進階搜尋


下載電子全文  
系統識別號 U0026-0208201813315300
論文名稱(中文) 雙階固態燃料脈衝式電漿推進器之研究
論文名稱(英文) Study of a dual stage solid propellant pulsed plasma thruster
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 106
學期 2
出版年 107
研究生(中文) 蕾蕾
研究生(英文) Clémence Royer
電子信箱 royer.clem@gmail.com
學號 P46067035
學位類別 碩士
語文別 英文
論文頁數 107頁
口試委員 指導教授-李約亨
口試委員-陳文立
口試委員-張博宇
口試委員-黃朝偉
中文關鍵字 晚期消融  雙階段放電  脈衝式電漿推進器  電力推進  推力平台 
英文關鍵字 Late Time Ablation  Double Stage Electrode  Pulsed Plasma Thruster  Electric propulsion  Thrust Stand 
學科別分類
中文摘要 為配合國際趨勢上的微米、奈米等級之立方衛星(CubeSat)發展,本研究採用脈衝式電漿推進器(Pulsed Plasma Thruster, 以下簡稱為PPT)以提供立方衛星維持姿態、保持軌道高度所需之動能,PPT具有低成本、低系統複雜度、重量輕與功率消耗少等優點,特別適合應用於載重與容量備受限制立方衛星。
本研究所發展的PPT是藉由點火器令固態推進劑昇華,而後產生脈衝式的主放電電流,將推進劑電離化成為電漿,脈衝電流與其誘發磁場之間的交互作用可產生勞倫茲力(Lorentz force),並使電漿加速排出,進而產生推力。然而文獻指出單階段放電的PPT僅使用約60%的消融推進劑來產生電漿,而勞倫茲力僅可作用於帶電粒子,因此形成推進劑使用上的浪費。本研究發展了雙階段固態PPT (DESPPT),利用下游增設的第二階段放電腔體,再次輸入能量於電漿團中,並期望透過此種方式提升總體推進器的出口速度(亦即提高動能)。
本研究重點在於證實雙階段固態PPT的概念之可行性,利用蘭摩爾三探針法(Langmuir triple probe)測量相關電漿參數,推估代表PPT推力性能的單發衝量(impulse bit),根據本研究的實驗結果,雙階段固態PPT確實有較佳的輸出性能,當輸入能量為25 J時,使用雙階段PPT可獲得72.35 uN-s的最大總脈衝衝量。本研究試圖自行發展一套微推力量測平台(thrust stand),以配合雙階段PPT所需之推力性能區間。
英文摘要 This study aims to present an approach on thruster performances along different data settings in a Pulsed Plasma Thruster (PPT). It also gives an introduction to the design of a thrust stand operations, in order to assess micro-Newton thrust. Based on different needs, thrusters have to answer to a panel of satellite requirements. PPT is one of the most promising electric propulsive thrusters for small satellite. It is accelerating a plasma with interaction between a pulse current and magnetic fields, leading to an exhaust thrust. As it is low cost, simple in design, lightweight and is consuming less power, it has great advantages for altitude control and station keeping. Nowadays, research are more focused on a main aspect: its optimization with different electrode geometry studies. Therefore, a Dual Electrode Stage Solid Fed PPT (DESPPT) has been developed in this thesis to compare variation in performance in function of input energy between a dual-PPT and a single-PPT modes. Prototype is tested under high vacuum condition: ~10-5 torr. The processed experiments are revealing that increasing prototype second stage energy leads to a rise in total impulse bit. Since it has been observed that a single electrode stage PPT only use ~60% of ablated propellant to accelerate plasma, the dual stage regimen might enhance the use of ablated mass percentage. In other words, increase of exhaust velocity and total impulse bit might be achieved due to the reuse of Late Time Ablation (LTA) with the dual regimen. A maximum total impulse bit of 72.35 µN-s has been obtained with the dual mode prototype, when 25J of total energy is released through the thruster discharge chamber. This study mainly present researches made at the National Cheng Kung University, on change in performance when a Dual Electrode Stage is introduced.
論文目次 摘要 I
ABSTRACT III
ACKNOWLEDGEMENTS V
CONTENT VII
LIST OF FIGURES X
LIST OF TABLES XVIII
NOMENCLATURE XIX
LIST OF ABBREVIATIONS XXII
CHAPTER 1 INTRODUCTION 1
1.1 SATELLITE AND CUBESAT OVERVIEW 1
1.2 PROPULSION SYSTEMS AND PLASMA SCIENCE REVIEW 5
1.2.1 Electric propulsion systems 6
1.2.2 Electro Thermal propulsion system 7
1.2.3 Electro Static propulsion system 9
1.2.4 Electro Magnetic propulsion system 11
1.2.5 The Pulsed Plasma Design and Discharge Process 13
1.3 THRUST STAND LITERATURE REVIEW 17
CHAPTER 2 DUAL ELECTRODE STAGE PPT 20
2.1 MOTIVATION 20
2.2 THEORETICAL CALCULATIONS BASED ON DESIGN AND DATA SETTING 22
2.2.1 Data setting and CatiaV5 design 22
2.2.2 First electrode stage assumed calculation 26
2.2.3 Second electrode stage assumed calculation 29
2.2.4 Electrical supply circuits set up 31
CHAPTER 3 PLASMA PROPERTIES 36
3.1 TRIPLE LANGMUIR PROBE 36
3.1.1 Triple Langmuir Probe theory 36
3.1.2 Experimental set up of the Triple Langmuir Probe 39
3.2 ZAPLAB TORSIONAL PENDULUM THRUST STAND 41
3.2.1 Fundamental design 41
3.2.2 Counter-weight 44
3.2.3 Base level adjustment tripod 44
3.2.4 Sensing system 44
3.2.8 Data acquisition 48
3.2.5 Calibration system 51
3.2.6 Initial position return system 55
CHAPTER 4 RESULTS AND DISCUSSION 56
4.1 ZAP LAB VACUUM CHAMBER FACILITY 56
4.2 EXPERIMENT APPARATUS 59
4.3 BREAKDOWN VOLTAGE AND PEAK CURRENT ANALYSIS 62
4.3.1 1st stage supplied by 700v 62
4.3.2 1st stage supplied by 800v 67
4.3.3 1st stage supplied by 1000v 70
4.3.4 Data analysis and performance review 75
4.4 HIGH SPEED CAMERA 82
4.4.1 One stage discharge, without filter 82
4.4.2 OH filter picture series 84
4.5 MASS EROSION INVESTIGATION 88
4.6 TRIPLE LANGMUIR PROBE DATA ANALYSIS 91
4.6.1 First stage supplied by 1000V, second stage supplied by 0V 91
4.6.2 First stage supplied by 1000V, second stage supplied by 200V 92
4.7 THRUST STAND EXPERIMENT 93
4.7.1 First stage supplied by 700V, second stage supplied by 0V 93
4.7.2 First stage supplied by 700V, second stage supplied by 200V 94
4.7.3 Thrust stand result interpretation 95
CHAPTER 5 CONCLUSION AND FUTURE WORK 97
5.1 CONCLUSION 97
5.2 FUTURE WORK 99
MATLAB CODE 100
REFERENCE 101

參考文獻 1. ESA. GAIA CREATES RICHEST STAR MAP OF OUR GALAXY – AND BEYOND. 2018; Available from: http://sci.esa.int/gaia/60192-gaia-creates-richest-star-map-of-our-galaxy-and-beyond/.

2. NASA. BioSentinel. 2016; Available from: https://www.nasa.gov/centers/ames/engineering/projects/biosentinel.html.

3. Scardera, M., et al., ALTAIR: Millennium’s DARPA SeeMe Satellite Solution Technical (R) evolution. 2014.

4. Kepler. KEPLER & CATAPULT TO SPEED UP LAUNCH OF IOT CAPABLE SATELLITES. 2015; Available from: http://www.keplercommunications.com/blog/item/kepler-catapult-to-speed-up-launch-of-iot-capable-satellites.

5. NASA. Highlights of Hubble’s Exploration of the Universe. 2017; Available from: https://www.nasa.gov/content/goddard/2017/highlights-of-hubble-s-exploration-of-the-universe.

6. ISIS. CubeSats in brief. Available from: https://www.isispace.nl/cubesats/.

7. Sweeting, M., A. da Silva Curiel, and W. Sun, The" Personal Computer" Revolution in Space. 2006.

8. Wikipedia. CubeSat. Available from: https://en.wikipedia.org/wiki/CubeSat.

9. Piro, A., HYBRIS: An Earth Observation Hyperspectral Cubesat Mission. 2017.

10. Pagano, T., et al., CubeSat Infrared Atmospheric Sounder (CIRAS). American Meteorological Society “Advances in CubeSats and SmallSats to Improve Earth Science and Weather Forecasting, 2016.

11. Gerhardt, D., et al., GOMX-3: Mission Results from the Inaugural ESA In-Orbit Demonstration CubeSat. 2016.

12. Clagett, C., et al., Dellingr: NASA Goddard Space Flight Center's First 6U Spacecraft. 2017.

13. Kuo, Y.-H., C. Rocken, and R.A. Anthes, 2.3 CONSTELLATION OBSERVING SYSTEM FOR METEOROLOGY IONOSPHERE AND CLIMATE (COSMIC): AN OVERVIEW. 2000.

14. Lin, A., et al., YamSat: the First Picosatellite being Developed in Taiwan. 2001.

15. Fleeter, R., EQUiSat (EQUiSat), ISS Science for Everyone. 2018.

16. Bramall, N.E., et al., The development of the space environment viability of organics (SEVO) experiment aboard the organism/organic exposure to orbital stresses (O/OREOS) satellite. Planetary and Space Science, 2012. 60(1): p. 121-130.

17. Lekic, A., Introduction à la physique des plasmas, Approche macroscopique de la description d’un plasma de décharge. 2017.

18. Ian Hutchinson, a.J.F., Introduction to Plasma Physics I. 2003.

19. CEA. What is a plasma? 2001; Available from: http://www-fusion-magnetique.cea.fr/gb/fusion/physique/plasma.htm.

20. Cerdan, X.A., Study and design of a micro Pulsed Plasma thruster for a 3u cubesat. 2016

21. Selstrom, J.J., Thrust and Performance Study of Micro Pulsed Plasma Thrusters. 2010, AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING AND MANAGEMENT.

22. Wallängen, V., Analytical Modeling of a MicrothrusterSystem for Nanosatellite Applications. 2014.

23. Goebel, D.M. and I. Katz, Fundamentals of electric propulsion: ion and Hall thrusters. Vol. 1. 2008: John Wiley & Sons.

24. Lee, T.-W., Aerospace propulsion. 2013: John Wiley & Sons.

25. Shaw, P.V., Pulsed plasma thrusters for small satellites. 2011, University of Surrey (United Kingdom).

26. Mazouffre, S., Electric propulsion for satellites and spacecraft: established technologies and novel approaches. Plasma Sources Science and Technology, 2016. 25(3): p. 033002.

27. course, M.o., Session 15: Arcjet Thrusters. 2015.

28. Lee, H.Y., Development of a Low Pressure Self-propelled Vapor Supply Subsystem for Electric Propulsion, in 30th International Symposium on Space Technology and Science. 2015.

29. Lee, H.Y., Indigenous technology development of a prototype arcjet. 2010.

30. Darling, D. electrostatic propulsion. Available from: http://www.daviddarling.info/encyclopedia/E/electrostaticprop.html.

31. Patterson, M. and S. Benson. NEXT ion propulsion system development status and performance. in 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2007.

32. Räisänen, O., Gridded ion thruster. 2012.

33. Shen, M.-H., et al., Development of a Micro ECR Ion Thruster for Space Propulsion. 2017 35th International Electric, 2017: p. Propulsio-n.

34. Bluhm, H., Power Systems. 2006: Springer.

35. Plihon, N., P. Chabert, and J.-L. Raimbault, Helicon Double Layer Thruster Concept for High Power NEP Missions Final report.

36. Jahn, R.G., Physics of electric propulsion. 2006: Courier Corporation.

37. Pan, J.Y., The Development, Design and Demonstration of Vacuum Cathode Arc Thruster (VAT). 2017.

38. Gessini, P., et al. Low power ablative pulsed plasma thrusters. in Proc. of the 33rd Int. Electric Propulsion Conf.(Washington, DC). 2013.

39. Conrads, H. and M. Schmidt, Plasma generation and plasma sources. Plasma Sources Science and Technology, 2000. 9(4): p. 441.

40. Shaw, P., V. Lappas, and C. Underwood, Development of the μPPT propulsion module for STRaND a 3U CubeSat. 2011.

41. Ziemer, J., et al. Performance characterization of a high efficiency gas-fed pulsed plasma thruster. in 33rd Joint Propulsion Conference and Exhibit. 1997.

42. K. Kuriki, Y. Arakawa, Introduction to Electric Propulsion, University of Tolyo, Press .

43. Rezaeiha, A. and T. Schönherr. Overview of alternative propellants for use in PPT. in 29th International Symposium on Space Technology and Science ISTS. 2013.

44. Reddy, P.S.K., 立方衛星之微型脈衝電漿推進器之發展. 成功大學航空太空工程學系學位論文, 2018: p. 1-75.

45. Kodys, A., et al. An inverted-pendulum thrust stand for high-power electric thrusters. in 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2006.

46. Stark, K.W., Design and development of a micropound extended range thrust stand (MERTS). 1972.

47. Wang, A., et al., Development and testing of a new thrust stand for micro-thrust measurement in vacuum conditions. Vacuum, 2013. 91: p. 35-40.

48. Dennis, T., et al. Design and development of a micropound extended range thrust stand/MERTS. in 8th Electric Propulsion Conference. 1970.

49. Bailey, A., et al., A test facility for electric microthrusters. Review of Scientific Instruments, 1972. 43(3): p. 420-424.

50. Bailey, A.G., Thruster characterization using a thrust balance. Review of Scientific Instruments, 1972. 43(12): p. 1773-1774.

51. Haag, T.W., Thrust stand for pulsed plasma thrusters. Review of Scientific Instruments, 1997. 68(5): p. 2060-2067.

52. Lake, J.P., et al., Resonant operation of a micro-Newton thrust stand. 2003, AIR FORCE RESEARCH LAB EDWARDS AFB CA SPACE AND MISSILE PROPULSION DIV.

53. Boccaletto, L. and L. d'Agostino. Design and testing of a micro-Newton thrust stand for FEEP. in 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2000.

54. Tew, J., et al. A thrust stand designed for performance measurements of the Free Molecule Micro-Resistojet. in 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2000.

55. Jamison, A.J., A.D. Ketsdever, and E. Muntz. Accurate measurement of nano-Newton thrust for micropropulsion system characterization. in 27th International Electric Propulsion Conference, Pasadena, California, USA, IEPC-01-236. 2001.

56. Jamison, A.J., A.D. Ketsdever, and E. Muntz, Gas dynamic calibration of a nano-Newton thrust stand. Review of Scientific Instruments, 2002. 73(10): p. 3629-3637.

57. Ziemer, J.K., Performance measurements using a sub-micronewton resolution thrust stand. 2001.

58. D, N., FEEP-5 thrust validation in the 10e100 mN range with a simple nulled pendulum thrust stand: integration procedures. 2001.

59. Rocca, S. and D. Nicolini. Micro-thrust balance testing and characterization. in International Electric Propulsion Conference. 2005.

60. Merkowitz, S., et al., A μNewton thrust-stand for LISA. Classical and Quantum Gravity, 2002. 19(7): p. 1745.

61. Bertinetto, F., et al. Thrust measurement at micronewton level. in Precision Electromagnetic Measurements, 2002. Conference Digest 2002 Conference on. 2002. IEEE.

62. Hao, C., et al. Development status of the micro thrust measurement technology based on cantilever beam structure. in Reliability, Maintainability and Safety (ICRMS), 2016 11th International Conference on. 2016. IEEE.

63. Marhold, K. and M. Tajmar, Direct thrust measurement of in-FEEP clusters. Proc. IEPC, 2005.

64. Phipps, C., et al., Micropropulsion using a laser ablation jet. Journal of Propulsion and Power, 2004. 20(6): p. 1000-1011.

65. Polzin, K.A., et al., Thrust stand for electric propulsion performance evaluation. Review of Scientific Instruments, 2006. 77(10): p. 105108.

66. Coletti, M., R. Marques, and S. Gabriel. Design of a Two-Stage PPT for Cubesat Application. in Int. Electr. Propuls. Conf. 2009.

67. Spanjers, G.G., et al., Propellant losses because of particulate emission in a pulsed plasma thruster. Journal of Propulsion and Power, 1998. 14(4): p. 554-559.

68. Guman, W.J., Solid propellant pulsed plasma propulsion system design. Journal of Spacecraft and Rockets, 1976. 13(1): p. 51-53.

69. Wikipedia. Electrical resistivity and conductivity. Available from: https://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity.

70. Eckman, R., et al., Triple Langmuir probe measurements in the plume of a pulsed plasma thruster. Journal of Propulsion and Power, 2001. 17(4): p. 762-771.

71. Chen, C.-T., Effect of Microwave-induced Plasma on a Flame plasma. 2017.

72. Metrology, S. LVDT, Half Bridge and Digital Transducer Theory. Available from: https://www.solartronmetrology.com/service-and-support/knowledge-base/lvdt-half-bridge-and-digital-transducer-theory.

73. Craig, K., ACTUATORS & SENSORS IN MECHATRONICS. 2002.

74. T.E. Markusic, E.Y. Choueiri, VISUALIZATION OF CURRENT SHEET CANTING IN A PULSED PLASMA ACCELERATOR. 1999
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw