進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0208201616022300
論文名稱(中文) 無母數地質統計法於溶質傳輸模擬之應用
論文名稱(英文) Solute transport modeling using non-parametric geostatistical method
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 簡子彬
研究生(英文) Tzu-Pin Chien
學號 N46031106
學位類別 碩士
語文別 英文
論文頁數 79頁
口試委員 指導教授-徐國錦
口試委員-倪春發
口試委員-李明旭
口試委員-蔡東霖
口試委員-李振誥
中文關鍵字 地質統計  溶質傳輸  異質性  指標克利金 
英文關鍵字 Geostatistics  Solute transport  Heterogeneity  Indicator kriging 
學科別分類
中文摘要 水文地質場鑑定為污染傳輸模擬與責任鑑定之首要工作。若能瞭解研究區域內水力傳導係數之分佈,建立水文地質模型能用來幫助瞭解的地下污染傳輸行為。但由於現今觀測井之地質調查資料多以岩性類別等間接記錄為主,缺乏直接性的樣本水文分析資料,過去研究也顯示,現地水文場址可能存在高度水文異質性分佈,場址中溶質傳輸行為不同於傳統所使用之均質場。本研究使用無母數地質統計之指標克利金法建構水文地質場。使用岩性資料重建水文地質參數於空間中的異質性,可提供溶質傳輸模擬使用。研究結果顯示,在類別資料足夠下使用分層抽樣法,指標克利金法能良好地反應出高度異質場之空間分佈,且在空間變數之變異度接近1時,不同分類下的指標克利金所產生之類別空間場皆能成功的模擬出真實場溶質團的移動過程,在變異度為5.21時,即使指標克利金產生之類別場能模擬出水流場與參數的空間分佈,在溶質傳輸的模擬上與真實場仍有一定程度的差異。
英文摘要 Hydrogeology field investigation is the preliminary work for modeling the transmission of contaminant and analyzing the attribution of responsibility. Reconstruction of the heterogeneous field can help to clarify the movement of contaminant in groundwater. Previous studies indicate that in situ hydrogeology may show highly heterogeneous and the behavior of solute transport is much different from that of homogeneous field. Due to hydraulic test and laboratory experiments are expensive and time consuming, samples of hydraulic conductivity are sparse to describe the heterogeneous field. This study uses lithifacies, which is abundant and is indirectly related to the property of hydraulic conductivity. Indicator kriging, a non-parametric geostastical method, is used to interpolate the category data and build heterogeneous field for the solute transport modeling. The results indicate that if data is sufficient, indicator kriging with stratified sampling data is effectively reconstruct the high heterogeneous distribution of hydraulic conductivity. When the variance of hydraulic conductivity is close to 1, the indicator field produced by indicator kriging can well represent the results of flow and solute transport modeling in the true field. When variance comes to 5.21, indicator kriging still represent the result of flow modeling and the distribution of spatial variable, the result of solute transport modeling in indicator kriging field has some difference from the result in true field.
論文目次 Abstract I
摘要 II
Contents IV
List of Tables VI
List of Figures VII
Notation X
Chapter 1 Introduction P.1
1.1 Flow Chart P.4
Chapter 2 Methodology P.6
2.1 Geostatistical Theory P.6
2.1.1 Integral scale P.8
2.2 Simulation P.9
2.2.1 Unconditional Simulation P.9
2.2.2 Conditional Simulation P.10
2.3 Sequential Gaussian Simulation (SGS) P.10
2.4 Kriging P.12
2.4.1 Simple Kriging (SK) P.13
2.4.2 Ordinary Kriging (OK) P.14
2.4.3 Indicator Kriging (IK) P.15
2.5 Stratified Sampling P.17
2.6 Solute Transport P.18
2.6.1 Advection P.18
2.6.2 Diffusion and Dispersion P.19
2.6.3 The Advection-Dispersion Equation (ADE) P.21
Chapter 3 True Field P.25
3.1 Flow Modeling P.29
3.2 Solute Transport Modeling P.32
Chapter 4 Solute Transport in Lithifacies Field P.34
4.1 Stratified Sampling from True Field P.34
4.2 Classification of Indicator Kriging P.37
4.2.1 IK Field 1: Lithifacies Classification P.39
4.2.2 IK Field 2: 2 Classification P.43
4.3 Flow Modeling P.46
4.4 Solute Transport Modeling P.53
Chapter 5 Results and Discussions P.57
Chapter 6 Conclusions and Suggestions P.63
6.1 Conclusions P.63
6.2 Suggestions P.64
Reference P.65
參考文獻 Bear, J., 1972. Dynamics of fluids in porous media. New York: Amr Elsev.
Boggs, J. M., and E. E. Adams. 1992. Field study of disoersion in a heterogeneous aquifer: 4. Investigation of absorption and sampling bias. Water Resources Research 28, no.12: 3325-3336.
Bedient, J., H. S. Rifai, and G. J. Newell. 1994. Ground Water Contaminant. Englewood Cliffs, New jersey: Prentice Hall.
Bohling, G. 2005. INTRODUCTION TO GEOSTATISTICS And VARIOGRAM ANALYSIS. Kansas Geological Survey.
Deutch, C. V., and A. G. Journel. 1998. GSLIB: Geostatistical Software Library and User’s Guide. New York: Oxford Univ.
Freeze, R. A., and J. A. Cherry, 1979. Groundwater. Englewood Cliffs, New jersey: Prentice Hall.
Fetter, C. W., 1994. Applied Hydrogeology. Macmillan College Publishing Company.
Gelhar, L.W. 1993. Stochastic Subsurface Hydrology. New Jersey: Prentice Hall.
Goovaerts, P. 1997. Geostatistics for Natural Resources Evaluation. New York: Oxford Univ.
Hufschmied, P. 1986. Estimation of three-dimensional statistically anisotropic hydraulic conductivity field by means of single well pumping tests combined with flowmeter measurements. Hydrogeology 2:163-174.
Haggerty, R., S. W. Fleming, L. C. Meigs, and S. A. McKenna. 2001. Tracer tests in a fractured dolomite: 2. Analysis of mass transfer in single-well injection-withdrawal tests. Water Resource Research 37. no.5: 1129-1142.
Jang, C. S., C. F. Chen, C. P. Liang, J. S. Chen. 2016, Combining groundwater quality analysis and a numerical flow simulation for spatially establishing utilization strategies for groundwater and surface water in the Pingtung Plain. Journal of Hydrology 553: 541-556.
Killey, R. W. D., and G. L. Moltyaner. 1988. Twin Lake Tracer Tests: Setting, Methodology, and Hydraulic Conductivity Distribution. Water Resources Research 24, no.10: 24, 1585-1612.
Kchulze-Makuch, D. 2004. WATER SCIENCES, ENGINEERING AND TECHNOLOGY RESOURCES. EOLESS.
Kameshwara Rao, V. and A. C. Narayana. 2015. Application of nonlinear geostatistical indicator kriging in lithological categorization of an iron ore deposit. Current Science 108. no.3: 413-421.
Liu, C. W., C. S. Jang, C. M. Liao. 2004. Evaluation of arsenic contamination potential using indicator kriging in the Yun-Lin aquifer (Taiwan). Science of the Total Environment 321 no1-3: 173-188.
Loheide II, S. P., J. J. Butler Jr, S. M. Gorelick. 2005. Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated-unsaturated flow assessment. Water Resources Research 41. no.7
Liu, G., C. Zheng, and S. M. Gorelick. 2007. Evaluation of the applicability of the dual-domain mass transfer model in porous media containing connected high-conductivity channels. Water Resources Research 43 no.12.
Linde, N., T. Lochbu ̈hler, M. Dogan, R. L. Van Dam. 2015. Tomogram-based comparison of geostatistical models: Application to the Macrodispersion Experiment (MADE) site. Journal of Hydrology 531: 543-556.
MacIntyre W. G., C. P. Antworth, and T. B. Stauffer. 1993. Database for the Second Macro-dispersion Experiment (MADE-2). Tech. Rep. TR-102072.
Mendes, R. M. and R. Lorandi. 2006. Indicator kriging geostatistical methodology applied to geotechnics project planning. IAEG2006, paper number 527.
Mosammam, A. M. 2012. Geostatistics: modeling spatial uncertainty, second edition. Taylor & Francis.
Ogata, A., 1970. Theory of dispersion in granular media. Geological Survey professional paper 411-1.

Rehfeldt, K. R., L. W. Gelhar, J. B. Southard, and A. M. Dasinger. 1989. Estimates of macrodispersivity based on analyses of hydraulic conductivity variability at the MADE site. EPRI Interim Rep. EN-6405.
Stark, C. P. 1991. An invasion percolation model of drainage network evolution. Nature 352: 423-425.
Tavares, M. T., A. J. Sousa, M. M. Abreu. 2007. Ordinary kriging and indicator kriging in the cartography of trace elements contamination in São Domingos mining site (Alentejo, Portugal). Journal of Geochemical Exploration 98, no.1-2: 43-56.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw