進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0208201817530700
論文名稱(中文) 多孔木黴菌揮發物促進植物生長之影響
論文名稱(英文) Promotive Effects of Volatiles Emitted by Tolypocladium sp. GT22 on Plant Growth
校院名稱 成功大學
系所名稱(中) 熱帶植物科學研究所
系所名稱(英) Institute of Tropical Plant Sciences
學年度 106
學期 2
出版年 107
研究生(中文) 曾子耘
研究生(英文) Tzu-Yun Tseng
學號 Z36034047
學位類別 碩士
語文別 英文
論文頁數 63頁
口試委員 指導教授-黃浩仁
共同指導教授-張文綺
口試委員-蔣鎮宇
口試委員-張文粲
口試委員-李瑞花
中文關鍵字 Tolypocladium sp. GT22  微生物揮發物  植物生長促  非生物逆境 
英文關鍵字 Tolypocladium sp. GT22  Volatiles  plant growth-promoting  abiotic stress 
學科別分類
中文摘要 土壤微生物與植物間的交互作用會影響植物的健康,其中多數微生物釋放的揮發物(Volatiles)會抑制植物生長,然而部分微生物的揮發物具有刺激植物生長或增加植物對逆境耐受性的特性,因此本研究以微生物釋放的有機化合物為材料,檢測其在未與植物接觸下,改善植物生長和環境逆境耐受性之成效。本研究從土壤中分離出真菌Tolypocladium sp. GT22,探討真菌氣味對植物的影響。
實驗結果發現,施用GT22揮發物的對照組與無氣味的控制組相比,菸草(Nicotiana tabacum)鮮重增加 2.1 倍以及阿拉伯芥(Arabidopsis thaliana)鮮重增加 1.7 倍。為確認GT22是否利於農業用途,本研究選用小白菜(Brassica rapa chinensis)來觀察經濟蔬菜與GT22之揮發物的相互作用。數據顯示GT22揮發物可以顯著增加白菜的鮮重、葉面積及葉綠素含量。接著使用氣相層析質譜儀(Gas chromatography-mass spectrometry, GC-MS)分析GT22揮發物的成分,最終分離並鑑定得到40種化合物,進一步調查得出1ppm的GTC化合物能夠顯著改善植物生長。
重金屬是環境中常見的有毒汙染物之一,前人研究已知微生物揮發物能提升植物在非生物逆境下的耐受性,本研究探討了在砷及銅逆境下GT22對阿拉伯芥的影響,結果顯示施用GT22揮發物的對照組與無氣味的控制組相比,阿拉伯芥的根長較長且細胞死亡程度較低。因此本研究證實Tolypocladium sp. GT22釋放之揮發物具有促進植物生長的能力,且可提升植物抵抗非生物逆境之能力,而GTC可能是能促進植物生長的關鍵化合物。
英文摘要 Microorganisms, including fungi and bacteria, effect plant health and play important roles in crop production. In ecosystems, Volatiles emissions by microorganisms have been found to influence plant growth. Volatiles produced by plant growth-promoting microorganisms have a positive impact on plant growth through direct stimulation or increase plant stress resistance. This study isolated the fungi, Tolypocladium sp. GT22, with the ability to improve plant growth. According to the results, GT22 nearly doubles the fresh weight of Nicotiana benthamiana increases and the fresh weight of Arabidopsis thaliana by 70%. Furthermore, the interaction between GT22 and Brassica rapa chinensis was investigated to determine whether GT22 can be used for agricultural purposes. The data indicates that it can significantly increase the fresh weight, chlorophyll, and carotenoids of Brassica rapa chinensis. Gas chromatography-mass spectrometry (GC-MS) was used to separate and identify 40 kinds of Volatiles produced by GT22. Through investigation, it was found that GTC is the critical compound which could improve plant growth. Additionally, Arabidopsis thaliana co-culture with GT22 conferred tolerance to arsenic stress and salt stress. This research indicates that Volatiles of GT22 can promote plant growth and enhance plant abiotic stress tolerance.
論文目次 Chinese abstract I
Abstract II
Acknowledgments III
Content IV
List of Tables VI
List of Figures VII
List of Supplementary Tables IX
List of Supplementary Figures X
1. Introduction 1
1.1 Microbial Volatiles 1
1.2 Promotion Effects of Microbial Volatiles on Plant Growth 2
1.3 Effects of Microbial Volatiles on Plant Health under Abiotic Stress 4
2. Materials and methods 6
2.1 Sample collection 6
2.2 Fungal isolates and culture conditions 6
2.3 Plant materials and growth conditions 7
2.4 I-plate assay for plant growth promotion by fungal Volatiles 7
2.5 Soil test for plant growth promotion by fungal Volatiles 8
2.6 Modulation of Brassica rapa chinensis growth by fungal Volatiles 9
2.7 Diffusion assay for plant growth promotion by fungal Volatiles 10
2.8 Measurement of chlorophyll 11
2.9 Collection of fungal Volatiles 11
2.10 Analysis of fungal Volatiles 12
2.11 Evaluation of GT-Compound on plant growth enhancement 12
2.12 Abiotic stress 13
2.13 Evaluation of cell death using Evans blue staining 14
2.14 Statistical analysis 15
3. Results 16
3.1 The effects of different culture conditions and different doses on Tolypocladium sp. GT22’s emission of Volatiles as growth modulator on Arabidopsis thaliana 16
3.2 Volatiles by Tolypocladium sp. GT22 promoted the growth of Arabidopsis thaliana, Nicotiana benthamiana and Brassica rapa chinensis in I-plate 17
3.3 Volatiles by Tolypocladium sp. GT22 promoted the growth of Arabidopsis thaliana, Nicotiana benthamiana and Brassica rapa chinensis in soil 18
3.4 Identification of Volatiles produced by Tolypocladium sp. GT22 20
3.5 Plant growth promotion effects by GT-Compound from Tolypocladium sp. GT22... 20
3.6 The effects of Volatiles by Tolypocladium sp. GT22 emissions on plant copper (Cu) stress tolerance 21
3.7 The effects of Volatiles by Tolypocladium sp. GT22 emissions on plant arsenate (As) stress tolerance 23
4. Discussion 24
5. Conclusion 30
6. References 31

參考文獻 (1) Ann, M. N., Cho, Y. E., Ryu, H. J., Kim, H. T., & Park, K. (2013). Growth promotion of tobacco plant by 3-hydroxy-2-butanone from Bacillus vallismortis EXTN-1. The Korean Journal of Pesticide Science, 17(4), 388-393.
(2) Asekova, S., Kulkarni, K. P., Patil, G., Kim, M., Song, J. T., Nguyen, Henry T. N., J. Grover S& Lee, J. D. (2016). Genetic analysis of shoot fresh weight in a cross of wild (G. soja) and cultivated (G. max) soybean. Molecular breeding, 36(7), 103.
(3) Bertani, G. (1951). Studies on lysogenesis i.: The mode of phage liberation by lysogenic escherichia coli1. Journal of bacteriology, 62(3), 293.
(4) Bitas, V., McCartney, N., Li, N., Demers, J., Kim, J. E., Kim, H. S., Brown, K. M., & Kang, S. (2015). Fusarium oxysporum Volatiles enhance plant growth via affecting auxin transport and signaling. Frontiers in microbiology, 6, 1248.
(5) Blom, D., Fabbri, C., Eberl, L., & Weisskopf, L. (2011). Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide. Applied and environmental microbiology, 77(3), 1000-1008.
(6) Borkert, C. M., Cox, F. R., & Tucker, M. (1998). Zinc and copper toxicity in peanut, soybean, rice, and corn in soil mixtures. Communications in soil science and plant analysis, 29(19-20), 2991-3005.
(7) Burd, G. I., Dixon, D. G., & Glick, B. R. (2000). Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Canadian journal of microbiology, 46(3), 237-245.
(8) Carpentier, R. (Ed.). (2004). Photosynthesis Research Protocols (Vol. 274). Springer Science & Business Media.
(9) Chen, Y. H., & Kao, C. H. (2012). Calcium is involved in nitric oxide-and auxin-induced lateral root formation in rice. Protoplasma, 249(1), 187-195.
(10) Contreras-Cornejo, H. A., Macías-Rodríguez, L., Cortés-Penagos, C., & López-Bucio, J. (2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant physiology, 149(3), 1579-1592.
(11) Cook, A. A., & Stall, R. E. (1969). Necrosis in leaves induced by volatile materials produced in vitro by bacteria. Phytopathology, 59(2), 259.
(12) De Winter, J. C. (2013). Using the Student's t-test with extremely small sample sizes. Practical Assessment, Research & Evaluation, 18(10).
(13) Ditengou, F. A., Müller, A., Rosenkranz, M., Felten, J., Lasok, H., Van Doorn, M. M., Legué, V., Palme, K., Schnitzler, J. P., & Polle, A. (2015). Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nature communications, 6, 6279.
(14) Etesami, H., & Beattie, G. A. (2017). Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In Probiotics and Plant Health (pp. 163-200). Springer, Singapore.
(15) Farag, M. A., Ryu, C. M., Sumner, L. W., & Paré, P. W. (2006). GC–MS SPME profiling of rhizobacterial Volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry, 67(20), 2262-2268.
(16) Fincheira, P., & Quiroz, A. (2018). Microbial Volatiles as plant growth inducers. Microbiological research, 208, 63-75.
(17) Fincheira, P., Parada, M., & Quiroz, A. (2017). Volatile organic compounds stimulate plant growing and seed germination of Lactuca sativa. Journal of soil science and plant nutrition, 17(4), 853-867.
(18) Fincheira, P., Venthur, H., Mutis, A., Parada, M., & Quiroz, A. (2016). Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species. Microbiological research, 193, 39-47.
(19) Glick, B. R. (2010). Using soil bacteria to facilitate phytoremediation. Biotechnol. Adv. 28, 367-374.
(20) Groenhagen, U., Baumgartner, R., Bailly, A., Gardiner, A., Eberl, L., Schulz, S., & Weisskopf, L. (2013). Production of bioactive Volatiles by different Burkholderia ambifaria strains. Journal of chemical ecology, 39(7), 892-906.
(21) Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species—opportunistic, avirulent plant symbionts. Nature reviews microbiology, 2(1), 43.
(22) Hung, R., Lee, S., & Bennett, J. W. (2013). Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal ecology, 6(1), 19-26.
(23) Jalali, F., Zafari, D., & Salari, H. (2017). Volatile organic compounds of some Trichoderma spp. increase growth and induce salt tolerance in Arabidopsis thaliana. Fungal Ecology, 29, 67-75.
(24) Kaewchai, S., Soytong, K., Hyde, K. (2009). Mycofungicides and fungal biofertilizers. Fungal diversity 38:25–50.
(25) Kai, M., Effmert, U., & Piechulla, B. (2016). Bacterial-plant-interactions: approaches to unravel the biological function of bacterial Volatiles in the rhizosphere. Frontiers in Microbiology, 7, 108.
(26) Kawai, M., & Uchimiya, H. (2000). Coleoptile senescence in rice (Oryza sativa L.). Annals of Botany, 86(2), 405-414.
(27) Kishimoto, K., Matsui, K., Ozawa, R., & Takabayashi, J. (2007). Volatile 1-octen-3-ol induces a defensive response in Arabidopsis thaliana. Journal of General Plant Pathology, 73(1), 35-37.
(28) Knudsen, J. T., Tollsten, L., & Bergström, L. G. (1993). Floral scents—a checklist of volatile compounds isolated by head-space techniques. Phytochemistry, 33(2), 253-280.
(29) Korpi, A., Järnberg, J., & Pasanen, A. L. (2009). Microbial volatile organic compounds. Critical reviews in toxicology, 39(2), 139-193.
(30) Kumar, S., Dubey, R. S., Tripathi, R. D., Chakrabarty, D., & Trivedi, P. K. (2015). Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environment international, 74, 221-230.
(31) Lampis, S., Santi, C., Ciurli, A., Andreolli, M., & Vallini, G. (2015). Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective. Frontiers in plant science, 6, 80.
(32) Lebeau, T., Braud, A., and Jézéquel, K. (2008). Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ. Pollut. 153, 497-522.
(33) Lee, S., Yap, M., Behringer, G., Hung, R., & Bennett, J. W. (2016). Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal biology and biotechnology, 3(1), 7.
(34) Lequeux, H., Hermans, C., Lutts, S., & Verbruggen, N. (2010). Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiology and Biochemistry, 48(8), 673-682.
(35) Lewis, R. M., Doherty, C. B., James, L. A., Burton, G. J., & Hales, C. N. (2001). Effects of maternal iron restriction on placental vascularization in the rat. Placenta, 22(6), 534-539.
(36) Ma, Y., Oliveira, R. S., Freitas, H., & Zhang, C. (2016). Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Frontiers in plant science, 7, 918.
(37) Minerdi, D., Bossi, S., Gullino, M. L., & Garibaldi, A. (2009). Volatile organic compounds: a potential direct long‐distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environmental microbiology, 11(4), 844-854.
(38) Minerdi, D., Bossi, S., Maffei, M. E., Gullino, M. L., & Garibaldi, A. (2011). Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOLATILES) emission. FEMS microbiology ecology, 76(2), 342-351.
(39) Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental chemistry letters, 8(3), 199-216.
(40) Naznin, H. A., Kimura, M., Miyazawa, M., & Hyakumachi, M. (2013). Analysis of volatile organic compounds emitted by plant growth-promoting fungus Phoma sp. GS8-3 for growth promotion effects on tobacco. Microbes and environments, 28(1), 42-49.
(41) Ortíz-Castro, R., Contreras-Cornejo, H. A., Macías-Rodríguez, L., & López-Bucio, J. (2009). The role of microbial signals in plant growth and development. Plant signaling & behavior, 4(8), 701-712.
(42) Park, Y. S., Dutta, S., Ann, M., Raaijmakers, J. M., & Park, K. (2015). Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochemical and biophysical research communications, 461(2), 361-365.
(43) Patten, C. L., & Glick, B. R. (2002). Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and environmental microbiology, 68(8), 3795-3801.
(44) Paul, D., & Park, K. S. (2013). Identification of Volatiles produced by Cladosporium cladosporioides CL-1, a fungal biocontrol agent that promotes plant growth. Sensors, 13(10), 13969-13977.
(45) Penrose, D. M., & Glick, B. R. (2001). Levels of ACC and related compounds in exudate and extracts of canola seeds treated with ACC deaminase-containing plant growth-promoting bacteria. Canadian journal of microbiology, 47(4), 368-372.
(46) Rath, M., Mitchell, T. R., & Gold, S. E. (2018). Volatiles produced by Bacillus mojavensis RRC101 act as plant growth modulators and are strongly culture-dependent. Microbiological research, 208, 76-84.
(47) Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Paré, P. W., & Kloepper, J. W. (2003). Bacterial Volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences, 100(8), 4927-4932.
(48) Sánchez‐López, Á. M., Baslam, M., De Diego, N., Muñoz, F. J., Bahaji, A., Almagro, G., Ricarte‐Bermejo, A., García‐Gómez, P., Li, J., Humplik, J. F., Novák, O., Spíchal, L., Doležal, K., Baroja‐Fernández, E., & Pozueta-Romero, J. (2016). Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action. Plant, cell & environment, 39(12), 2592-2608.
(49) Scala, F., Raio, A., Zoina, A., Lorito, M., Chincholkar, S., & Mukerji, K. (2007). Biological control of fruit and vegetable diseases with fungal and bacterial antagonists: Trichoderma and Agrobacterium. Biological control of plant diseases, 150-190.
(50) Schulz, S., & Dickschat, J. S. (2007). Bacterial Volatiles: the smell of small organisms. Natural product reports, 24(4), 814-842.
(51) Schützendübel, A., & Polle, A. (2002). Plant responses to abiotic stresses: heavy metal‐induced oxidative stress and protection by mycorrhization. Journal of experimental botany, 53(372), 1351-1365.
(52) Selvakumar, G., Panneerselvam, P., & Ganeshamurthy, A. N. (2012). Bacterial mediated alleviation of abiotic stress in crops. In Bacteria in Agrobiology: Stress Management (pp. 205-224). Springer, Berlin, Heidelberg.
(53) Stadtman, E. R., & Oliver, C. N. (1991). Metal-catalyzed oxidation of proteins. Physiological consequences. Journal of Biological Chemistry, 266(4), 2005-2008.
(54) Tahir, H. A., Gu, Q., Wu, H., Raza, W., Hanif, A., Wu, L., Colman, M. V., & Gao, X. (2017). Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Frontiers in microbiology, 8, 171.
(55) Tait, E., Perry, J. D., Stanforth, S. P., & Dean, J. R. (2014). Use of volatile compounds as a diagnostic tool for the detection of pathogenic bacteria. TrAc Trends in Analytical Chemistry, 53, 117-125.
(56) Taj, Z. Z., & Rajkumar, M. (2016). Perspectives of plant growth-promoting actinomycetes in heavy metal phytoremediation. In Plant Growth Promoting Actinobacteria (pp. 213-231). Springer, Singapore.
(57) Thomas, J. C., Malick, F. K., Endreszl, C., Davies, E. C., & Murray, K. S. (1998). Distinct responses to copper stress in the halophyte Mesembryanthemum crystallinum. Physiologia Plantarum, 102(3), 360-368.
(58) Tiwari, S., & Lata, C. (2018). Heavy metal stress, signaling, and tolerance due to plant-associated microbes: an overview. Frontiers in plant science, 9, 452.
(59) Vaishnav, A., Varma, A., Tuteja, N., & Choudhary, D. K. (2017). Characterization of Bacterial Volatiles and Their Impact on Plant Health Under Abiotic Stress. In Volatiles and Food Security (pp. 15-24). Springer, Singapore.
(60) Velázquez-Becerra, C., Macías-Rodríguez, L. I., López-Bucio, J., Altamirano-Hernández, J., Flores-Cortez, I., & Valencia-Cantero, E. (2011). A volatile organic compound analysis from Arthrobacter agilis identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro. Plant and soil, 339(1-2), 329-340.
(61) Verma, S., Verma, P. K., Meher, A. K., Dwivedi, S., Bansiwal, A. K., Pande, V., Srivastava, P. K., Verma, P. C., Tripathi, R. D., & Chakrabarty, D. (2016). A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation. Metallomics, 8(3), 344-353.
(62) Wainwright, S. J., & Woolhouse, H. W. (1977). Some physiological aspects of copper and zinc tolerance in Agrostis tenuis Sibth.: cell elongation and membrane damage. Journal of Experimental Botany, 28(4), 1029-1036.
(63) Wang, S., & Mulligan, C. N. (2006). Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Science of the total Environment, 366(2-3), 701-721.
(64) Yadav, S. K. (2010). Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 76(2), 167-179.
(65) Yeh, C. M., Hung, W. C., & Huang, H. J. (2003). Copper treatment activates mitogen‐activated protein kinase signalling in rice. Physiologia Plantarum, 119(3), 392-399.
(66) Zhang, H., Kim, M. S., Krishnamachari, V., Payton, P., Sun, Y., Grimson, M., Farag, M. A., Ryu, C. M., Allen, R., Melo, I. S., & Paré, P. W. (2007). Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta, 226(4), 839.
(67) Zhang, H., Xie, X., Kim, M. S., Kornyeyev, D. A., Holaday, S., & Paré, P. W. (2008). Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. The Plant Journal, 56(2), 264-273.
(68) Zou, C., Li, Z., & Yu, D. (2010). Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. The Journal of Microbiology, 48(4), 460-466.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-08-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw