進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0208201815595800
論文名稱(中文) 銀合金線材電化學離子遷移行為與衍生之奈米樹枝狀結晶探討
論文名稱(英文) The electrochemical ion migration behavior and the afterwards formation of dendritic nanostructures of silver alloy wire
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 蔡文傑
研究生(英文) Wen-Chieh Tsai
學號 N56054130
學位類別 碩士
語文別 中文
論文頁數 162頁
口試委員 指導教授-林光隆
口試委員-陳貞夙
口試委員-高振宏
中文關鍵字 打線接合  銀合金線  離子遷移  樹枝狀銀奈米晶體  介面結構 
英文關鍵字 wire bonding  silver alloy wire  ion migration  silver nano-dendrite  interfacial structure 
學科別分類
中文摘要 銀合金線因為具有許多特性像是低電阻以及高熱傳導性等,因此在電子封裝產業的應用受到矚目。本研究將商業用銀鈀合金線在高濕度環境下通電,並藉由光學顯微鏡(OM)與電化學儀器紀錄離子遷移的過程。依據紀錄的電流值變化,樹枝狀金屬的成長可以分為四個階段。成長速率以AG2F銀合金線最快,L069銀合金線最慢,實驗結果顯示,添加一定含量的金、銦、鎳元素都有助於提升銀合金線抗離子遷移的能力。掃描式電子顯微鏡(SEM)顯現樹枝狀銀奈米晶體的形貌,主要枝幹與二級枝幹之間角度呈現約60˚。穿透式電子顯微鏡(TEM)以及傅立葉轉換(FFT)分析奈米晶體的原子排列。結果顯示,銀樹枝狀晶的成長過程,界面區域的原子排列可以分為coherent界面與incoherent界面。Coherent界面沒有差排,多為單晶結構。Incoherent界面有許多差排造成原子排列產生三種夾角以及原子旋轉聚集結構。樹枝狀銀奈米晶體的生長過程,可藉由定向附著機制解釋生長機制。
英文摘要 Silver alloy wires have attracted attention in the electronic packaging industry because of their many characteristics such as low electrical resistance and high thermal conductivity. In this study, the commercial silver-palladium alloy wires were current stressed in a high humidity environment. The occurrences of ionic migration were investigated with optical microscope (OM) and electrochemical method. The growth of silver dendrite can be divided into four stages according to the current variation. In the experiment of ionic migration, the silver wire exhibits the fastest dendrite growth rate is AG2F while the slowest growth rate is L069. The experimental results show that the addition of a certain amount of Au, In, Ni can inhibit ionic migration of silver alloy wire, and quaternary alloy is more effective for anti-migration than ternary. The morphology of the silver nano-dendrites investigated with scanning electron microscopy (SEM) shows that the angle between the primary and the secondary dendrites was about 60 ̊. The lattice structure of the nano-dendrites was analyzed by transmission electron microscopy (TEM) and fast Fourier transform (FFT). The results of interfacial analysis of the nano-dendrites indicate that the dendritic interface can be divided into coherent interface and incoherent interface. There are no dislocations in the coherent interface. The Incoherent interface has a lot of dislocations that cause three angles of atomic arrangement and atomic bundles structure. The growth process of silver nano-dendrite can be explained by the mechanism of oriented attachment
論文目次 中文摘要 I
Extended Abstract II
誌謝 XVIII
總目錄 XX
表目錄 XXIV
圖目錄 XXV
第壹章 簡介 1
1-1 打線接合 1
1-1-1 打線接合材料 1
1-1-2 銀合金線相關發展 5
1-2 金屬的遷移 8
1-2-1 電化學遷移 8
1-2-2 金屬遷移的種類 9
1-2-3 銀的遷移 9
1-2-4 銀的電解質遷移理論 11
1-2-5 離子遷移研究方法 13
1-3 銀的晶體種類 17
1-3-1 奈米銀顆粒的4H銀結構 17
1-3-2 奈米銀線的4H銀結構 18
1-3-3 4H銀的其他相關研究 20
1-3-4 4H銀的理論計算 22
1-4 樹枝狀結晶的成長機制 23
1-4-1 擴散限制聚集 24
1-4-2 定向附著 26
1-4-3 奈米粒子自組裝 30
1-4-4 異向性晶體生長 34
1-5 樹枝狀晶體 37
1-5-1 樹枝狀晶體的製備方法 37
1-5-2 銀樹枝狀晶體的研究 37
1-6 研究動機與目的 44
第貳章 實驗方法與步驟 45
2-1 實驗構想 45
2-2 銀合金線材 45
2-3 實驗方法 48
2-3-1 試片準備 48
2-3-2 通電實驗 48
2-4 分析方法 52
第參章 結果與討論 57
3-1 銀離子遷移過程 57
3-1-1 AG0F銀合金線材 57
3-1-2 AG2F銀合金線材 62
3-1-3 L095銀合金線材 67
3-1-4 L069銀合金線材 72
3-2 遷移行為現象探討 79
3-2-1 顆粒吸附行為 79
3-2-2 電流值變化 88
3-2-3 樹枝狀金屬成長速率 96
3-2-4 離子遷移的要素 98
3-3 銀的生成物 99
3-3-1 白色樹枝狀結晶物 99
3-3-2 黑色樹枝狀金屬 107
3-4 樹枝狀奈米結構分析 108
3-4-1 主要枝幹與樹枝狀晶成長分析 111
3-4-2 二級枝幹分析 116
3-5 樹枝狀枝幹界面結構分析 121
3-5-1 界面結構分析 121
3-5-2 界面原子的聚集與鬆開行為 128
3-5-3 界面原子的多層缺陷 138
3-6 樹枝狀銀奈米晶體生成與探討 149
第肆章 結論 154
第伍章 參考文獻 156


參考文獻 [1] Z. W. Zhong, "Overview of wire bonding using copper wire or insulated wire," Microelectronics Reliability, vol. 51, pp. 4-12, 2011.
[2] 劉文超、羅文雄, "半導體製造技術", 滄海特販, 2014.
[3] K. S. Kim, J. Y. Song, E. K. Chung, J. K. Park, and S. H. Hong, "Relationship between mechanical properties and microstructure of ultra-fine gold bonding wires," Mechanics of Materials, vol. 38, pp. 119-127, 2006.
[4] P. Liu, L. Tong, J. Wang, L. Shi, and H. Tang, "Challenges and developments of copper wire bonding technology," Microelectronics Reliability, vol. 52, pp. 1092–1098, 2012.
[5] P. Chauhan, Z. W. Zhong, and M. Pecht, "Copper wire bonding concerns and best practices," Electronic Materials, vol. 42, pp. 2415-2434, 2013.
[6] C. D. Breach, "What is the future of bonding wire? Will copper entirely replace gold?," Gold Bulletin, vol. 43, pp. 150-168, 2010.
[7] C. L. Gan, C. Francis, B. L. Chan, and U. Hashim, "Extended reliability of gold and copper ball bonds in microelectronic packaging," Gold Bulletin, vol. 46, pp. 103-115, 2013.
[8] C. D. Breach and F. Wulff, "New observations on intermetallic compound formation in gold ball bonds: general growth patterns and identification of two forms of Au4Al," Microelectronics Reliability, vol. 44, pp. 973-981, 2004.
[9] J. Yeung and L. C. Keong, "Hardness measurement of copper bonding wire," Procedia Engineering, vol. 75, pp. 134-139, 2014.
[10] H. M. Ho, W. Lam, S. Stoukatch, P. Ratchev, C. J. Vath, and E. Beyne, "Direct gold and copper wires bonding on copper," Microelectronics Reliability, vol. 43, pp. 913-923, 2003.
[11] X. Fan, T. Wang, Y. Cong, B. Zhang, and J. Wang, "Oxidation study of copper wire bonding," 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging, Xi'an, China, 2010.
[12] C. F. Yu, C. M. Chan, L. C. Chan, and K. C. Hsieh, "Cu wire bond microstructure analysis and failure mechanism," Microelectronics Reliability, vol. 51, pp. 119-124, 2011.
[13] C. J. Hang, C. Q. Wang, M. Mayer, Y. H. Tian, Y. Zhou, and H. H. Wang, "Growth behavior of Cu/Al intermetallic compounds and cracks in copper ball bonds during isothermal aging," Microelectronics Reliability, vol. 48, pp. 416-424, 2008.
[14] H. W. Hsueh, F. Y. Hung, T. S. Lui, and L. H. Chen, "Microstructure, electric flame-off characteristics and tensile properties of silver bonding wires," Microelectronics Reliability, vol. 51, pp. 2243-2249, 2011.
[15] L. J. Kai, L. Y. Hung, L. W. Wu, M. Y. Chiang, D. S. Jiang, C. M. Huang, and Y. P. Wang, "Silver alloy wire bonding," IEEE 62nd Electronic Components and Technology Conference, San Diego, CA, United States, 2012.
[16] C. Lu, "Review on silver wire bonding," 8th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, Taiwan, 2014.
[17] H. W. Hsueh, F. Y. Hung, T. S. Lui, and L. H. Chen, "Effect of the direct current on microstructure, tensile property and bonding strength of pure silver wires," Microelectronics Reliability, vol. 53, pp. 1159-1163, 2013.
[18] M. Schneider-Ramelow and C. Ehrhardt, "The reliability of wire bonding using Ag and Al," Microelectronics Reliability, vol. 63, pp. 336-341, 2016.
[19] M. Arik, C. Becker, S. Weaver, and J. Petroski, "Thermal management of LEDs: package to system," Third International Conference on Solid State Lighting, San Diego, California, United States, 2004.
[20] S. Manoharan, C. Patel, and P. McCluskey, "Advancements in silver wire bonding," ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, San Francisco, California, USA, 2017.
[21] J. S. Cho, K. A. Yoo, S. J. Hong, J. T. Moon, and Y. J. Lee, "Pd effects on the reliability in the low cost Ag bonding wire," 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, United States, 2010.
[22] Y. C. Jang, S. Y. Park, and H. D. Kim, "Study of intermetallic compound growth and failure mechanisms in long term reliability of silver bonding wire," IEEE 16th Electronics Packaging Technology Conference (EPTC), Singapore, 2014.
[23] J. Lin, S. Ke, and E. Chen, "Evaluation of Ag wire reliability on fine pitch wire bonding," 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, CA, United States, 2015.
[24] J. Cao, J. Fan, Z. Liu, and Y. Zhang, "Effect of silver alloy bonding wire properties on bond strengths and reliability," 2015 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC), Kyoto, Japan, 2015.
[25] T. H. Chuang, C. H. Tsai, H. C. Wang, C. C. Chang, C. H. Chuang, J. D. Lee, and H. H. Tsai, "Effects of annealing twins on the grain growth and mechanical properties of Ag-8Au-3Pd bonding wires," Journal of Electronic Materials, vol. 41, pp. 3215-3222, 2012.
[26] H. H. Tsaia, J. D. Leea, C. H. Tsaia, H. C. Wangb, C. C. Changb, and T. H. Chuangb, "An innovative annealing-twinned Ag-Au-Pd bonding wire for IC and LED packaging," 7th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, Taiwan, 2013.
[27] Y. W. Tseng, F. Y. Hung, and T. S. Lui, "Microstructure, tensile and electrical properties of gold-coated silver bonding wire," Microelectronics Reliability, vol. 55, pp. 608-612, 2015.
[28] J. W. Yoon, B. I. Noh, and S. B. Jung, "Electrical properties and electrochemical migration characteristics of directly printed Ag patterns with various sintering conditions," Microelectronics Reliability, vol. 54, pp. 410-416, 2014.
[29] V. I. Fedoseyeva and N. F. Fedoseyev, "Migration of copper ions from an underlying substrate to the snowcover," Safety and Reliability: Proceedings of the ESREL 2003 Conference, Maastricht, Netherlands, 2003.
[30] X. Zhong, L. Chen, B. Medgyes, Z. Zhang, S. Gao, and L. Jakab, "Electrochemical migration of Sn and Sn solder alloys: a review," RSC Advances, vol. 7, pp. 28186-28206, 2017.
[31] Y. Zhou, P. Yang, C. Yuan, and Y. Huo, "Electrochemical migration failure of the copper trace on printed circuit board driven by immersion silver finish," Chemical Engineering Transactions, vol. 33, pp. 559-564, 2013.
[32] S. J. Krumbein, "Metallic electromigration phenomena," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. 11, pp. 5-15, 1998.
[33] H. l. Huang, Z. q. Pan, X. p. Guo, and Y. b. Qiu, "Effects of direct current electric field on corrosion behaviour of copper, Cl− ion migration behaviour and dendrites growth under thin electrolyte layer," Transactions of Nonferrous Metals Society of China, vol. 24, pp. 285-291, 2014.
[34] G. T. Kohman and J. M. A. DeBruyne, "The migration of silver through and on the surface of insulating materials," Conference on Electrical Insulation Pocono Manor, PA, United States, 1954.
[35] X. Gong and C. Duan, "Further analysis on silver ions migration," Applied Mechanics and Materials, vol. 798, pp. 402-405, 2015.
[36] E. Sancaktar, Y. Wei, and M. A. Gaynes, "Conduction efficiency and strength of electronically conductive adhesive Joints," The Journal of Adhesion, vol. 56, pp. 229-246, 1996.
[37] E. Sancaktar, P. Rajput, and A. Khanolkar, "Correlation of silver migration to the pull out strength of silver wire embedded in an adhesive matrix," IEEE Transactions on Components and Packaging Technologies, vol. 28, pp. 771-780, 2005.
[38] H. Naguib and B. MacLaurin, "Silver migration and the reliability of Pd/Ag conductors in thick-film dielectric crossover structures," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. 2, pp. 196-207, 1979.
[39] S. Yang, J. Wu, and A. Christou, "Initial stage of silver electrochemical migration degradation," Microelectronics Reliability, vol. 46, pp. 1915-1921, 2006.
[40] S. Yang and A. Christou, "Failure model for silver electrochemical migration," IEEE Transactions on Device and Materials Reliability, vol. 7, pp. 188 - 196, 2007.
[41] M. I. Novgorodova, A. I. Gorshkov, and A. V. Mokhov, "Native silver and its new structural modifications," International Geology Review, vol. 23, pp. 485-494, 1981.
[42] P. Taneja, R. Banerjee, P. Ayyub, and G. K. Dey, "Observation of a hexagonal(4H)phase in nanocrystalline silver," Physical Review B, vol. 64, pp. 1-4, 2001.
[43] X. Liu, J. Luo, and J. Zhu, "Size effect on the crystal structure of silver nanowires," Nano Letters, vol. 6, pp. 408-412, 2006.
[44] C. C. Yang and S. Li, "Size-dependent phase stability of silver nanocrystals," The Journal of Physical Chemistry C, vol. 112, pp. 16400–16404, 2008.
[45] Y. Zhou, G. T. Fei, P. Cui, B. Wu, B. Wang, and L. D. Zhang, "The fabrication and thermal expansion properties of 4H-Ag nanowire arrays in porous anodic alumina templates," Nanotechnology, vol. 19, pp. 1-5, 2008.
[46] I. Chakraborty, S. N. Shirodkar, S. Gohil, U. V. Waghmare, and P. Ayyub, "The nature of the structural phase transition from the hexagonal (4H) phase to the cubic (3C) phase of silver," Journal of Physics, vol. 26, pp. 1-8, 2014.
[47] I. Chakraborty, S. N. Shirodkar, S. Gohil, U. V. Waghmare, and P. Ayyub, "A stable, quasi-2D modification of silver: optical, electronic, vibrational and mechanical properties, and first principles calculations," Journal of Physics: Condensed Matter, vol. 26, pp. 1-10, 2014.
[48] I. Chakraborty, D. Carvalho, S. N. Shirodkar, S. Lahiri, S. Bhattacharyya, R. Banerjee, U. Waghmare, and P. Ayyub, "Novel hexagonal polytypes of silver: growth, characterization and first-principles calculations," Journal of Physics, vol. 23, pp. 1-12, 2011.
[49] F. Gentile, M. L. Coluccio, A. Toma, E. Rondanina, M. Leoncini, F. De Angelis, and G. Das, "Electroless deposition dynamics of silver nanoparticles clusters: a diffusion limited aggregation (DLA) approach," Microelectronic Engineering, vol. 98, pp. 359-362, 2012.
[50] L. Ottaviano, P. Parisse, V. Grossi, and M. Passacantando, "Nanowire directed diffusion limited aggregation growth of nanoparticles," Journal of Non-Crystalline Solids, vol. 356, pp. 2076-2078, 2010.
[51] S. E. H. Murph, C. J. Murphy, A. Leach, and K. Gall, "A possible oriented attachment growth mechanism for silver nanowire formation," Crystal Growth & Design, vol. 15, pp. 1968-1974, 2015.
[52] K. Mallick, M. J. Witcomb, and M. S. Scurrell, "Self-assembly of silver nanoparticles in a polymer solvent: formation of a nanochain through nanoscale soldering," Materials Chemistry and Physics, vol. 90, pp. 221-224, 2005.
[53] T. Liu, D. Li, D. Yang, and M. Jiang, "Fabrication of flower-like silver structures through anisotropic growth," Langmuir, vol. 27, pp. 6211-6217, 2011.
[54] J. T. A. Witten and L. M. Sander, "Diffusion-limited aggregation, a kinetic critical phenomenon," Physical Review Letters, vol. 47, pp. 1400-1403, 1981.
[55] P. Meakin, "Formation of fractal clusters and networks by irreversible diffusion-limited aggregation," Physical Review Letters, vol. 51, pp. 1119-1122, 1983.
[56] J. Zhang, F. Huang, and Z. Lin, "Progress of nanocrystalline growth kinetics based on oriented attachment," Nanoscale, vol. 2, pp. 18-34, 2010.
[57] R. Lee Penn and J. F. Banfield, "Imperfect oriented attachment: dislocation generation in defect-free nanocrystals," Science, vol. 281, pp. 969-971, 1998.
[58] A. M. Grumezescu, "Fabrication and self-assembly of nanobiomaterials: applications of nanobiomaterials", William Andrew, 2016.
[59] P. R. Sajanlal, T. S. Sreeprasad, A. K. Samal, and T. Pradeep, "Anisotropic nanomaterials: structure, growth, assembly, and functions," Nano Reviews, vol. 2, pp. 1-62, 2011.
[60] P. S. Mdluli and N. Revaprasadu, "Time dependant evolution of silver nanodendrites," Materials Letters, vol. 63, pp. 447-450, 2009.
[61] Z. Jiang, Y. Lin, and Z. Xie, "Structural investigations and growth mechanism of well-defined Ag dendrites prepared by conventional redox displacement," Materials Chemistry and Physics, vol. 134, pp. 762-767, 2012.
[62] J. Fang, H. You, P. Kong, Y. Yi, X. Song, and B. Ding, "Dendritic silver nanostructure growth and evolution in replacement reaction," Crystal Growth & Design, vol. 7, pp. 864-867, 2007.
[63] J. Fang, H. You, C. Zhu, P. Kong, M. Shi, X. Song, and B. Ding, "Thermodynamic and kinetic competition in silver dendrite growth," Chemical Physics Letters, vol. 439, pp. 204-208, 2007.
[64] W. Song, Y. Cheng, H. Jia, W. Xu, and B. Zhao, "Surface enhanced Raman scattering based on silver dendrites substrate," Journal of Colloid and Interface Science, vol. 298, pp. 765-8, Jun 15 2006.
[65] J. Liu, M. Hu, Y. Song, F. Wang, J. Ji, and Z. Li, "A novel strategy to prepare silver nanoparticles by ethanol-induced shape conversion of silver dendrites from modified galvanic replacement," Synthetic Metals, vol. 187, pp. 185-192, 2014.
[66] V. V. Fleury, J. Chazalviel, and M. Rosso, "Theory and experimental evidence of electroconvection around electrochemical deposits," Physical Review Letters, vol. 68, pp. 2492-2495, 1992.
[67] J. J. Steppan, J. A. Roth, L. C. Hall, D. A. Jeannotte, and S. P. Carbone, "A review of corrosion failure mechanisms during accelerated tests," The Electrochemical Society, vol. 134, pp. 175-189, 1987.
[68] H. H. Tsai, T. H. Chuang, J. D. Lee, C. H. Tsai, H. C. Wang, H. J. Lin, and C. C. Chang, "High performance Ag-Pd alloy wires for high frequency IC packages," 2013 8th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, Taiwan, 2013.
[69] 林智賢, "鎳、銦表面鍍層對含銀厚膜之抗遷移性研究", 國立中央大學機械工程研究所碩士論文, 2000.
[70] D. Tudela, "Silver(II) oxide or silver(I,III) oxide?," Journal of Chemical Education, vol. 85, pp. 863-865, 2008.
[71] A. Turos, P. Jozwik, L. Nowicki, and N. Sathish, "Ion channeling study of defects in compound crystals using Monte Carlo simulations," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 332, pp. 50-55, 2014.
[72] V. Germain, J. Li, D. Ingert, Z. L. Wang, and M. P. Pileni, "Stacking faults in formation of silver nanodisks," The Journal of Physical Chemistry B, vol. 107, pp. 8717-8720, 2003
[73] K. Yukihito and T. Kunio, "Gold nanobridge stabilized by surface structure," Physical Review Letters, vol. 79, pp. 3455-3458, 1997.
[74] K. Yukihito and T. Kunio, "Synthesis and characterization of helical multi-shell gold nanowires," Science, vol. 289, pp. 606-608, 2000.
[75] T. Kunio and O. Hideaki, "Suspended gold nanowires:ballistic transport of electrons," JSAP International, vol. 3, pp. 3-8, 2001.
[76] 李玟頡, "多層殼金奈米線之機械性質研究", 國立中山大學機械與機電工程學系碩士論文, 2000.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw