進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0208201817100600
論文名稱(中文) 金奈米粒子於有序二氧化鋯孔洞以強化SERS效應並應用於農藥殘留檢測
論文名稱(英文) Au Nanoparticles on Ordered ZrO2 Nanopores to Improve the Effect of SERS and Apply for Trace Detection of Pesticides
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 施喬亞
研究生(英文) Jaya Sitjar
學號 NB6057035
學位類別 碩士
語文別 英文
論文頁數 89頁
口試委員 指導教授-廖峻德
共同指導教授-劉浩志
共同指導教授-王士豪
口試委員-傅尉恩
中文關鍵字 表面增顯拉曼散射  多孔二氧化鋯  金奈米粒子  農藥 
英文關鍵字 surface-enhanced Raman scattering  porous zirconia  gold nanoparticles  pesticides 
學科別分類
中文摘要 殘留於農產品中的微量農藥,其神經毒性對人體健康的風險逐漸受到重視,而表面增顯拉曼散射技術(SERS)對樣品製備的低需求使其成為農產品品質控制的快速檢測方法之一。在本研究中,SERS活性基板藉由熱蒸鍍金奈米粒子(Au NPs)於有序多孔二氧化鋯(pZrO2)層內完成,而此有序多孔二氧化鋯層則由聚苯乙烯奈米球體的犧牲輔助基板以及溶膠-凝膠法製備而成。藉由最佳化的雷射選擇與分子探針羅丹明紅(R6G)的選用,SERS的增顯因子(EF)可測得為7*107,而SERS效應主要原因來自於金奈米粒子間產生的熱區效應以及金與二氧化鋯的交界面因電荷轉移而產生的電磁效應。除此之外,多孔結構的凹面性質使得入射雷射光散射能與表面電磁場互相疊加,其有序的多孔結構也使SERS量測呈現一致性。本研究之Au/pZrO2基板在檢測益滅松以及加保利兩種農藥可測得最低極限為0.3 ppm以及0.2 ppm。在混合農藥檢測中,益滅松因其磷酸基對二氧化鋯的高親和力以及硫基對金的親和性,使得SERS基板對益滅松具有高選擇性。因此,Au/pZrO2基板在快速檢測微量農藥方面具有很高的潛力。
英文摘要 The presence of trace amounts of pesticides in agricultural products for human consumption has gained increasing concerns regarding the health risks they pose due to their neurotoxic nature. One of the sensitive and rapid detection methods that has been developed for quality control of these products is surface-enhanced Raman scattering (SERS) since it requires minimal to no sample preparation. In this study, a SERS-active substrate was fabricated wherein thermally evaporated gold nanoparticles (Au NPs) were deposited onto an ordered porous ZrO2 (pZrO2) layer that was produced through sol-gel method with an assisting template of polystyrene nanoparticles. With an optimized substrate-laser wavelength combination and Rhodamine 6G (R6G) as the probe molecule, an enhancement factor (EF) of 7.0 x 107 was obtained. The presence of hot spots in Au-Au interparticle gaps and the formation of electromagnetic fields on the Au-ZrO2 interfaces due to charge transfer between Au and ZrO2 are major factors that contribute to the SERS effect; in addition, the concave nature of the pores allowed the incident light to scatter in a way that it lead to further overlap of the electromagnetic fields. The substrate also exhibited homogeneity in terms of SERS measurements owing to its ordered morphological features. Furthermore, Au/pZrO2 substrates were also able to detect pesticides i. e. phosmet and carbaryl, down to low concentrations (0.3 ppm and 0.2 ppm, respectively). Multiplex detection of the pesticides was also demonstrated but with a selectivity to phosmet as its phosphoric groups has a strong affinity to ZrO2 aside from the affinity of its sulfur constituent to the Au component of the substrate. The Au/pZrO2 substrate has thus demonstrated a high potential in the rapid detection of trace amounts of pesticide.
論文目次 Table of Contents
摘要 I
Abstract II
Acknowledgement III
Table of Contents V
List of Tables VII
List of Figures VIII
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Motivation 4
1.3 Objective 5
Chapter 2 Literature survey 7
2.1 Principles of Raman scattering and spectroscopy 7
2.1.1 Classical theory aspect 7
2.1.2 Quantum theory aspect 9
2.1.3 Vibrational modes 11
2.2 Surface-Enhanced Raman scattering (SERS) 12
2.2.1 Enhancement mechanisms 13
(a) Electromagnetic enhancement mechanism 13
(b) Chemical enhancement mechanism 18
2.3 SERS substrates 19
2.3.1 Forms of SERS substrates 20
2.3.2 SERS substrates involving porous oxides 22
2.3.3 Characteristics and preparation of zirconia 25
2.4 Application of SERS substrates in pesticide detection 27
Chapter 3 Materials and methods 30
3.1 Substrate Preparation 30
3.1.1 Formation of porous ZrO2 thin film 30
3.1.2 Deposition of Au nanoparticles (Au NPs) onto the ZrO2 substrates 33
3.2 Substrate characterization 33
3.3 Raman spectroscopy 34
3.3.1 SERS substrate evaluation 34
3.3.2 Application of the SERS substrates on the detection of pesticides 35
Chapter 4 Substrate structure and morphology 36
4.1 Formation of the porous ZrO2 support substrate 36
4.1.1 Polystyrene nanoparticle template 36
4.1.2 Morphology of porous ZrO2 38
4.2 Physical properties of the Au nanoparticle-porous ZrO2 hybrid substrate 40
4.2.1 Surface morphologies 40
4.2.2 Compositional analysis 43
(a) Energy-dispersive X-ray spectroscopy (EDS) 43
(b) X-ray diffraction (XRD) analysis 44
(c) Raman spectroscopy 45
(d) Work function measurements 47
4.3 Summary 48
Chapter 5 SERS effects of the Au/pZrO2 substrates 50
5.1 Evaluation of SERS effects provided by the Au/pZrO2 substrates 50
5.1.1 Substrate and laser wavelength optimization 50
(a) Effect of variation in Au NP size 51
(b) Laser excitation wavelengths on the SERS effect 52
(c) SERS effect imparted by components: Au NPs and ZrO2 54
5.1.2 Uniformity of measurements and signal enhancement 56
(a) Reproducibility and homogeneity 56
(b) Enhancement factors 58
5.1.3 Sensitivity 59
5.2 SERS mechanism with respect to substrate design 60
5.3 Applicability of Au/pZrO2 substrates to pesticide detection 62
5.3.1 Analysis of pesticide standard solutions 62
(a) Phosmet 62
(b) Carbaryl 66
5.3.2 Multiplex detection of pesticides 68
5.4 Summary 71
Chapter 6 Conclusion and future works 73
6.1 Conclusion 73
6.2 Recommendations for prospective work 74
References 75

參考文獻 References
[1] B. Lutz et al., “Raman nanoparticle probes for antibody-based protein detection in tissues,” J. Histochem. Cytochem., vol. 56, no. 4, pp. 371–9, Apr. 2008.
[2] M. Chambers, B. Maclean, and R. Burke, “A cross-platform toolkit for mass spectrometry and proteomics,” Nat. Biotechnol., vol. 30, no. 10, pp. 918–920, 2012.
[3] A. Li, S. K. Srivastava, I. Abdulhalim, and S. Li, “Engineering the hot spots in squared arrays of gold nanoparticles on a silver film,” Nanoscale, vol. 58, pp. 267–297, 2016.
[4] E. Deconinck, P. Y. Sacré, P. Courselle, and J. O. De Beer, “Chromatography in the detection and characterization of illegal pharmaceutical preparations,” J. Chromatogr. Sci., vol. 51, no. 8, pp. 791–806, 2013.
[5] B. Liu, P. Zhou, X. Liu, X. Sun, H. Li, and M. Lin, “Detection of Pesticides in Fruits by Surface-Enhanced Raman Spectroscopy Coupled with Gold Nanostructures,” Food Bioprocess Technol., vol. 6, no. 3, pp. 710–718, 2013.
[6] K. Sivashanmugan, H. Lee, C. H. Syu, B. H. C. Liu, and J. Der Liao, “Nanoplasmonic Au/Ag/Au nanorod arrays as SERS-active substrate for the detection of pesticides residue,” J. Taiwan Inst. Chem. Eng., vol. 75, pp. 287–291, 2017.
[7] Y. Fan, K. Lai, B. A. Rasco, and Y. Huang, “Determination of carbaryl pesticide in Fuji apples using surface-enhanced Raman spectroscopy coupled with multivariate analysis,” LWT - Food Sci. Technol., vol. 60, no. 1, pp. 352–357, 2015.
[8] Y. Zhang, Z. Wang, L. Wu, Y. Pei, P. Chen, and Y. Cui, “Rapid simultaneous detection of multi-pesticide residues on apple using SERS technique,” Analyst, vol. 139, no. 20, pp. 5148–5154, 2014.
[9] K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev., vol. 111, no. 6, pp. 3828–3857, 2011.
[10] B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today, vol. 15, no. 1–2, pp. 16–25, 2012.
[11] K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced raman scattering in local optical fields of silver and gold nanoaggregates - From single-molecule raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res., vol. 39, no. 7, pp. 443–450, 2006.
[12] A. Shiohara, Y. Wang, and L. M. Liz-Marzán, “Recent approaches toward creation of hot spots for SERS detection,” J. Photochem. Photobiol. C Photochem. Rev., vol. 21, pp. 2–25, 2014.
[13] J. H. Granger, M. C. Granger, M. A. Firpo, S. J. Mulvihill, and M. D. Porter, “Toward development of a surface-enhanced Raman scattering (SERS)-based cancer diagnostic immunoassay panel,” Analyst, vol. 138, no. 2, pp. 410–416, 2013.
[14] P. Tarakeshwar, D. Finkelstein-Shapiro, S. J. Hurst, T. Rajh, and V. Mujica, “Surface-enhanced Raman scattering on semiconducting oxide nanoparticles: Oxide nature, size, solvent, and pH effects,” J. Phys. Chem. C, vol. 115, no. 18, pp. 8994–9004, 2011.
[15] G. Liu and W. Cai, “Morphological and Structural Control of Organic Monolayer Colloidal Crystal Based on Plasma Etching and Its Application in Fabrication of Ordered Gold Nanostructured Arrays,” Crystals, vol. 6, no. 10, p. 126, 2016.
[16] M. Yao, F. Zhou, J. Shi, J. Wang, and G. Duan, “Nanoparticle coupling effect allows enhanced localized field on Au bowl-like pore arrays,” RSC Adv., vol. 6, no. 36, pp. 29958–29962, 2016.
[17] S. M. Wells, S. D. Retterer, J. M. Oran, and M. J. Sepaniak, “Controllable Nanofabrication of Aggregate-like Nanoparticle Substrates and Evaluation for Surface-Enhanced Raman Spectroscopy,” vol. 3, no. 12, pp. 3845–3853, 2009.
[18] Y. Y. Lin, J. Der Liao, Y. H. Ju, C. W. Chang, and A. L. Shiau, “Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus,” Nanotechnology, vol. 22, no. 18, 2011.
[19] S. C. Luo, K. Sivashanmugan, J. Der Liao, C. K. Yao, and H. C. Peng, “Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review,” Biosens. Bioelectron., vol. 61, pp. 232–240, 2014.
[20] P. Vandenabeele, “Theoretical Aspects,” Pract. Raman Spectrosc. Introd., pp. 1–38, 2013.
[21] S. Laing, K. Gracie, and K. Faulds, “Multiplex in vitro detection using SERS,” Chem. Soc. Rev., vol. 45, pp. 1901–1918, 2016.
[22] L. Rodriguez-Lorenzo and R. A. Alvarez-Puebla, Surface-enhanced Raman scattering (SERS) nanoparticle sensors for biochemical and environmental sensing, no. February 2015. Woodhead Publishing Limited, 2014.
[23] E. Le Ru and P. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy and related plasmonic effets, vol. 1. 2009.
[24] G. Keresztury, “Raman Spectroscopy : Theory,” Handb. Vib. Spectrosc., pp. 71–87, 2006.
[25] P. Adapa, C. Karunakaran, L. Tabil, and G. Schoenau, “Potential Applications of Infrared and Raman Spectromicroscopy for Agricultural Biomass,” Agric. Eng. Int., vol. 11, p. Manuscript 1081, 2009.
[26] A. Nawrocka and J. Lamorska, “Determination of Food Quality by Using Spectroscopic Methods,” in Advances in Agrophysical Research, 2013, pp. 347–368.
[27] T. Tunde, O. Globalfoundries, P. View, T. U. Dresden, P. View, and T. T. Olawumi, “Ultra-low k dielectrics and plasma damage control for advanced technology nodes ( 10nm and below ),” no. April, 2015.
[28] S. McAughtrie, K. Faulds, and D. Graham, “Surface enhanced Raman spectroscopy (SERS): Potential applications for disease detection and treatment,” J. Photochem. Photobiol. C Photochem. Rev., vol. 21, pp. 40–53, 2014.
[29] R. Li, J. Yang, J. Han, J. Liu, and M. Huang, “Quantitative determination of melamine in milk using Ag nanoparticle monolayer film as SERS substrate,” Phys. E Low-dimensional Syst. Nanostructures, vol. 88, no. January, pp. 164–168, 2017.
[30] D.-K. Lim et al., “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol., vol. 6, no. 7, pp. 452–460, 2011.
[31] W.-H. Park and Z. H. Kim, “Charge Transfer Enhancement in the SERS of a Single Molecule,” Nano Lett., vol. 10, no. 10, pp. 4040–4048, 2010.
[32] P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman Spectroscopy,” Annu. Rev. Anal. Chem., vol. 1, no. 1, pp. 601–626, 2008.
[33] E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy,” Chem. Phys. Lett., vol. 423, no. 1–3, pp. 63–66, 2006.
[34] L. Guerrini and D. Graham, “Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications,” Chem. Soc. Rev., vol. 41, no. 21, p. 7085, 2012.
[35] S. Luo, K. Sivashanmugan, J. Liao, and C. Yao, “Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro : A review,” Biosens. Bioelectron., vol. 61, pp. 232–240, 2014.
[36] K. Su, Q. Wei, and X. Zhang, “Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles.”
[37] I. Tokarev and S. Minko, “Tunable plasmonic nanostructures from noble metal nanoparticles and stimuli-responsive polymers,” Soft Matter, vol. 8, pp. 5980–5987, 2012.
[38] Y. Wang, B. Yan, and L. Chen, “SERS Tags: Novel optical nanoprobes for bioanalysis,” Chem. Rev., vol. 113, no. 3, pp. 1391–1428, 2013.
[39] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive Chemical Analysis by Raman Spectroscopy,” Chem. Rev., vol. 99, no. 10, pp. 2957–2976, 1999.
[40] A. Otto and M. Futamata, “Electronic Mechanisms of SERS,” Surface-Enhanced Raman Scatt., vol. 103, pp. 147–182, 2006.
[41] R. Aroca, Surface-Enhanced Vibrational Spectroscopy. 2006.
[42] P. Vandenabeele, “Enhancement of the Raman Signal,” Pract. Raman Spectrosc. – An Introd., pp. 47–60, 2013.
[43] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett., vol. 26, no. 2, pp. 163–166, 1974.
[44] D. L. Jeanmaire and R. P. Van Duyne, “Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem., vol. 84, no. 1, pp. 1–20, 1977.
[45] M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc., vol. 99, pp. 5215–5217, 1977.
[46] B. N. Khlebtsov, Z. Liu, J. Ye, and N. Khlebtsov, “Au @ Ag core / shell cuboids and dumbbells : Optical properties and SERS response,” J. Quant. Spectrosc. Radiat. Transf., vol. 167, pp. 64–75, 2015.
[47] B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods,” Nano Res., vol. 9, no. 8, pp. 2303–2318, 2016.
[48] X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical Synthesis of Novel Plasmonic Nanoparticles,” Annu. Rev. Phys. Chem., vol. 60, no. 1, pp. 167–192, 2009.
[49] K. W. Kho, U. S. Dinish, and M. Olivo, Biomedicine with surface enhanced Raman scattering (SERS), no. 1928. Elsevier Ltd., 2015.
[50] S. Basu, S. Pande, S. Jana, S. Bolisetty, and T. Pal, “Controlled Interparticle Spacing for Surface-Modified Gold Nanoparticle Aggregates Controlled Interparticle Spacing for Surface-Modified Gold Nanoparticle Aggregates,” Society, no. 13, pp. 8276–8282, 2008.
[51] M. Moskovits et al., “Generalized approach to SERS-active nanomaterials via controlled nanoparticle linking, polymer encapsulation, and small-molecule infusion,” J. Phys. Chem. C, vol. 113, no. 31, pp. 13622–13629, 2009.
[52] R. G. Chaudhuri and S. Paria, “Core / Shell Nanoparticles : Classes , Properties , Synthesis Mechanisms , Characterization , and Applications,” pp. 2373–2433, 2012.
[53] R. A. Alvarez-Puebla, R. Contreras-Caceres, I. Pastoriza-Santos, J. Perez-Juste, and L. Liz-Marzan, “Au@pNIPAM Colloids as Molecular Traps for Surface-Enhanced, Spectroscopic, Ultra-Sensitive Analysis,” Angew. Chemie Int. Ed., vol. 48, pp. 138–143, 2009.
[54] C. Fernández-López et al., “Gold Nanorod-pNIPAM Hybrids with Reversible Plasmon Coupling: Synthesis, Modeling, and SERS Properties,” ACS Appl. Mater. Interfaces, vol. 7, no. 23, pp. 12530–12538, 2015.
[55] S. G. Jiji and K. G. Gopchandran, “Au-Ag hollow nanostructures with tunable SERS properties,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 171, no. 2017, pp. 499–506, 2017.
[56] V. K. Rao, P. Ghildiyal, and T. P. Radhakrishnan, “In Situ Fabricated Cu–Ag Nanoparticle-Embedded Polymer Thin Film as an Efficient Broad Spectrum SERS Substrate,” J. Phys. Chem. C, vol. 121, no. 2, pp. 1339–1348, 2017.
[57] H. Kim et al., “Label-free C-reactive protein SERS detection with silver nanoparticle aggregates,” Rsc Adv., vol. 5, no. 44, pp. 34720–34729, 2015.
[58] Y. W. Wang, K. C. Kao, J. K. Wang, and C. Y. Mou, “Large-Scale Uniform Two-Dimensional Hexagonal Arrays of Gold Nanoparticles Templated from Mesoporous Silica Film for Surface-Enhanced Raman Spectroscopy,” J. Phys. Chem. C, vol. 120, no. 42, pp. 24382–24388, 2016.
[59] A. Shiohara, J. Langer, L. Polavarapu, and L. M. Liz-Marzán, “Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing.,” Nanoscale, vol. 6, no. 16, pp. 9817–23, 2014.
[60] H. Wang et al., “Fabrication of Au hybrid protein chips and its application to SERS-based bioassay,” Vib. Spectrosc., vol. 70, no. 2014, pp. 49–52, 2014.
[61] M. Pisarek et al., “Surface modification of nanoporous alumina layers by deposition of Ag nanoparticles. Effect of alumina pore diameter on the morphology of silver deposit and its influence on SERS activity,” Appl. Surf. Sci., vol. 357, pp. 1736–1742, 2015.
[62] M. Pisarek et al., “Ag/ZrO2-NT/Zr hybrid material: A new platform for SERS measurements,” Vib. Spectrosc., vol. 71, pp. 85–90, 2014.
[63] J. Ortiz-Landeros, M. E. Contreras-García, and H. Pfeiffer, “Synthesis of macroporous ZrO2-Al2O3 mixed oxides with mesoporous walls, using polystyrene spheres as template,” J. Porous Mater., vol. 16, no. 4, pp. 473–479, 2009.
[64] M. Kahraman and S. Wachsmann-Hogiu, “Label-free and direct protein detection on 3D plasmonic nanovoid structures using surface-enhanced Raman scattering,” Anal. Chim. Acta, vol. 856, pp. 74–81, 2015.
[65] A. Wolosiuk et al., “Silver Nanoparticle-Mesoporous Oxide Nanocomposite Thin Films: A Platform for Spatially Homogeneous SERS-Active Substrates with Enhanced Stability,” no. i, 2014.
[66] M. Pisarek, A. Roguska, A. Kudelski, M. Andrzejczuk, M. Janik-Czachor, and K. J. Kurzydłowski, “The role of Ag particles deposited on TiO2 or Al 2O3 self-organized nanoporous layers in their behavior as SERS-active and biomedical substrates,” Mater. Chem. Phys., vol. 139, no. 1, pp. 55–65, 2013.
[67] Y. Chen, J. Shen, Z. Huang, P. Zhu, X. Xiong, and F. Ouyang, “One-step synthesis of Au/porous ZrO 2 SERS-active nanocomposite: Fabrication and tunable optical properties,” J. Alloys Compd., vol. 721, no. 2017, pp. 118–125, 2017.
[68] A. Kudelski, M. Pisarek, A. Roguska, M. Hoałdýski, and M. Janik-Czachor, “Surface-enhanced Raman scattering investigations on silver nanoparticles deposited on alumina and titania nanotubes: Influence of the substrate material on surface-enhanced Raman scattering activity of Ag nanoparticles,” J. Raman Spectrosc., vol. 43, no. 10, pp. 1360–1366, 2012.
[69] M. E. Koleva et al., “Porous plasmonic nanocomposites for SERS substrates fabricated by two-step laser method,” J. Alloys Compd., vol. 665, no. 2016, pp. 282–287, 2016.
[70] B. X. Li, G. Chen, L. Yang, Z. Jin, and J. Liu, “Multifunctional Au-Coated TiO 2 Nanotube Arrays as Recyclable SERS Substrates for Multifold Organic Pollutants Detection,” Adv. Funct. Mater., vol. 20, pp. 2815–2824, 2010.
[71] K. Wu, J. Chen, J. R. Mcbride, and T. Lian, “Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition,” Science (80-. )., vol. 349, no. 6248, pp. 3584–3588, 2015.
[72] X. C. Ma, Y. Dai, L. Yu, and B. B. Huang, “Energy transfer in plasmonic photocatalytic composites,” Light Sci. Appl., vol. 5, no. April, 2016.
[73] S. Mubeen, G. Hernandez-sosa, D. Moses, J. Lee, and M. Moskovits, “Plasmonic Photosensitization of a Wide Band Gap Semiconductor : Converting Plasmons to Charge Carriers,” pp. 5548–5552, 2011.
[74] C. Jia et al., “Interface-Engineered Plasmonics in Metal/Semiconductor Heterostructures,” Adv. Energy Mater., vol. 6, no. 17, pp. 1–11, 2016.
[75] S. Link and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” J. Phys. Chem. B, vol. 103, no. 21, pp. 4212–4217, 1999.
[76] S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today, vol. 16, no. 10, pp. 375–386, 2013.
[77] X. Li et al., “Substrate-induced interfacial plasmonics for photovoltaic conversion,” Sci. Rep., vol. 5, pp. 1–10, 2015.
[78] M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates Matter Influence of an Adjacent Dielectric on an Individual Plasmonic Nanoparticle,” Nano Lett., vol. 9, no. 5, pp. 2199–2192, 2009.
[79] Z. Xu et al., “Understanding the Enhancement Mechanisms of Surface Plasmon-Mediated Photoelectrochemical Electrodes: A Case Study on Au Nanoparticle Decorated TiO2 Nanotubes,” Adv. Mater. Interfaces, vol. 2, no. 13, pp. 1–8, 2015.
[80] H. Matsui, N. Bandou, S. Karuppuchamy, M. A. Hassan, and M. Yoshihara, “Efficient photocatalytic activity of MnO2-loaded ZrO2/carbon cluster nanocomposite materials under visible light irradiation,” Ceram. Int., vol. 38, no. 2, pp. 1605–1610, 2012.
[81] N. Miura, T. Sato, S. A. Anggraini, H. Ikeda, and S. Zhuiykov, “A review of mixed-potential type zirconia-based gas sensors,” Ionics (Kiel)., vol. 20, no. 7, pp. 901–925, 2014.
[82] M. P. Gashti and A. Almasian, “Citric acid/ZrO2 nanocomposite inducing thermal barrier and self-cleaning properties on protein fibers,” Compos. Part B Eng., vol. 52, no. 2013, pp. 340–349, 2013.
[83] M. A. Shadiya, N. Nandakumar, R. Joseph, and K. E. George, “On the facile polyvinyl alcohol assisted sol-gel synthesis of tetragonal zirconia nanopowder with mesoporous structure,” Adv. Powder Technol., vol. 28, no. 12, pp. 3148–3157, 2017.
[84] J. Yu, G. Ji, Q. Liu, J. Zhang, and Z. Shi, “Effect of sol-gel ZrO 2 films on corrosion behavior of the 304 stainless steel in coal-gases environment at high temperature,” Surf. Coatings Technol., vol. 331, no. August, pp. 21–26, 2017.
[85] R. Ryoo, C. H. Ko, M. Kruk, V. Antochshuk, and M. Jaroniec, “Block-Copolymer-Templated Ordered Mesoporous Silica: Array of Uniform Mesopores or Mesopore−Micropore Network?,” J. Phys. Chem. B, vol. 104, no. 48, pp. 11465–11471, 2000.
[86] C. J. Brinker, K. D. Keefer, D. W. Schaefer, R. A. Assink, B. D. Kay, and C. S. Ashley, “Sol-gel transition in simple silicates II,” J. Non. Cryst. Solids, vol. 63, no. 1–2, pp. 45–59, 1984.
[87] Z. Fang and D. A. Dixon, “Hydrolysis of ZrCl4 and HfCl4: The initial steps in the high-temperature oxidation of metal chlorides to produce ZrO2 and HfO2,” J. Phys. Chem. C, vol. 117, no. 15, pp. 7459–7474, 2013.
[88] B. Xia, L. Duan, and Y. Xie, “ZrO2 Nanopowders Prepared by Low-Temperature Vapor-Phase Hydrolysis,” J. Am. Ceram. Soc., vol. 83, no. 5, pp. 1077–1080, 2000.
[89] S. M. Chang and R. A. Doong, “ZrO2 thin films with controllable morphology and thickness by spin-coated sol-gel method,” Thin Solid Films, vol. 489, no. 1–2, pp. 17–22, 2005.
[90] S. Pang, T. Yang, and L. He, “Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides,” TrAC - Trends Anal. Chem., vol. 85, pp. 73–82, 2016.
[91] Y. Fan, K. Lai, B. A. Rasco, and Y. Huang, “Analyses of phosmet residues in apples with surface-enhanced Raman spectroscopy,” Food Control, vol. 37, no. 1, pp. 153–157, 2014.
[92] R. Hou, S. Pang, and L. He, “In situ SERS detection of multi-class insecticides on plant surfaces,” Anal. Methods, vol. 7, no. 15, pp. 6325–6330, 2015.
[93] H. Wang, Y. Su, H. Kim, D. Yong, L. Wang, and X. Han, “A Highly Efficient ZrO2 Nanoparticle Based Electrochemical Sensor for the Detection of Organophosphorus Pesticides,” Chinese J. Chem., vol. 33, no. 10, pp. 1135–1139, 2015.
[94] G. Liu and Y. Lin, “Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents,” Anal. Chem., vol. 77, no. 18, pp. 5894–5901, 2005.
[95] Y. Xue, X. Li, H. Li, and W. Zhang, “Quantifying thiol-gold interactions towards the efficient strength control,” Nat. Commun., vol. 5, pp. 1–9, 2014.
[96] H. Lee et al., “Gold Nanoparticle-Coated ZrO 2 -Nanofiber Surface as a SERS-Active Substrate for Trace Detection of Pesticide Residue,” 2018.
[97] Z. Dai, Y. Li, G. Duan, L. Jia, and W. Cai, “Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface,” ACS Nano, vol. 6, no. 8, pp. 6706–6716, 2012.
[98] J. Pang, S. Xiong, F. Jaeckel, Z. Sun, D. Dunphy, and C. J. Brinker, “Free-standing, patternable nanoparticle/polymer monolayer arrays formed by evaporation induced self-assembly at a fluid interface,” J. Am. Chem. Soc., vol. 130, no. 11, pp. 3284–3285, 2008.
[99] D. Gingery and P. Bühlmann, “Formation of gold nanoparticles on multiwalled carbon nanotubes by thermal evaporation,” Carbon N. Y., vol. 46, no. 14, pp. 1966–1972, 2008.
[100] H. Sun, M. Yu, G. Wang, X. Sun, and J. Lian, “Temperature-dependent morphology evolution and surface plasmon absorption of ultrathin gold island films,” J. Phys. Chem. C, vol. 116, no. 16, pp. 9000–9008, 2012.
[101] D. Gaspar et al., “Influence of the layer thickness in plasmonic gold nanoparticles produced by thermal evaporation,” Sci. Rep., vol. 3, pp. 3–7, 2013.
[102] T. E. Keyes and R. J. Forster, “Spectroelectrochemistry,” in Handbook of Electrochemistry, no. 2, 2007, pp. 591–635.
[103] M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys., vol. 57, no. 3, pp. 783–826, 1985.
[104] D. Gall, “Electron mean free path in elemental metals,” J. Appl. Phys., vol. 119, no. 8, pp. 1–5, 2016.
[105] S. N. Basahel, T. T. Ali, M. Mokhtar, and K. Narasimharao, “Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange,” Nanoscale Res. Lett., vol. 10, no. 1, 2015.
[106] S. Shukla and S. Seal, “Thermodynamic Tetragonal Phase Stability in Sol−Gel Derived Nanodomains of Pure Zirconia,” J. Phys. Chem. B, vol. 108, no. 11, pp. 3395–3399, 2004.
[107] Y. Liu, W. Chi, H. Liu, Y. Su, and L. Zhao, “Preparation of t-ZrO2 by a sol–gel process with carbon as a phase transformation promoter,” RSC Adv., vol. 5, no. 43, pp. 34451–34455, 2015.
[108] D. Bersani et al., “Micro-Raman study of indium doped zirconia obtained by sol-gel,” J. Non. Cryst. Solids, vol. 345–346, pp. 116–119, 2004.
[109] D. Gazzoli, G. Mattei, and M. Valigi, “Raman and X-ray investigations of the incorporation of Ca2+ and Cd2+ in the ZrO2 structure,” J. Raman Spectrosc., vol. 38, no. April, pp. 1538–1553, 2007.
[110] W. Zhang et al., “Infrared and raman spectroscopic studies of optically transparent zirconia (ZrO2) films deposited by plasma-assisted reactive pulsed laser deposition,” Appl. Spectrosc., vol. 65, no. 5, pp. 522–527, 2011.
[111] M. Uda, A. Nakamura, T. Yamamoto, and Y. Fujimoto, “Work function of polycrystalline Ag, Au and Al,” J. Electron Spectros. Relat. Phenomena, vol. 88, pp. 643–648, 1998.
[112] L. Kong et al., “Evidences for redox reaction driven charge transfer and mass transport in metal-assisted chemical etching of silicon,” Sci. Rep., vol. 6, no. November 2016, pp. 1–13, 2016.
[113] Y. C. Yeo, T. J. King, and C. Hu, “Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology,” J. Appl. Phys., vol. 92, no. 12, pp. 7266–7271, 2002.
[114] D. Fernand, C. Pardanaud, D. Bergé-Lefranc, P. Gallice, and V. Hornebecq, “Adsorption of rhodamine 6G on SiO2 and Ag@SiO2 porous solids: Coupling thermodynamics and Raman spectroscopy,” J. Phys. Chem. C, vol. 118, no. 28, pp. 15308–15314, 2014.
[115] K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett., vol. 3, no. 8, pp. 1087–1090, 2003.
[116] I. Tokarev and S. Minko, “Tunable plasmonic nanostructures from noble metal nanoparticles and stimuli-responsive polymers,” Soft Matter, vol. 8, no. 22, p. 5980, 2012.
[117] B. Chen et al., “Ordered arrays of Au-nanobowls loaded with Ag-nanoparticles as effective SERS substrates for rapid detection of PCBs,” Nanotechnology, vol. 25, no. 14, p. 145605, 2014.
[118] M. Pisarek et al., “Influence of the silver deposition method on the activity of platforms for chemometric surface-enhanced Raman scattering measurements : Silver films on ZrO 2 nanopore arrays,” vol. 182, pp. 124–129, 2017.
[119] C. Novara et al., “SERS-active Ag nanoparticles on porous silicon and PDMS substrates: A comparative study of uniformity and Raman efficiency,” J. Phys. Chem. C, vol. 120, no. 30, pp. 16946–16953, 2016.
[120] X. Li, Y. Zhang, Z. X. Shen, and H. J. Fan, “Highly ordered arrays of particle-in-bowl plasmonic nanostructures for surface-enhanced raman scattering,” Small, vol. 8, no. 16, pp. 2548–2554, 2012.
[121] A. N. Severyukhina et al., “Nanoplasmonic Chitosan Nanofibers as Effective SERS Substrate for Detection of Small Molecules,” ACS Appl. Mater. Interfaces, vol. 7, no. 28, pp. 15466–15473, 2015.
[122] J. Yu, M. Shen, S. Liu, F. Li, D. Sun, and T. Wang, “A simple technique for direct growth of Au into a nanoporous alumina layer on conductive glass as a reusable SERS substrate,” Appl. Surf. Sci., vol. 406, no. 2017, pp. 285–293, 2017.
[123] H. Y. Chen, M. H. Lin, C. Y. Wang, Y. M. Chang, and S. Gwo, “Large-Scale Hot Spot Engineering for Quantitative SERS at the Single-Molecule Scale,” J. Am. Chem. Soc., vol. 137, no. 42, pp. 13698–13705, 2015.
[124] D. G. de Oliveira, L. P. F. Peixoto, S. Sánchez-Cortés, and G. F. S. Andrade, “Chitosan-based improved stability of gold nanoparticles for the study of adsorption of dyes using SERS,” Vib. Spectrosc., vol. 87, pp. 8–13, 2016.
[125] Y. Liu, B. He, Y. Zhang, H. Wang, and B. Ye, “Detection of Phosmet Residues on Navel Orange Skin by Surface-enhanced Raman Spectroscopy,” Intell. Autom. Soft Comput., vol. 21, no. 3, pp. 423–432, 2015.
[126] C. Sui, K. Wang, S. Wang, J. Ren, X. Bai, and J. Bai, “SERS activity with tenfold detection limit optimization on a type of nanoporous AAO-based complex multilayer substrate,” Nanoscale, vol. 8, no. 11, pp. 5920–5927, 2016.
[127] H. Luo, Y. Huang, K. Lai, B. A. Rasco, and Y. Fan, “Surface-enhanced Raman spectroscopy coupled with gold nanoparticles for rapid detection of phosmet and thiabendazole residues in apples,” Food Control, vol. 68, no. 2016, pp. 229–235, 2016.
[128] D. K. Singh, E. O. Ganbold, E. M. Cho, C. M. Lee, S. I. Yang, and S. W. Joo, “Tautomerism of a thiabendazole fungicide on Ag and Au nanoparticles investigated by Raman spectroscopy and density functional theory calculations,” J. Mol. Struct., vol. 1049, pp. 464–472, 2013.
[129] E. K. Fodjo et al., “Cu@Ag/b-AgVO3 as a SERS substrate for the trace level detection of carbamate pesticides†,” Anal. Methods, pp. 3785–3791, 2012.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-08-02起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-08-02起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw