體發光效率約30%。此外,同質性(homogeneous)成長之氮化鎵磊晶層於圖案化n型氮化鎵上,因其側向與縱向成長速率之差異形成一類似側向磊晶成長模式(Epitaxial lateral overgrowth model)也可有效改善磊晶薄膜品質。
成長單層結構之氮化鋁鎵薄膜於具微米柱結構之圖案化氮化鎵上,因不同磊晶成長平面形成的表面應力與成長速率之差異,而存在有一相異鋁含量之分佈。利用其結構特性製作氮化鋁鎵系列蕭特基光檢測器可得到雙吸收波段為326nm和346nm,而其分別來自於微米柱平台與邊緣側壁之氮化鋁鎵的吸收。
英文摘要 In this dissertation, growth and fabrication of III-nitride-based optoelectronic devices by MOVPE have been studied. Several methods used to improve output power efficiency of GaN-based blue light emitting diodes (LEDs) have been studied. GaN-based blue LEDs with textured sidewalls and micro-scale pillars around mesa region could enhance light efficiency about 26% by reducing the total internal reflection of light inside the LED structure. Furthermore, comparison of conventional LEDs, the LEDs combining with textured sidewalls, GaN micro-pillars around the mesa region, patterned sapphire substrate (PSS), and highly reflective p-/n-type Ag/Cr/Au electrode pads could further improve around 80% in wall-plug efficiency (WPE).
The embedded multilayers of GaN/AlxGa1-xN microlens-like structure on GaN template with micro-pillars pattern could enhance the LEDs output power by more than 30% due to the enhanced guided-light scattering efficiency, resulting from the difference in refractive index of GaN and AlGaN layer. Moreover, owing to the difference in lateral and vertical growth rate of homoepitaxial GaN grown on GaN template with micro-pillars pattern, the similar epitaxial lateral overgrowth model have be demonstrated and could further improve the crystal quality of epilayer.
A single AlGaN layer with two different Al contents by grown on the GaN template with micro-pillars structure has been demonstrated. The strains-induced Al incorporation efficiency and difference in lateral and vertical growth rate of AlGaN grown on the sidewalls, top and valley surfaces of the pillars lead to form the different Al contents in the single AlGaN layer. The Schottky-type photodetectors (PDs) were also demonstrated for double Al contents of deposited AlGaN on GaN μ-pillar templates, exhibiting the three steps of responses occurred at about 326, 346, and 356 nm. The cutoff wavelength of the Schottky PDs at 326 and 346 nm should be contributed by the AlGaN layer on the sidewall of cone shaped pillars and the rest of the area of the AlGaN, respectively.
論文目次 摘要 I
Abstract III
Acknowledgement V
Contents VI
Table Captions IX
Figure Captions X

Chapter 1 Introduction 1
1.1 Properties and applications of wide bandgap III-Nitride semiconductors 1
1.2 Background of wide bandgap III-Nitride semiconductors 7
1.3 Organization of this dissertation 13
References in chapter 1 14

CHAPTER 2 Metalorganic Vapor Phase Epitaxy System 22
2.1 Introduction 22
2.2 The Basic Reaction of GaN Epitaxy Process in MOVPE 23
2.3 MOVPE System 26
2.3.1 Gas Delivery System 26
2.3.2 Reactor System 27
2.3.3 Exhaust System 28
2.4 In-Situ Monitoring for Epitaxy Growth 29
Reference in chapter 2 32

CHAPTER 3 The Study of Light Output Power Improvement in III-Nitride Based Light Emitting Diodes 36
3.1 Introduction 36
3.2 III-Nitride Based Light Emitting Diodes with GaN Micro-Pillars around Mesa and Patterned Substrate 38
3.3 GaN-Based LEDs with GaN μ-Pillars Around Mesa, Patterned Substrate, and Reflector Under Pads 58
References in chapter 3 67

Chapter 4 GaN-based Light Emitting Diodes with microlens-like structure by grown on GaN template with Micro-Pillar structure 71
4.1 Introduction 71
4.2 Growth and fabrication of GaN-based LEDs on GaN template with micro-pillar structure 73
4.3 Characteristics of GaN-based LEDs with embedded microlens-like structure 81
References in chapter 4 94

Chapter 5 AlGaN-based Ultraviolet Photodetector with Micro-Pillar structures 97
5.1 Introduction 97
5.2 Characteristics of AlGaN grown on GaN template with micro-pillar patterned structure 98
5.3 Characteristics of AlGaN-based ultraviolet photodetector with micro-pillar structures 106
References in chapter 5 114

Chapter 6 Conclusions and Future works 116
6.1 Conclusions 116
6.2 Future works 118

Publication List 120

參考文獻 References in chapter 1
[1]B. Daudin, J. L. Rouviere, and M. Arlery, “Polarity determination of GaN films by ion channeling and convergent beam electron diffraction,” Appl. Phys. Lett., vol. 69, pp. 2480, 1996.
[2]S. Strite, M.E. Lin, and H. morkoc, “Progress and prospects for GaN and III-V nitride semiconductors,” Thin Solid Films, vol. 231, issue 1-2, pp. 197-210, 1993.
[3]J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager, E.E. Haller, H. Lu, William J. Schaff, Yoshiki Saito, and Yasuchi Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett., vol. 80, no. 21, pp. 3967-3969, 2002.
[4]J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager, E.E. Haller, H. Lu, and William J. Schaff, “Small band gap bowing in In1-xGaxN alloys,” Appl. Phys. Lett., vol. 80, no. 25, pp. 4741-4743, 2002.
[5]W. Xie, D. C. Grillo, R. L. Gunshor, M. Kobayashi, H. Jeon, J. Ding, A. V. Nurmikko, G. C. Hua, and N. Otsuka, “Room temperature blue light emitting p-n diodes from Zn(S, Se)-based multiple quantum well structures,” Appl. Phys. Lett., vol. 60, pp. 1999-2001, 1992.
[6]Y. Matsushita, T. Uetani, T. Kunisato, J. Suzuki, Y. Ueda, K. Yagi, T. Yamaguchi, and T. Niina, “Dependence of SiC blue light-emitting diode efficiency on the p-type layer growth temperature,” Jpn. J. Appl. Phys., vol. 34, pp. 1833-1834, 1995.
[7]M. A. Khan, J. N. Kuznia, J. M. Van Hove, N. Pan, and J. Carter, “Observation of a two-dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN-AlxGa1-xN heterojunction,” Appl. Phys. Lett., vol. 60, pp. 3027-3029, 1992.
[8]M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olson, “Metal semiconductor field effect transistor based on single crystal GaN,” Appl. Phys. Lett., vol. 62, pp. 1786-1787, 1993.
[9]J. B. Limb, H. Xing, B. Moran, L. McCarthy, S. P. DenBaars, and U. K. Mishra, “High voltage operation (>80V) of GaN bipolar junction transistors with low leakage,” Appl. Phys. Lett., vol. 76, pp. 2457-2459, 2000.
[10]L. S. McCarthy, P. Kozodoy, M. J. W. Rodwell, S. P. DenBaars, and U. K. Mishra, “ AlGaN/GaN heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 20, pp. 277-279, 1999.
[11]M. F. Schubert (2009) Overcoming the efficiency droop in GaInN light-emitting diodes and novel technologies for c-plane GaInN polarized emitters, Rensselaer polytechnic institute, Electrical engineering.
[12]R. Juza and H. Hahn, Zeitschr. Anorgan. Allgem., vol. 234, pp. 282, 1940.
[13]H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapor-deposition single-crystal-line GaN,” Appl. Phys. Lett., vol. 15, pp. 327-329, 1969.
[14]H. Manasevi, F. M. Erdmann, and W. I. Simpson, “The use of metalorganics in the preparation of semiconductor materials,” J. Electrochem. Soc., vol. 118, pp. 1864-1868, 1971.
[15]J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, “GaN electroluminescent diodes,” RCA Review, vol. 32, pp. 383, 1971.
[16]S. Nakamura and G. Fasol, “The blue laser diode: GaN based light emitters and lasers,” Springer, 1997.
[17]H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., vol. 48, pp. 353-355, 1986.
[18]S. Nakamura, “GaN growth using GaN buffer layer,” Jpn. J. Appl. Phys., vol. 30, pp. L1705-1707, 1991.
[19]W. Seifert, R. Franzheld, E. Butter, H. Sobotta, and V. Riede, “On the origin of free carriers in high-conducting n-GaN,” Crystal Res. Technol., vol. 18, pp. 383-390, 1983.
[20]J. I. Pankove, S. Bloom, and G. Harbeke, “Optical properties of GaN,” RCA Rev., vol. 36, pp. 163, 1975.
[21]H. Amano, M. Kito, K. Hiramastu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation,” Jpn. J. Appl. Phys., vol. 28, pp. L2112-2114, 1989.
[22]S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys., vol. 31, pp. 1258-1266, 1992.
[23]D. K. Kim, “Effect of AlN buffer thickness on stress relaxation in GaN layer on Si(111),” Solid State Electronics, vol. 51, pp. 1005-1008, 2007.
[24]A. Dadgar, F. Schulze, M. Wienecke, A. Gadanecz, J. Blasing, P. Veit, T. Hempel, A. Diez, J. Christen, and A. Krost, “Epitaxy of GaN on silicon-impact of symmetry and surface reconstruction,” New Journal of Phys., vol. 9, pp. 389, 2007.
[25]H. Ohsato and M. Razeghi, “Growth models of GaN thin films based on crystal chemistry: Hexagonal and cubic GaN on Si substrate,” Proc. SPIE, vol. 2999, pp. 288, 1997.
[26]E. S. Hellman, Z. L. Weber, and D. Buchanan, “Epitaxial growth and orientation of GaN on (100) gamma-LiAlO2,” MRS Internet J. Nitride Semicond. Res., vol. 2. pp. 30, 1997.
[27]X. Ke, X. Jun, D. Peizhen, Z. Yongzong, Z. Guoqing, Q. Rongsheng, and F. Zujie, “γ-LiAlO2 single crystal: a novel substrate for GaN epitaxy,” J. Cryst. Growth, vol. 193, pp. 127-132, 1998.
[28]P. Kung, A. Saxler, X. Zhang, D. Walker, R. Lavado, and M. Razaghi, “Metalorganic chemical vapor deposition of monocrystalline GaN thin films on β-LiGaO2 substrate,” Appl. Phys. Lett., vol. 69, pp. 6116-6118, 1996.
[29]X. Gu, M. A. Reshchikov, A. Teke, D. Johnstone, H. Morkoc, B. Nemeth, J. Nause, “GaN epitaxy on thermally treated c-plane bulk ZnO substrate with O and Zn faces,” Appl. Phys. Lett., vol. 84, pp. 2268-2270, 2004.
[30]B. Gil, “Group III nitride semiconductor compounds,” Clarendon Press, Oxford, pp. 33, 1998.
[31]S. T. Kim, H. Amano, I. Akasaki, and N. Koide, “Optical gain of optically pumped Al0.1Ga0.9N/GaN double heterostructure at room temperature,” Appl. Phys. Lett., vol. 64, pp. 1535-1536, 1994.
[32]R. F. Davis, “Deposition and characterization of diamond, silicon carbide and gallium nitride thin films,” J. Cryst. Growth, vol. 137, pp. 161-169, 1994.
[33]S. Nakamura, S. Pearton, and G. Fasol, “The blue laser diode: The complete story,” Springer, 2000.
[34]T. Mukai, D. Morita, and S. Nakamura, “High-power UV InGaN/AlGaN double-heterostructure LEDs,” J. Cryst. Growth, vol. 189, pp. 778-781, 1998.
[35]Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yanga, C. C. Chou, C. M. Lee, and J. I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett., vol. 77, pp. 2988-2990, 2000.
[36]J. C. Harris, H. Brisset, T. Someya, and Y. Arakawa, “Growth condition dependence of the photoluminescence properties of InxGa1-xN/InyGa1-yN multiple quantum wells grown by MOCVD,” Jpn. J. Appl. Phys., vol. 38, pp. 2613-2616, 1999.
[37]E. L. Piner, M. K. Behbehani, N. A. Ei-Masry, F. G. McIntosh, J. C. Roberts, K. S. Bourtros, and S. M. Bedair, “Effect of hydrogen on the indium incorporation in InGaN epitaxial films,” Appl. Phys. Lett., vol. 70, pp. 461-463, 1997.
[38]T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined Stark effect due to Piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys., vol. 36, pp. L382-385, 1997.
[39]F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constant of III-V nitrides,” Phys. Rev. B, vol. 56, pp. 10024-10027, 1997.
[40]T. C. Shen, G. B. Gao, and H. Morkoc, “Recent developments in ohmic contacts for III-V compound semiconductors,” J. Vac. Sci. Technol. B, vol. 10, pp. 2113-2132, 1992.
[41]J. S. Foresi and T. D. Moustakas, “Metal contacts to gallium nitride,” Appl. Phys. Lett., vol. 62, pp. 2859-2861, 1993.
[42]W. Gotz, N. M. Johnson, J. Walker, D. P. Bour, and R. A. Street, “Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 68, pp. 667-669, 1996.
[43]L. C. Chen, F. R. Chen, J. J. Kai, L. Chang, J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys., vol. 86, pp. 4491-4497, 1999.
[44]J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett., vol. 74, pp. 2340-2342, 1999.
[45]J. L. Lee, M. Weber, J. K. Kim, J. W. Lee, Y. J. Park, T. Kim, and K. Lynn, “Ohmic contact formatiom mechanism of nonalloyed Pd contacts to p-type GaN observed by positron annihilation spectroscopy,” Appl. Phys. Lett., vol. 74, pp. 2289-2291, 1999.
[46]T. Arai, H. Sueyoshi, Y. Koide, M. Moriyama, and M. Murakami, “Development of Pt-based ohmic contact materials for p-type GaN,” J. Appl. Phys., vol. 89, pp. 2826-2831, 2001.
[47]J. O. Song, J. S. Kwak, and Y. Park, “Ohmic and degradation mechanisms of Ag contacts on p-type GaN,” Appl. Phys. Lett., vol. 86, pp. 062104-1-3, 2005.
[48]H. W. Jang and J. L. Lee, “Mechanism for ohmic contact formation of Ni/Ag contacts on p-type GaN,” Appl. Phys. Lett., vol. 85, pp. 5920-5922, 2004.
[49]H. W. Jang, K. H. Kim, J. K. Kim, S. W. Hwang, J. J. Yang, K. J. Lee, S. J. Son, and J. L. Lee, “Low-resistance and thermally stable ohmic contact on p-type GaN using Pd/Ni metallization,” Appl. Phys. Lett., vol. 79, pp. 1822-1824, 2001.
[50]J. S. Jang, S. J. Park, and T. Y. Seong, “Low resistance and thermally stable Pt/Ru ohmic contacts to p-type GaN,” Phys. Stat. Sol. (C), vol. 180, pp. 103-107, 2000.
[51]H. Cho, T. Hossain, J. Bae, and I. Adesida, “Characterization of Pd/Ni/Au ohmic contacts on p-GaN,” Solid State Electron., vol. 49, pp. 774-778, 2005.
[52]J. S. Jang, I. S. Chang, H. K. Kim, T. Y. Seong, S. Lee, and S. J. Park, “Low-resistance Pt/Ni/Au ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol. 74, pp. 70-72, 1999.
[53]L. Zhou, W. Lanford, A. T. Ping, I. Adesida, J. W. Yang, and A. Khan, “Low resistance Ti/Pt/Au ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol. 76, pp. 3451-3453, 2000.
[54]J. Y. Kim, J. M. Lee, and M. K. Kwon, “Formation of low resistance and high reflectivity reflector on p-type GaN using Ni/Au/W/Ag ohmic contact,” Electrochem. and Solid-State Lett., vol. 15, pp. H198-H201, 2012.
[55]H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and M. Murakami, “Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces,” J. Appl. Phys., vol. 81, pp. 1315-1322, 1997.
[56]J. Sun, K. A. Rickert, J. M. Redwing, A. B. Ellis, F. J. Himpsel, and T. F. Kuech, “P-GaN surface treatments for metal contacts,” Appl. Phys. Lett., vol. 76, pp. 415-417, 2000.
[57]J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang, and G. C. Chi, “Low-operation voltage of In-GaN/GaN light-emitting diodes with Si-doped In0.3Ga0.7N/GaN short period superlattice tunneling contact layer,” IEEE Electron Device Lett., vol. 22, pp. 460-462, 2001.
[58]K. Kumakura, T. Makimoto, and N. Kobayashi, “Low-resistance nonalloyed ohmic contact to p-type GaN using strained InGaN contact layer,” Appl. Phys. Lett., vol. 79, pp. 2588-2590, 2001.

Reference in chapter 2
[1]H. M. Manasevit, “Single-crystal GaAs on insulating substrate”, Appl. Phys. Lett., vol. 12, pp. 156-159, 1968.
[2]H. M. Manasevit, F. M. Erdmann, and W. I. Simpson, “The use of metalorganics in the preparation of semiconductor materials”, J. Electrochem. Soc., vol. 118, no. 11, pp. 1864-1868, 1971.
[3]H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)”, Jpn. J. Appl. Phys., vol. 28, pp. L2112-2114, 1989.
[4]S. Nakamura, T. Mukai, M. Senoh, “Candela-class high-brightness InGaN/AlGaN DH blue light emitting diode”, Appl. Phys. Lett., vol. 64, pp. 1687-1689, 1994.
[5]S. Nakamura, M. Senoh, S. Nagahama, “Optical gain and carrier lifetime InGaN MQW structure laser diodes”, Appl. Phys. Lett., vol. 69, pp. 1568-1570, 1996.
[6]V. S. Ban, “Mass spectrometric studies of vapor-phase crystal growth”, J. Electrochem. Soc., vol. 119, pp. 761-765, 1972.
[7]S. P. DenBaars, B. Y. Maa, P. D. Dapkus, and H. C. Lee, “Homogeneous and heterogeneous thermal decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD”, J. Crystal Growth, vol. 77, pp. 188-193, 1986.
[8]D. W. Shaw, “Kinetic aspects in the vapour phase epitaxy of III-V compounds”, J. Crystal Growth, vol. 31, pp. 130-141, 1975.

References in chapter 3
[1]T. Mukai, M. Yamada and S. Nakamura, “Characteristics of InGaN-Based UV/Blue/Green/Amber/Red Light-Emitting Diodes,” Jpn. J. Appl. Phys., vol. 38, pp. 3976-3981, 1999.
[2]T. Mukai, M. Yamada and S. Nakamura, “Current and Temperature Dependences of Electroluminescence of InGaN-Based UV/Blue/Green Light-Emitting Diodes,” Jpn. J. Appl. Phys., vol. 37, pp. 1358-1361, 1998.
[3]T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, pp. 855-857, 2004.
[4]S. I. Na, G. Y. Ha, D. S. Han, S. S. Kim, J. Y. Kim, J. H. Lim, D. J. Kim, K. I. Min and S. J. Park , “Selective wet etching of p-GaN for efficient GaN-based light-emitting diodes,” IEEE Photon. Tech. Lett., vol. 18, pp. 1512-1514, 2006.
[5]C. H. Kuo, C. C. Lin, S. J. Chang, Y. P. Hsu, J. M. Tsai, W. C. Lai and P. T. Wang, “Nitride-based light-emitting diodes with p-AlInGaN surface layers,” IEEE Electron. Dev., vol. 52, pp. 2346-2349, 2005.
[6]J. K. Sheu, C.M.Tsai, M. L. Lee, S.C.Shei, and W.C.Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface,” Appl. Phys. Lett., vol. 88, pp. 113505-3, 2006.
[7]C. M. Tsai, J. K. Sheu, W. C Lai, Y. P. Hsu, P. T. Wang, C. T. Kuo, C. W. Kuo, S. J. Chang, and Y. K. Su, “Enhenced output power in GaN-based LEDs with naturally textured surfaced growtn by MOCVD,” IEEE Electron. Dev. Lett., vol. 26, pp. 464-466, 2005.
[8]S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke and J. K. Sheu, “Nitride-based LEDs with an SPS tunneling contact Layer and an ITO transparent contact,” IEEE Photon. Tech. Lett., vol. 16, pp.1002-1004, 2004.
[9]C. H. Kuo, S. J Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact,” Materials Science and Engineering B, vol. 106, pp. 69-72, 2004.
[10]C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, “Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer,” IEEE Photon. Tech. Lett., vol. 18, pp. 274-276, 2006.
[11]J.H. Lee, J.T. Oh, Y.C. Kim, and J.H. Lee, “Stress reduction and enhanced extraction efficiency of GaN-based LED grown on Cone-shape-patterned sapphire,” IEEE Photon. Tech. Lett., vol. 20, pp. 1563-1565, 2008.
[12]R.M. Lin, Y.C. Lu, S.F. Yu, Y.C. S. Wu, C.H. Chiang, W.C. Hsu, and S.J. Chang, “Enhanced extraction and efficiency of blue light-emitting diodes prepared using two-step-etched patterned sapphire substrate,” J. Electrochem. Soc., vol. 156, pp. H874-H876, 2009.
[13]O.B Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames, “High performance thin-film flip-chip InGaN-GaN light-emitting diodes,” Appl. Phys. Lett., vol. 89, pp. 071109-1–071109-2, 2006.
[14]T. Kim, A. J. Danner, and K. D. Choquette, “Enhancement in external quantum efficiency of blue light-emitting diode by photonic crystal surface grating,” IEEE Electron. Lett., vol. 41, no. 20, pp. 1138-1139, Sep. 2005.
[15]J. J. Wierer et al., “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett., vol. 84, no. 19, pp. 3885-3887, Apr. 2004.
[16]Y. K. Ee, R. A. Arif, and N. Tansu, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett., vol. 91, no. 22, pp. 221107-1-221107-3, Nov. 2007.
[17]J. J. Kim, A.N. Noemaun, F.W. Mont, D. Meyaard, E.F. Schubert, D.J. Poxson, H. Kim, C. Sone, and Y. Park, “Elimination of total internal reflection in GaInN light-emitting diodes by graded-refractive-index micropillars,” Appl. Phys. Lett., vol. 93, no. 22, pp. 221111-1-221111-3, Dec. 2008.
[18]C. S. Chang, S. J. Chang, Y. K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo, “Nitride-based LEDs with textured side walls,” IEEE Photon. Tech. Lett., vol. 16, pp. 750-752, 2004.
[19]R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Dohler, B. Dutta, and G. Borghs, “Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes,” Appl. Phys. Lett., vol. 74, pp. 2256, 1999.
[20]C. F. Shen, S. J. Chang, T. K. Ko, C. T. Kuo, S. C. Shei, W. S. Chen, C. T. Lee, C. S. Chang and Y. Z. Chiou, “Nitride-Based Light Emitting Diodes With Textured Sidewalls and Pillar Waveguides,” IEEE Photon. Tech. Lett., vol. 18, no. 23, pp. 2517-2519, 2006.
[21]J. K. Sheu, I. H. Hung, W. C. Lai, S. C. Shei, and M. L. Lee, “Enhancement in output power of blue gallium nitride-based light-emitting diodes with omnidirectional metal reflector under electrode pads,” Appl. Phys. Lett., vol. 93, no. 10, pp. 103507-1–103507-3, 2008.
[22]J. Q. Xi, H. Luo, A. J. Pasquale, J. K. Kim, and E. F. Schubert, “Enhanced light extraction in GaInN light-emitting diode with pyramid reflector,” IEEE Photon. Technol. Lett., vol. 18, no. 22, pp. 2347-2349, 2006.
[23]J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. C. Liu, C. M. Chang, W. C. Hung, J. S. Bow, and Y. C. Yu, “Investigation of the mechanism for Ti/Al ohmic contact on etched n-GaN surfaces,” J. Vac. Sci. Technol. B, vol. 18, no. 2, pp. 729-732, 2000.
[24]S. C. Shei, W. C. Lai, J. K. Sheu, I. H. Hunf, and S. J. Chang, “The output power enhancements of GaN-based blue light-emitting diodes with highly reflective Ag/Cr/Au trilayer omnidirectional reflective electrode pads,” Jpn. J. Appl. Phys., vol. 48, pp. 102103-1-4, 2009.

References in chapter 4
[1]S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 1687-1689, 1994.
[2]S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-eimtting diodes,” IEEE J. Sel. Top. Quantum Electrons, vol. 8, no. 2, pp. 278-283, 2002.
[3]E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science, vol. 308, no. 5726, pp. 1274-1278, 2005.
[4]I. Kidoguchi, A. Ishibashi, G. Sugahara, and Y. Ban, “Air-bridged lateral epitaxial overgrowth of GaN thin films,” Appl. Phys. Lett., vol. 76, pp. 3768-3770, 2000.
[5]T. Mukai, K. Takekawa, and S. Nakamura, “InGaN-based Blue Light-Emitting Diodes Grown on Epitaxially Laterally Overgrown GaN Substrate,” Jpn. J. Appl. Phys., vol. 37, pp. L839-841, 1998.
[6]A. M. Roskowski, P. Q. Miraglia, E. A. Preble, S. Einfeldt, and R. F. Davis, “Surface instability and associated roughness during conventional and pendo-epitaxial growth of GaN (0001) films via MOVPE,” J. Crystal Growth, vol. 241, pp. 141-150, 2002.
[7]E. F. Schubert, “Light-emitting diodes 2nd edition,” Cambridge university press, pp. 91, 2006.
[8]K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys., vol. 40, pp. L583-585, 2001.
[9]Y. J. Lee, T. C. Hsu, H. C. Kuo, S. C. Wang, Y. L. Yang, S. N. Yen, Y. T. Chu, Y. J. Shen, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Improvement in light-output efficiency of near-ultraviolet InGaN-GaN LEDs fabricated on strip patterned sapphire substrates,” Material Sci. Eng. B, vol. 122, pp. 184-187, 2005.
[10]C. M. Tsai, J. K. Sheu, W. C. Lai, Y. P. Hsu, P. T. Wang, C. T. Kuo, C. W. Kuo, S. J. Chang, and Y. K. Su, “Enhanced output power in GaN-based LEDs with naturally textured surface grown by MOCVD,” IEEE Electron Dev. Lett., vol. 26, pp. 464-466, 2005.
[11]J. K. Sheu, C. M. Tasi, M. L. Lee, S. C. Shei, and W. C. Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface,” Appl. Phys. Lett., vol. 88, pp. 113505-1-3, 2006.
[12]J. Y. Kim, M. K. Kwon, J. P. Kim, and S. J. Park, “Enhanced light extraction from triangular GaN-based light-emitting diodes,” IEEE Photo. Tech. Lett., vol. 19, no. 23, pp. 1865-1867, 2007.
[13]E. H. Park, J. Jang, S. Gupta, I. Ferguson, C. H. Kim, S. K. Jeon, and J. S. Park, “Air-voids embedded high efficiency InGaN-light emitting diode,” Appl. Phys. Lett., vol. 93, pp. 191103-1-3, 2008.
[14]J. W. Lee, C. Sone, Y. Park, S. N. Lee, J. H. Ryou, R. D. Dupuis, C. H. Hong, and H. Kim, “High efficiency GaN-based light-emitting diodes fabricated on dielectric mask-embedded structure,” Appl. Phys. Lett., vol. 95, pp. 011108-1-3, 2009.
[15]K. W. Kwon, S. H. Park, S. S. Cho, B. J. Kim, I. H. Kim, J. K. Lee, S. W. Ryu, and Y. H. Kim, “Improved light extraction efficiency of InGaN-based light-emitting diodes with patterned n-GaN substrate,” Jpn. J. Appl. Phys., vol. 46, no. 12, pp. 7622-7625, 2007.
[16]T. S. Zheleva, O. H. Nam, M. D. Bremser, and R. F. Davis, “Dislocation density reduction via lateral epitaxy in selectively grown GaN structure,” Appl. Phys. Lett., vol. 71, pp. 2472, 1997.
[17]P. Vennegues, B. Beaumont, V. Bousquet, M. Vaille, and P. Gibart, “Reduction mechanisms for defect densities in GaN using one- or two-step epitaxial lateral overgrowth methods,” J. Appl. Phys., vol. 87, pp. 4175, 2000.
[18]A. Usui, H. Sunakawa, A. Sakai, and A. A. Yamaguchi, “Thick GaN epitaxy growth with low dislocation density by hydride vapor phase epitaxy,” Jpn. J. Appl. Phys., vol. 36, pp. L899-L902, 1997.
[19]J. R. Gong, C. W. Huang, S. F. Tseng, T. Y. Lin, K. M. Lin, W. T. Liao, Y. L. Tsai, B. H. Shi, and C. L. Wang, “Behaviors of AlxGa1-xN/GaN short period strained-layer superlattices on the threading dislocation density reduction in GaN films,” J. Crystal Growth, vol. 260, pp. 73-78, 2004.
[20]L. W. Sang, Z. X. Qin, H. Fang, X. R. Zhou, Z. J. Yang, B. Shen, and G. Y. Zhang, “Study on threading dislocations blocking mechanism of GaN/AlxGa1-xN superlattices,” Appl. Phys. Lett., vol. 92, pp. 192112-1-3, 2008.
[21]G. M. Laws, E. C. Larkins, I. Harrison, C. Molloy, and D. Somerford, “Improved reflective index formulas for the AlxGa1-xN and InyGa1-yN alloys,” J. Appl. Phys., vol. 89, no. 2, pp. 1108-1115, 2001.

References in chapter 5
[1]M. Razeghi, and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys., vol. 79, pp. 7433-7436, 1996.
[2]E. Monroy, and F. Calle, in III-V Nitride Semiconductors: Applications and Devices, edited by E. T. Yu, and M. O. Manasreh (Gordon and Breach, New York, 2000).
[3]Y. Z. Chiou, Y. K. Su, S. J. Chang, J. Gong, Y. C. Lin, S. H. Liu, and C. S. Chang, “High detectivity InGaN-GaN multiquantum well p-n junction photodiodes,” IEEE J. Quantum Electron., vol. 39, pp. 681-685, 2003.
[4]G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoc, G. Smith, M. Estes, B. Goldenberg, W. Yang, and S. Krishnankutty, “High speed, low noise ultraviolet photodetectors based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n) structures,” Appl. Phys. Lett., vol. 71, pp. 2154-2156, 1997.
[5]A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D.Kuksenkov, and H. Temkin, “Low noise p-π-n GaN ultraviolet photodetectors,” Appl. Phys. Lett., vol. 71, pp. 2334-2336, 1997.
[6]O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Anisotropy in detectivity of GaN Schottky ultraviolet detector: Comparing lateral and vertical geometry,” Appl. Phys. Lett., vol. 80, pp. 347-349, 2002.
[7]E. Monroy, T. Palacios, O. Hainaut, F. Omnes, F. Calle, and J. F. Hochedez, “Assessment of GaN metal-semiconductor-metal photodiodes for high-energy ultraviolet photodetection,” Appl. Phys. Lett., vol. 80, pp. 3198-3200, 2002.
[8]J. W. Matthews and E. Klokholm, “Fracture of brittle epitaxial films under the influence of misfit stress,” Mater. Res. Bull., vol. 7, pp.213-221, 1972.
[9]J. Qu, J. Li, and G. Zhang, “AlGaN-GaN heterostructure grown by metalorganic vapor phase epitaxy,” Solid State Commun., vol. 107, pp. 467-470, 1998.
[10]Z. Chen, Y. Pei, S. Newman, D. Brown, R. Chung, S. Keller, S. P. Den-Baars, S. Nakamura, and U. K. Mishra, “Growth of AlGaN/GaN/AlGaN double heterojunction field-effect transistors and the observation of a compositional pulling effect,” Appl. Phys. Lett., vol. 94, pp. 171117-171119, 2009.
[11]Y. L. Tsai, C. L. Wang, P. H. Lin, W. T. Liao, and J. R. Gong, “Observation of compositional pulling phenomenon in AlxGa1-xN (0.4[12]H. Y. Lin, Y. F. Chen, T. Y. Lin, C. F. Shih, K. S. Liu, and N. C. Chen, “Direct evidence of compositional pulling effect in AlxGa1-xN epilayers,” J. Crystal Growth, vol. 290, pp. 225-228, 2006.
[13]M. Benamara, L. Kirste, M. Albrecht, K. W. Benz, and H. P. Strunk, “Pyramidal-plane ordering in AlGaN alloys,” Appl. Phys. Lett., vol. 82, pp. 547-549, 2003.
[14]S. Heikman, S. Keller, S. P. Denbaars, U. K. Mishra, F. Bertram, and J. Christen, “Non-planar selective area growth and characterization of GaN and AlGaN,” Jpn. J. Appl. Phys., vol. 42, pp. 6276-6283, 2003.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-09-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw