進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0208201914024800
論文名稱(中文) 非接觸式電動車動態供電軌道系統之研製
論文名稱(英文) Design and Implementation of Contactless Dynamic Power Track System for Electric Vehicles
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 蔡明翰
研究生(英文) Ming-Han Tsai
學號 N26064341
學位類別 碩士
語文別 中文
論文頁數 87頁
口試委員 召集委員-莫清賢
口試委員-林法正
口試委員-白富升
指導教授-李嘉猷
中文關鍵字 非接觸式動態供電軌道  陣列區塊耦合結構  軌道偵測技術 
英文關鍵字 dynamic contactless EV power track  inductively coupled structure array  track detection mechanism 
學科別分類
中文摘要 本研究旨在針對低汙染大眾運輸電動載具研製非接觸式電動車動態供電軌道系統。透過磁場模擬軟體分析發射端與接收端結構尺寸,運用具均勻磁通密度分佈之環形線圈作為耦合架構,並利用導磁條導引磁通路徑增加發射場效果。根據品質因數、耦合結構效率及輸出功率公式推導設計發射端阻抗轉換電路架構與接收端諧振電路架構。供電軌道透過多個陣列區塊組裝而成,因此為了減少電能耗損供電軌道端亦加入軌道偵測機制進行控制,並透過RS-485通訊架構結合單晶片進行監控主機與陣列軌道資料訊息之傳遞。最後經由實驗量測得知,供電軌道與電能拾取側耦合結構間距15公分且精準對位下,輸出功率為537.6 W,此時供電軌道最高傳輸效率可達77.63%。
英文摘要 This thesis is aimed to utilize the technology of contactless power transmission system with the inductively coupled structure. In order to increase lateral displacement, the structure of the transmitter coil and the receiver coil is analyzed by the magnetic field simulation. The toroidal structure with the uniform magnetic flux density distribution has been proposed. According to theoretical analysis, the transmitter-side impedance transformation circuit and the receiver-side parallel resonant are utilized for improving the power transmission efficiency. In order to reduce the power consumption, the power track system is also controlled by the track detection mechanism technology, and using the RS-485 interface to communication with the centralized control to monitor the array track data. According to the experimental measurement, the output power is 537.6 W and the maximum transmission efficiency is about 77.63% over 15 cm airgap.
論文目次 中文摘要I
英文摘要II
英文延伸摘要III
誌謝VIII
目錄IX
表目錄XII
圖目錄XIII
第一章 緒論1
1-1研究動機1
1-2研究背景2
1-3研究方法5
1-4論文大綱6
第二章 非接觸式動態供電軌道原理與特性7
2-1前言7
2-2動態供電軌道感應電能傳輸原理7
2-3供電軌道感應線圈之非理想效應9
2-3-1集膚效應10
2-3-2近接效應11
2-4 非接觸式動態供電軌道感應耦合結構理論分析12
2-4-1感應耦合結構電路推導12
2-4-2耦合結構分析14
2-5阻抗轉換電路14
2-6軌道偵測機制分析16
第三章 感應耦合結構模擬與分析18
3-1前言18
3-2環形線圈感應耦合結構分析18
3-2-1供電軌道線圈磁場模擬及分析18
3-2-2電能拾取器線圈模擬與分析22
3-2-3導磁條配置模擬與分析23
3-2-4多區塊供電軌道模擬與分析25
3-3阻抗轉換電路分析27
3-4接收端諧振電路與反射阻抗分析31
第四章 非接觸式電動車動態供電軌道設計35
4-1前言35
4-2整體系統電路架構35
4-3供電軌道感應耦合結構與阻抗轉換電路參數設計37
4-3-1供電軌道感應耦合線圈設計37
4-3-2發射端阻抗轉換電路設計39
4-4五階變流器電路架構40
4-5電能拾取器電路架構42
4-6電壓調節電路43
4-7軌道偵測控制系統44
4-7-1振盪電路設計45
4-7-2類比訊號處理電路47
4-8單晶片控制電路51
4-9人機介面52
4-10通訊架構設計52
4-10-1串列通訊種類52
4-10-2 RS-485通訊架構53
4-11區塊陣列軌道開關模組56
4-12供電軌道電源配置設計56
4-13非接觸式供電軌道系統設計流程57
第五章 系統模擬與實驗結果60
5-1前言60
5-2供電軌道系統規格60
5-3SIMPLIS電路模擬分析61
5-4系統實驗結果與波形量測63
5-4-1五階變流器波形量測65
5-4-2區塊陣列軌道波形量測67
5-5供電軌道系統量測71
5-5-1軌道偵測控制系統量測71
5-5-2整體供電軌道系統量測73
5-6電壓調節電路量測76
第六章 結論與未來研究方向78
6-1結論78
6-2未來研究方向79
參考文獻80
參考文獻 [1]F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Satoh, “Stable energy transmission to moving loads utilizing new CLPS,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5034–5036, Sep. 1996.
[2]S. Li and C. C. Mi, “Wireless power transfer for electric vehicle application,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 4–17, Mar. 2015.
[3]S. Lukic and Z. Pantic, “Cutting the cord: static and dynamic inductive wireless charging of electric vehicles,” IEEE Electrific. Mag., vol. 1, no. 1, pp. 57–64, Sep. 2013.
[4]J. Achterberg, E. A. Lomonova, and J. d. Boeij, “Coil array structures compared for contactless battery charging platform,” IEEE Trans. Magn., vol. 44, no. 5, pp. 617-622, May 2008.
[5]Y. You, B. H. Soong, S. Ramachandran, and W. Liu, “Palm size charging platform with uniform wireless power transfer,” in Proc. Int. Conf. Control Autom. Robot. Vis., 2010, pp. 85-89.
[6]P. Raval, D. Kacprzak, and A. P. Hu, “A wireless power transfer system for low power electronics charging applications,” in Proc. IEEE Conf. Ind. Electron. Appl., 2011, pp. 520-525.
[7]H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Comparison of characteristics on planar contactless power transfer systems,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2980-2993, June 2012.
[8]D. J. Young, P. Cong, M. A. Suster, N. Chimanonart, and W. H. Ko, “Wireless power recharging for implantable bladder pressure chronic monitoring,” in Proc. IEEE Int. Conf. Nano/Micro Eng. Molecular Syst., 2010, pp. 604-607.
[9]H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, “Investigation of coil geometry for transacutaneous energy transmission for artificial heart,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2406-2408, Sep. 1992.
[10]Y. Hori, “Future vehicle society based on electric motor, capacitor and wireless power supply,” in Proc. IPEC, 2010, pp. 2931-2934.
[11]B. Gu, J. S. Lai, N. Kees, and C. Zheng, “Hybrid-switching full-bridge dc–dc converter with minimal voltage stress of bridge rectifier, reduced circulating losses, and filter requirement for electric vehicle battery chargers,” IEEE Trans. Power Electron., vol. 28, no. 3, pp. 1132-1144, Mar. 2013.
[12]A. S. Masoum, S. Deilami, P. S. Moses, and A. Abu-Siada, “Impacts of battery charging rates of plug-in electric vehicle on smart grid distribution system,” in Proc. IEEE Eur. Conf. Innov. Smart Grid Technol., 2010, pp. 1-6.
[13]U. K. Madawala and D. J. Thrimawithana, “A two-way inductive power interface for single loads,” in Proc. IEEE Conf. Ind. Technol., 2010, pp. 673-678.
[14]Y. Nagatsuka, N. Ehara, Y. Kaneko, S. Abe, and T. Yasuda, “Compact contactless power transfer system for electric vehicle,” in Proc. IPEC, 2010, pp. 807-813.
[15]N. H. Kutkut and K. W. Klontz, “Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler,” in Proc. IEEE APEC, 1997, pp. 841-847.
[16]P. Sergeant and A. V. D. Bossche, “Inductive coupler for contactless power transmission,” IEEE Trans. Ind. Appl., vol. 2, no. 1, pp. 1-7, 2008.
[17]G. A. J. Elliott, G. A. Covic, D. Kacprzak, and J. T. Boys, “A new concept: asymmetrical pick-ups for inductively coupled power transfer monorail systems,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3389-3391, Oct. 2006.
[18]J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, Dec. 2006.
[19]K. W. Klontz, A. Esser, R. R. Bacon, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “An electric vehicle charging system with 'universal' inductive interface,” in Proc. Power Conv. Conf., 2002, pp. 227-232.
[20]M. Mochizuki, A. Asada, T. Ura, Z. Yoshida, K. Asakawa, T. Yokobiki, R. Iwase, T. Goto, M. Fujita, M Sato, O. L. Colombo, T. Tanaka, H. Zheng, and K. Nagahashi, “Development of seafloor geodetic observation system based on AUV and submarine cable technologies,” in Proc. OCEANS IEEE-Sydney, 2010, pp. 1-4.
[21]陳奕霖,具雙槽口型電能拾取器結構之非接觸式條帶狀感應供電軌道系統,國立成功大學電機工程學系碩士論文,2016年。
[22]張雅婷,電動搬運載具用非接觸式條帶型感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2014年。
[23]楊昆翰,非接觸式片狀感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2013年。
[24]林采樺,具改良型感應耦合結構之非接觸式條帶狀供電軌道系統,國立成功大學電機工程學系碩士論文,2016年。
[25]“IPT charge for electric vehicles,” Daifuku., Japan, 1108-06CP-E, 2011.
[26]Kamen, “Contactless Power System,” Vahle Corp., Germany, Nr. 9d/EN, Nov. 2008.
[27]ElectReon uses smart road technology for wireless charging of electric vehicles, [Online]. Available: https://en.globes.co.il/en/article electreon tel aviv municipality to lay pilot electric road 1001275432, 2019.
[28]Off road trials for “electric highways” technology, [Online]. Available: https://www.gov.uk/government/news/off-road-trials-for-electric-highways-technology, 2015.
[29]J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, ‘‘Mode-matching technique applied to three-dimencional magnetic field modeling,’’ IEEE Trans. Magn., vol. 48, no. 11, pp. 3383-3386, Nov. 2012.
[30]J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, ‘‘Modeling framework for contactless energy transfer systems for linear actuators,’’ IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 391-399, Jan. 2013.
[31]J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, ‘‘Comparison of Position-Independent Contactless Energy Transfer Systems,’’ IEEE Trans. Power Electron., vol. 28, no. 4, pp. 2059-2067, Apr. 2013.
[32]C. T. Rim, “The development and deployment of on-line electric vehicles (OLEV),” in Proc. IEEE ECCE, 2013, pp. 1–58.
[33]S. W. Lee, J. Huh, C. B. Park, N. S. Choi, G. H. Cho, and C. T. Rim, “On-line electric vehicle using inductive power transfer system,”in Proc. IEEE ECCE, 2010, pp. 1598–1601.
[34]J. Huh, S. W. Lee, W. Y. Lee, G. H. Cho, and C. T. Rim, “Narrow-width inductive power transfer system for online electrical vehicles,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3666–3679, Dec. 2011.
[35]C. Liu, A. P. Hu, G. A. Covic, and N. K. C. Nair, “Comparative study of CCPT systems with two different inductor tuning positions,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 294-306, Jan. 2012.
[36]S. Raabe and G. A. Covic, “Practical design considerations for contactless power transfer quadrature pick-ups,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 400-409, Jan. 2013.
[37]C. Y. Huang, J. T. Boys, and G. A. Covic, “LCL Pickup Circulating Current Controller for Inductive Power Transfer Systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 2081-2093, Apr. 2013.
[38]H. H. Wu and M. P. Masquelier, “An overview of a 50kW inductive charging system for electric buses,” in Proc. IEEE Transp. Electrific. Conf., 2015, pp. 1-4.
[39]W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, “Design for efficiency optimization and voltage controllability of series–series compensated inductive power transfer systems,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 191-200, Jan. 2014.
[40]W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, “Analysis and comparison of secondary series and parallel-compensated inductive power transfer systems operating for optimal efficiency and load-independent voltage-transfer ratio,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2979-2990, Jun. 2014.
[41]J. Hou, Q. Chen, X. Ren, X. Ruan, S. C. Wong, and C. K. Tse, “Precise characteristics analysis of series/series-parallel compensated contactless resonant converter,” IEEE J. Emerg. Sel. Topic Power Electron., vol. 3, no. 1, pp. 101-110, May 2015.
[42]General Information of INTIS for Developments of Wireless Electric Vehicles in INTIS Website. (2016). [Online]. Available: http://www.intis.de/intis/mobility.html.
[43]張遠帆,具疊圈型感應耦合結構陣列之非接觸式電動車供電軌道,國立成功大學電機工程學系碩士論文,2014年。
[44]胡采梅,具分段激發疊圈型感應耦合結構之非接觸式供電陣列軌道,國立成功大學電機工程學系碩士論文,2016年。
[45]王郁淇,非接觸式電動車供電軌道系統之區塊分段激發感應耦合結構,國立成功大學電機工程學系碩士論文,2017年。
[46]廖芝翊,應用五階變流器激勵源於具分段激發感應耦合結構之非接觸式供電陣列軌道,國立成功大學電機工程學系碩士論文,2018年。
[47]M. Borage, S. Tiwari, and S. Kotaiah, “Analysis and design of an LCL-T resonant converter as a constant-current power supply,” IEEE Trans. Ind. Electron., vol. 52, no. 6, pp. 1547–1554, Dec. 2005.
[48]H. H. Wu, A. Gilchrist, D. Bronson, and K. D. Sealy, “A high efficiency 5 kW inductive charger for EVs using dual side control,” IEEE Trans. Ind. Informat., vol. 8, no. 3, pp. 585 - 595, Apr. 2012.
[49]C. Zhang, G. Wei, C. Zhu, R. Lu, and K. Song, “Research on a compensate topology of primary side based on parallel T-Type structure for wireless power transfer,” in Proc. IEEE Transp. Electrific. Conf., 2017, pp. 1-6.
[50]J. Zhao, T. Cai, S. Duan, H. Feng, C. Chen, and X. Zhang, “A general design method of primary compensation network for dynamic WPT system maintaining stable transmission power,” IEEE Trans. Power Electron., vol. 31, no. 12, Dec. 2016.
[51]N. O. Sokal and A. D. Sokal, “Class E-a new class of high-efficiency tuned single-ended switching power amplifiers.” IEEE J. Solid-State Circuits, vol. 10, no. 3, pp. 168–176, Jun. 1975.
[52]Z. H. Wang, Y. P. Li, Y. Sun, C. S. Tang, and X. Lv, “Load detection model of voltage-fed inductive power transfer system,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5233–5243, Feb. 2013.
[53]S. Choi, J. Huh, W. Y. Lee, S. W. Lee, and C. T. Rim, “New cross-segmented power supply rails for roadway-powered electric vehicles,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5832-5841, Dec. 2013.
[54]S. Y. Jeong, H. G. Kwak, G. Jang, S. Y. Choi, and C. T. Rim, “Dual-purpose non-overlapping coil sets as metal object and vehicle position detections for wireless stationary EV chargers,” IEEE Trans. Power Electron., pp. 1-11, Oct. 2017.
[55]G. Nagendra, L. Chen, G. A. Covic, and J. Boys, “Detection of EVs on IPT highways,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, no. 3, pp. 584-597, Sep. 2014.
[56]PIC30F4011 Data Sheet, Microchip Technology Inc., 2004.
[57]HD74LS86P Datasheet, Renesas Inc., 2005.
[58]TLP350 Datasheet, Toshiba Inc.,2003.
[59]IXFH26N50Q Datasheet, IXYS Inc., 2003.
[60]DSEP30-06A Datasheet, IXYS Inc., 2016.
[61]CD4069UB Datasheet, Texas Instruments Inc., 2019.
[62]ARDUINO LLC Inc. Arduino UNO & Genuino UNO.
[63]許永和,介面設計與實習:使用LabVIEW(NI-VISA)(第二版),全華科技圖書股份有限公司,2016。
[64]曹永忠、許智誠、蔡英德,工業基本控制程式設計(RS485串列埠篇),渥瑪數位有限公司,2018。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw