系統識別號 U0026-0208201912344400
論文名稱(中文) 由2009年印尼巴塘Mw 7.6地震震源模型探討蘇門答臘增積楔深部側斷坡存在的可能性
論文名稱(英文) The Seismogenic Source on the Deep Lateral Ramp of Sumatra Accretionary Wedge Inferred From the Source Model of the 2009 Mw 7.6 Padang, Indonesia, Earthquake
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 107
學期 2
出版年 108
研究生(中文) 余德華
研究生(英文) I Dewa Made Amertha Sanjiwani
學號 P66067039
學位類別 碩士
語文別 英文
論文頁數 68頁
口試委員 指導教授-景國恩
共同指導教授-Ira Mutiara Anjasmara
中文關鍵字 none 
英文關鍵字 2009 Padang Earthquake  Lateral Ramp  Thick-Skinned Deformation  Intraslab Event 
中文摘要 none
英文摘要 The 2009 Mw 7.6 Padang earthquake has been inferred as an intraslab event because it locates at approximately 80 km depth which is within the oceanic slab with maximum curvature. However, the major trench-parallel-striking normal faulting event usually occurs at this tectonic environment but not the trench-normal-striking reverse event like this 2009 Padang earthquake. To solve this enigma, the coseismic displacements were estimated based on the analysis of daily coordinate time series calculated by GAMIT software from 15 continuous GPS stations along the Sumatra region. The maximum horizontal displacement is approximately 40 mm toward SW at the MSAI station while the maximum vertical displacement reaches 13 mm. The optimized geometry parameters of the source fault were determined by the Markov Chain Monte Carlo using the uniform-slip dislocation model. The optimized strike and dip of fault plane are 72° and 54°, respectively. The coseismic slip distribution was then estimated using the distributed-slip dislocation model in terms of optimized fault geometry. The geodetic moment of 1.35 × 1027 dyne-cm in our best-fit model is equivalent to Mw 7.39. The coseismic slip mainly ranges 40 - 75 km in depth with the maximum slip of 2000 mm. The optimized source fault plane is also comparable to the relocated aftershock distribution. Comparing to the location of interface, our source fault is mainly located at the place above the interface. We therefore proposed that this 2009 Padang earthquake occurred in the deep part of accretionary wedge, but not with the slab. In addition, we also proposed this 2009 event as a lateral ramp event because its strike is normal to the trench, such as the 2010 Jaishian earthquake in Taiwan. Finally, we proposed that a thick-skinned deformation may be also represented in the prism of Sumatra subduction zone.
Acknowlegements iii
Contents iv
List of Tables v
List of Figures vi
1. Introduction 1
2. Tectonic Background 4
2.1 Sumatra and Plate Tectonics 4
2.2 General geology in Sumatra Island 8
2.3 Seismotectonics in Sumatra Island 11
2.4 The Stratigraphy of Sumatra 14
3. GNSS Data Collection and Processing 19
3.1 Continuous GNSS data collection 19
3.2 Strategy of GNSS coordinate calculation 20
3.3 Procedure of GNSS coordinate calculation 20
4. Coseismic Displacement Field 28
4.1 Coseismic displacement evaluation 28
4.2 Coseismic displacement field 28
5. Kinematic Coseismic Source Model 33
5.1 Uniform-slip model 33
5.2 Distributed-slip model 39
5.3 Checkerboard test model 46
6.1 The Relationship between Co-seismic Source Model and Tectonic Implication 48
6.1.1 Structure of the Central Sumatra 48
6.1.2 Tectonic Implication Associated with Coseismic Source Model 53
參考文獻 Barber, A. J., & Crow, M. J. (2003). An evaluation of plate tectonic models for the development of Sumatra. Gondwana Research. https://doi.org/10.1016/S1342-937X(05)70642-0
Baroux, E., Avouac, J. P., Bellier, O., & Sébrier, M. (1998). Slip-partitioning and fore-arc deformation at the Sunda Trench, Indonesia. Terra Nova, 10(3), 139–144. https://doi.org/10.1046/j.1365-3121.1998.00182.x
Bellier, O. (1995). Is the slip rate variation on the Great Sumatran Fault accommodated by fore-arc stretching ? GSF orientation and convergence, 22(15), 1969–1972.
Van Bemmelen, R. W. (1949). The Geology of Indonesia. General Geology of Indonesia and Adjacent Archipelagoes. Government Printing Office, The Hague. https://doi.org/10.1109/VR.2018.8447558
Berglar, K., Gaedicke, C., Ladage, S., & Thöle, H. (2017). The Mentawai forearc sliver off Sumatra: A model for a strike-slip duplex at a regional scale. Tectonophysics, 710–711, 225–231. https://doi.org/10.1016/j.tecto.2016.09.014
Blundell, D., & Hall, R. (1994). Tectonic Evolution of SE Asia, 70 p.(106).
Bock, Y.-, Mccaffrey, R., Prawirodirdjo, L., Stevens, C. W., Puntodewo, S. S. O., Subarya, C., & Wdowinski, S. (2000). Distribution of slip at the northern Sumatran fault system. Journal of Geophysical Research, 105, 327–341. https://doi.org/10.1029/2000JB900158
Carlson, R. L., & Miller, D. J. (2003). Mantle wedge water contents estimated from seismic velocities in partially serpentinized peridotites. Geophysical Research Letters. https://doi.org/10.1029/2002gl016600
Ching, K., Johnson, K. M., Rau, R., Chuang, R. Y., Kuo, L., & Leu, P. (2011). Inferred fault geometry and slip distribution of the 2010 Jiashian , Taiwan , earthquake is consistent with a thick-skinned deformation model. Earth and Planetary Science Letters, 301(1–2), 78–86. https://doi.org/10.1016/j.epsl.2010.10.021
Ching, K. E., Rau, R. J., & Zeng, Y. (2007). Coseismic source model of the 2003 Mw 6.8 Chengkung earthquake, Taiwan, determined from GPS measurements. Journal of Geophysical Research: Solid Earth, 112(6), 1–31. https://doi.org/10.1029/2006JB004439
Collings, R., Lange, D., Rietbrock, A., Tilmann, F., Natawidjaja, D., Suwargadi, B., et al. (2012). Structure and seismogenic properties of the Mentawai segment of the Sumatra subduction zone revealed by local earthquake traveltime tomography. Journal of Geophysical Research: Solid Earth, 117(1), 1–23. https://doi.org/10.1029/2011JB008469
Crow, M. J., & Barber, A. J. (2007). Map: Simplified geological map of Sumatra. Geological Society, London, Memoirs. https://doi.org/10.1144/gsl.mem.2005.031.01.17
Curray, J R, Moore, D. G., Lawver, L. a, Emmel, F. J., Raitt, R. W., Henry, M., & Kieckhefer, R. M. (1979). Tectonics of the Andaman Sea and Burma. AAPG Memoir 29.
Curray, Joseph R. (2005). Tectonics and history of the Andaman Sea region. Journal of Asian Earth Sciences. https://doi.org/10.1016/j.jseaes.2004.09.001
DeMets C., R.G., G., D.F., A., & S., S. (1990). Current plate motions. Geophysical Journal International, 101(2), 425–478.
Diaconis, P. (2009). The markov chain monte carlo revolution. Bulletin of the American Mathematical Society. https://doi.org/10.1090/S0273-0979-08-01238-X
Fukuda, J., & Johnson, K. M. (2008). A fully Bayesian inversion for spatial distribution of fault slip with objective smoothing. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120070194
Funning, G. J., Parsons, B., Wright, T. J., Jackson, J. A., & Fielding, E. J. (2005). Surface displacements and source parameters of the 2003 Bam (Iran) earthquake from Envisat advanced synthetic aperture radar imagery. Journal of Geophysical Research: Solid Earth, 110(9), 1–23. https://doi.org/10.1029/2004JB003338
Gathorne-Hardy, F. ., & Harcourt-Smith, W. E. . (2003). The super-eruption of Toba, did it cause a human bottleneck? Journal of Human Evolution. https://doi.org/10.1016/s0047-2484(03)00105-2
Hamilton, W. (1973). Tectonics of the Indonesian Region *. Geol. Soc. Malaysia, Bulletin.
Haridhi, H. A., Huang, B., Wen, K., Denzema, D., Prasetyo, R. A., & Lee, C. (2018). A study of large earthquake sequences in the Sumatra subduction zone and its possible implications, 29(6), 635–652. https://doi.org/10.3319/TAO.2018.08.22.01
Hasegawa, A., & Nakajima, J. (2017). Seismic imaging of slab metamorphism and genesis of intermediate-depth intraslab earthquakes. Progress in Earth and Planetary Science, 4(1). https://doi.org/10.1186/s40645-017-0126-9
Hatherton, T., & Dickinson, W. R. (1969). The relationship between andesitic volcanism and seismicity in Indonesia, the Lesser Antilles, and other island arcs. Journal of Geophysical Research. https://doi.org/10.1029/jb074i022p05301
Hayes, G. P., Wald, D. J., & Johnson, R. L. (2012). Slab1.0: A three-dimensional model of global subduction zone geometries. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2011JB008524
Herring, T. A., King, R. W., & Mcclusky, S. C. (2006). Introduction to GAMIT / GLOBK Release 10.3. Analysis, (June 2018), 1–54.
Hippchen, S., & Hyndman, R. D. (2008). Thermal and structural models of the Sumatra subduction zone: Implications for the megathrust seismogenic zone. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2008JB005698
Horng-yue, C., Long-chen, K., Wang-shung, C., & Shui-beih, Y. (2003). Using quasi ionosphere-free post-processing algorithm on the medium-range kinematic high accuracy GPS relative positioning. Wuhan University Journal of Natural Sciences, 8(2), 610–618. https://doi.org/10.1007/bf02899826
Hyndman, R. D., Yamano, M., & Oleskevich, D. A. (1997). The seismogenic zone of subduction thrust faults. Island Arc. https://doi.org/10.1111/j.1440-1738.1997.tb00175.x
Johansen, A. M. (2010). Markov chain monte carlo. In International Encyclopedia of Education. https://doi.org/10.1016/B978-0-08-044894-7.01347-6
Katili, J. A., & Hehuwat, F. (1967). On the occurence of large transcurrent faults in Sumatra, Indonesia. Journal Geoscience, Osaka City Univ.
Kieckhefer, R. M., Shor, G. G., Curray, J. R., Sugiarta, W., & Hehuwat, F. (1980). Seismic refraction studies of the Sunda Trench and forearc basin. Journal of Geophysical Research. https://doi.org/10.1029/JB085iB02p00863
Kopp, H., Weinrebe, W., Ladage, S., Barckhausen, U., Klaeschen, D., Flueh, E. R., et al. (2008). Lower slope morphology of the Sumatra trench system. Basin Research. https://doi.org/10.1111/j.1365-2117.2008.00381.x
KÜmpel, H.-J. (2003). Theory of Linear Poroelasticity-with Applications to Geomechanics and Hydrogeology. Geophysical Journal International. https://doi.org/10.1046/j.1365-246x.2002.01757.x
Lange, D., Tilmann, F., Henstock, T., Rietbrock, A., Natawidjaja, D., & Kopp, H. (2018). Structure of the central Sumatran subduction zone revealed by local earthquake travel-time tomography using an amphibious network. Solid Earth, 9(4), 1035–1049. https://doi.org/10.5194/se-9-1035-2018
Leet, L. D., Gutenberg, B., & Richter, C. F. (2006). Seismicity of the Earth and Associated Phenomena. Geographical Review. https://doi.org/10.2307/211302
Malod, J. A., Karta, K., Beslier, M. O., & Zen, M. T. (1995). From normal to oblique subduction: Tectonic relationships between Java and Sumatra. Journal of Southeast Asian Earth Sciences, 12(1–2), 85–93. https://doi.org/10.1016/0743-9547(95)00023-2
Masturyono, McCaffrey, R., Wark, D. A., Roecker, S. W., Fauzi, Ibrahim, G., & Sukhyar. (2001). Distribution of magma beneath the Toba caldera complex, north Sumatra, Indonesia, constrained by three-dimensional P wave velocities, seismicity, and gravity data. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2000GC000096
McCaffrey, R. (1991). Slip vectors and strecthing of Sumatran fore arc. Geology, 19(September), 881–884. https://doi.org/10.1130/0091-7613(1991)019<0881
McCaffrey, R. (2009). The Tectonic Framework of the Sumatran Subduction Zone. Annual Review of Earth and Planetary Sciences. https://doi.org/10.1146/annurev.earth.031208.100212
McCaffrey, R., Genrich, F., Stevens, W., Zwick, P. C., Bock, Y., Prawirodirdjo, L., et al. (2000). Strain Partioning during oblique plate convergence in northern Sumatra: Geodetic and seismologic constraints and numerical modelling •. Journal of Geophysical, 105(1999), 28,363-28,376.
Metropolis, N. (1987). The beginning of the Monte Carlo method. Los Alamos Science Special Issue.
Okada, B. Y. Y. O. S. H. I. M. I. T. S. U. (1986). Surface deformation due to shear and tensile faults in a half-space. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 23(4), 128. https://doi.org/10.1016/0148-9062(86)90674-1
Okada, Y. (1992). Surface deformation to shear and tensile faults in a halfspace. Journal of Geophysical Research.
Oleskevich, D. A., Hyndman, R. D., & Wang, K. (1999). The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/1999jb900060
Oliver, J., Sykes, L., & Isacks, B. (1969). Seismology and the new global tectonics. Tectonophysics. https://doi.org/10.1016/0040-1951(69)90024-9
Pacheco, J. F., Sykes, L. R., & Scholz, C. H. (1993). Nature of seismic coupling along simple plate boundaries of the subduction type. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/93JB00349
Prawirodirdjo, L., Bocl, Y., McCaffrey, R., Genrich, J., Calais, E., Stevens, C., et al. (1997). Geodetic observations of interseismic strain segmentation at the Sumatra Subduction Zone. Geophysical Research Letters. https://doi.org/10.1029/97GL52691
Qin, Y., & Singh, S. C. (2018). Insight Into Frontal Seismogenic Zone in the Mentawai Locked Region From Seismic Full Waveform Inversion of Ultralong Offset Streamer Data. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2018GC007787
Ruff, L., & Kanamori, H. (1980). Seismicity and the subduction process. Physics of the Earth and Planetary Interiors. https://doi.org/10.1016/0031-9201(80)90117-X
Sdrolias, M., & Müller, R. D. (2006). Controls on back-arc basin formation. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2005GC001090
Seno, T., & Yamanaka, Y. (1998). Arc stresses determined by slabs: Implications for mechanisms of back-arc spreading. Geophysical Research Letters, 25(17), 3227–3230. https://doi.org/10.1029/98GL02491
Seno, T., & Yoshida, M. (2004). Where and why do large shallow intraslab earthquakes occur? Physics of the Earth and Planetary Interiors, 141(3), 183–206. https://doi.org/10.1016/j.pepi.2003.11.002
Sieh, K., & Natawidjaja, D. (2000). Neotectonics of the Sumatran fault, Indonesia. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2000JB900120
Sieh, K., & Natawidjaja, D. (2004). Neotectonics of the Sumatran fault, Indonesia. Journal of Geophysical Research: Solid Earth, 105(B12), 28295–28326. https://doi.org/10.1029/2000jb900120
Simoes, M., Avouac, J. P., Cattin, R., & Henry, P. (2004). The Sumatra subduction zone: A case for a locked fault zone extending into the mantle. Journal of Geophysical Research: Solid Earth, 109(10). https://doi.org/10.1029/2003JB002958
Wang, X., Bradley, K. E., Wei, S., & Wu, W. (2018). Active backstop faults in the Mentawai region of Sumatra, Indonesia, revealed by teleseismic broadband waveform modeling. Earth and Planetary Science Letters, 483, 29–38. https://doi.org/10.1016/j.epsl.2017.11.049
Wen, Y., Xu, C., Liu, Y., Jiang, G., & He, P. (2013). Coseismic slip in the 2010 Yushu earthquake (China), constrained by wide-swath and strip-map InSAR. Natural Hazards and Earth System Science, 13(1), 35–44. https://doi.org/10.5194/nhess-13-35-2013
Werff, W. Van Der. (1997). Variation in forearc basin development along the Sunda Arc , Indonesia. Journal of Southeast Asian Earth Sciences, 14(5), 331–349.
Widiyantoro, S., & Hilstt, R. Van Der. (2018). Structure and Evolution of Lithospheric Slab Beneath the Sunda Arc , Indonesia Author ( s ): Sri Widiyantoro and Rob van der Hilst Published by : American Association for the Advancement of Science Stable URL : https://www.jstor.org/stable/2890722 JSTOR i, 271(5255), 1566–1570.
Wiseman, K., Banerjee, P., Roland, B., Sieh, K., Dreger, D. S., & Hermawan, I. (2012). Source Model of the 2009 Mw 7.6 Padang Intraslab Earthquake and its effect on the Sunda Megathrust. Geophysical Journal International, 190, 1710–1722. https://doi.org/10.1111/j.1365-246X.2012.05600.x
Wright, T. J., Lu, Z., & Wicks, C. (2003). Source model for the Mw 6.7, 23 October 2002, Nenana Mountain Earthquake (Alaska) from InSAR. Geophysical Research Letters, 30(18), 30–33. https://doi.org/10.1029/2003GL018014
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-05起公開。

  • 如您有疑問,請聯絡圖書館