進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0208201314185600
論文名稱(中文) 光效應對有機雙極性場效電晶體之電特性影響研究
論文名稱(英文) Studies of light effects on electrical properties of ambipolar organic field - effect transistors
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 101
學期 2
出版年 102
研究生(中文) 吳典逸
研究生(英文) Dian-Yi Wu
學號 L76001252
學位類別 碩士
語文別 中文
論文頁數 98頁
口試委員 指導教授-鄭弘隆
口試委員-周維揚
口試委員-唐富欽
口試委員-王右武
中文關鍵字 有機半導體  有機電晶體  雙極性電晶體  照光效應 
英文關鍵字 Organic semiconductors  organic transistors  ambipolar transistors  light irradiation effects 
學科別分類
中文摘要 本論文主要研究照光對有機雙極性薄膜電晶體電特性的影響。實驗分兩部分,第一部分聚焦於即時照光對具雙極性傳輸能力之薄膜電晶體電特性的影響。第二部分研究即時照光對單極性與雙極性薄膜電晶體的影響差異。
第一部分,利用poly(methyl methacrylate) (PMMA)當介電修飾層,製作具雙極性特性之五苯(pentacene)為主動層的薄膜電晶體,研究照光對電晶體元件雙極性特性的影響。由實驗得知,元件於即時照光下進行操作,可獲致較大的輸出電流與較高的載子遷移率,並造成臨界擺幅的增加與臨界電壓的偏移,歸因於半導體吸收光子後產生激子,激子可解離成自由電子與電洞,因此使通道內載子濃度增加,輸出電流因此提高。吾人也發現元件在P型操作時,元件的臨界電壓會提早,然而,在N型操作時則會延遲,而閘極對雙極性通道控制能力皆下降。利用電導掃頻分析半導體與絕緣層的界面缺陷,結果指出照光並不會導致界面缺陷增加,因此可排除其對元件電特性的影響。五苯電晶體之雙極性電特性因即時照光而改變,可歸因於光場與電場效應的同時作用,單純的光場效應並不會使元件產生明顯變化。
第二部分,利用不同製程條件製作PMMA當介電修飾層,製作具單極性與雙極性特性之五苯為主動層的薄膜電晶體,在相同照光環境下,研究照光對兩元件電特性之影響差異。由實驗得知,照光均可使兩元件產生汲極電流增益、載子遷移率提高、與次臨界擺幅增加。然而,單極性電晶體照光的導致的臨界電壓位移量(未照光臨界電壓減去照光臨界電壓)約為雙極性電晶體2倍之多,歸因於操作單極性電晶體時,照光所產生的自由電子能有效貢獻於通道內,對電性產生較大影響,然而,雙極性電晶體內,由於內存大量電子-電洞對,因此,照光對其影響力較小。
英文摘要 This study investigated the effects of light irradiation on the electrical characteristics of pentacene-based organic thin-film transistors (OTFTs). The study can be divided into two parts. The first one focuses on the influence of light irradiation on the ambipolar electrical characteristics of pentacene-based OTFTs. The second one focuses on the effects of light irradiation on the electrical characteristics of unipolar and ambipolar pentacene-based OTFTs with the same gate dielectric buffer.
  In part 1, we studied the light effects on the ambipolar characteristics of pentacene-based OTFTs with poly(methyl methacrylate) (PMMA) as a buffer gate dielectric layer. During light irradiation, we observed increased output drain current and higher charge mobility of devices for both p- and n-channel operations compared with those without light irradiation. Meanwhile, light irradiation also resulted in increased subthreshold swings and shifted threshold voltage. These results were attributed to excitons formed upon light absorption of the pentacene active layer that dissociated into free carriers and thus contributed to the output current. An early threshold voltage of the devices was observed for p-channel operations. By contrast, a delay threshold voltage was observed for n-channel operations. For both operations, we observed that light irradiation weakened the ability of gate modulation on the channel current. Impedance–admittance analysis results revealed that light irradiation on devices did not increase the interfacial trap density within the active channel. Finally, we concluded that variations in the electrical characteristics of pentacene-based ambipolar OTFTs upon light irradiation were due to the dual effects of light and electric fields.
In part 2, we studied and compared the effects of light irradiation on the electrical characteristics of unipolar p-channel OTFTs and ambipolar OTFTs. Unipolar p-channel and ambipolar OTFTs with a pentacene active layer were prepared using PMMA buffer gate dielectric layers fabricated under different conditions. During light irradiation, increased output drain current, higher charge mobility, and larger subthreshold swing were observed for both devices. However, the light-induced threshold voltage shift in the unipolar devices was two times larger than that of the ambipolar devices. The resulting large shift in the threshold voltage of the unipolar devices was attributed to the less electron–hole recombination in the active channel. Consequently, free carriers from light irradiation directly contributed to the output current. Therefore, the unipolar devices had the potential to be a light sensor.
論文目次 目錄
中文摘要 I
Abstract III
致謝 V
目錄 VI
表目錄 VIII
圖目錄 XI
第一章 有機薄膜電晶體簡介 1
1-1 有機光電元件簡介 1
1-2有機薄膜電晶體概論 2
1-2-1有機薄膜電晶體的元件結構 2
1-2-2有機薄膜電晶體基本原理 3
1-3有機薄膜電晶體的特性公式 5
1-3-1有機薄膜電晶體操作原理 5
1-3-2雙極性有機薄膜電晶體操作原理 8
1-4實驗動機 9
第二章 實驗方法與元件製作 17
2-1實驗材料 17
2-2薄膜電晶體元件製程 19
2-2-1絕緣層溶液配置 19
2-2-2基板清洗 19
2-2-3旋轉塗佈絕緣層(PMMA) 19
2-2-4蒸鍍半導體(Pentacene) 20
2-2-5蒸鍍電極(Ag) 20
2-3實驗儀器 20
2-3-1物理氣相沉積蒸鍍儀(Physical Vapor Deposition,PVD) 20
2-3-2半導體參數分析儀(KEITHLEY 4200SCS) 21
2-3-3 數位電性控制輸出量測儀(Source Meter 2400) 21
2-3-4 掃描式電子顯微鏡(Scanning Electron Microscopy,SEM) 22
2-3-5 UV吸收光譜 22
第三章 光效應對雙極性有機薄膜電晶體電特性的影響 26
3-1前言 26
3-2實驗方法 28
3-3結果與討論 29
3-3-1元件電特性分析結果 29
3-3-2元件電容值分析結果 32
3-3-3光與電場應力效應 33
3-4綜合討論 35
第四章 光效應對不同傳輸極性的有機薄膜電晶體電特性之影響 66
4-1前言 66
4-2實驗方法 67
4-3結果與討論 69
4-3-1元件電特性分析結果 69
4-3-2元件電容值分析結果 71
4-4綜合討論 72
第五章 總結與未來展望 91
總結 91
未來展望 92
參考文獻 93
參考文獻 [1]C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, and A. J. Heeger , H. Shirakawa, E. J. Louis, S. C. Gau, and Alan G.MacDiarmid ,“Electrical Conductivity in Doped Polyacetylene”, Phys. Rev. Lett., 39, 1098–1101, 1977.
[2]C. Lungenschmied, G. Dennler, H. Neugebauer, S. N. Sariciftci, M. Glatthaar, T. Meyer, and A. Meyer, “Flexible, long-lived, large-area, organic solar cells”, Sci. Energy Mater. , 91, 379–384, 2007.
[3]M. Niggemann, B. Zimmermann, J. Haschke, M. Glatthaar, A. Gombert, “Organic solar cell modules for specific applications-From energy autonomous systems to large area photovoltaics”, ThinSolid Films, 516, 7181–7187, 2008.
[4]M. Rockele, D. V. Pham, A. Hoppe, J. Steiger, S. Botnaras, M. Nag, S. Steudel, K. Myny, S. Schols, R. Muller, B. V. D. Putten, J. Genoe, P. Heremans, “Low- temperature and scalable complementary thin-film technology based on solution-processed metal oxide n-TFTs and pentacene p-TFTs”, Organic Electronics, 12, 1909-1913, 2011.
[5] T. Sekitani, T. Someya, “Stretchable, large-area organic electronics”, Advanced Materials, 22, 2228-2246, 2010.
[6]H. Sirringhaus, “Device Physics of Solution-Processed Organic Field-Effect Transistors”, Advanced Materials, 17, 2411, 2005.
[7]G. H. Gelinck , H. E. A. Huitema , E. Van Veenendaal , E. Cantatore ,L. Schrijnemakers , J. Van der Putten , T. C. T. Geuns , M. Beenhakkers ,J. B. Giesbers , B. H. Huisman , E. J. Meijer , E. M. Benito ,F. J. Touwslager , A. W. Marsman , B. J. E. Van Rens , D. M. DeLeeuw , “Flexible active-matrix displays and shift registers based on solution-processed organic transistors”, Nat. Mater., 3, 106, 2004.
[8]E. J. Meijer , D. M. De Leeuw , S. Setayesh , E. Van Veenendaal ,B. H. Huisman , P. W. M. Blom , J. C. Hummelen , U. Scherf ,T. M. Klapwijk , “Solution- processed ambipolar organic field-effect transistors and inverters”, Nat. Mater., 2, 678, 2003.
[9]D. W. Li, L. J. Guo , “Micron-scale organic thin film transistors with conducting polymer electrodes patterned by polymer inking and stamping”, Appl. Phys. Lett., 3, 88, 2006.
[10]Y. Kim, A.M. Ballantyne, J. Nelson, D.D.C. Bradley, “Effects of thickness and thermal annealing of the PEDOT : PSS layer on the performance of polymer solar cells.”, Org. Electron., 10, 205–209, 2009.
[11]T. Taima, J. Sakai, T. Yamanari and K. Saito, “Realization of Large Open-Circuit Photovoltage in Organic Thin- Film Solar Cells by Controlling Measurement Environment”, Jpn. J. Appl. Phys., 45, 995-997, 2006.
[12] Katz HE. “Recent advances in semiconductor performance and printingprocesses for organic transistor-based electronics”, Chem Mater, 16, 4748–56, 2004.
[13]Ng TN, Sambandan S, Lujan R, Arias AC, Newman CR, Yan H, et al., “Electricalstability of inkjet-patterned organic complementary inverters measured inambient conditions.”, Appl Phys Lett., 94, 233307-1–7-3, 2009.
[14]Noguchi Y, Sekitani T, Someya T., “Organic-transistor-based flexible pressure sensors using ink-jet-printed electrodes and gate dielectric layers”, Appl Phys Lett., 89, 253507-1–7-3, 2009.
[15]Daniel J, Arias A, Wong W, Lujan R, Ready S, Krusor B, et al., “Jet-printed active matrix back planes and electrophoretic displays.”, Jpn J Appl Phys., 46, 1363–9, 2007.
[16]J. Smith, R. Hamilton, M. Heeney, D. M. de Leeuw, E. Cantatore, J. E. Anthony, I. McCulloch, D. D. C. Bradley, and T. D. Anthopoulos., “High-performance organic integrated circuits based on solution processable polymer-small molecule blends.”, Appl. Phys. Lett., 93, 253301, 2008.
[17] T. Sekitani and T. Someya., “Stretchable, large-area organic electronics”, Adv. Mater., 22, 2228–2246, 2010.
[18]T. Someya, A. Dodabalapur, J. Huang, K. C. See and H. E. Katz., “Chemical and Physical Sensing by Organic Field-Effect Transistors and Related Devices”, Adv. Mater., 22, 3799–3811, 2010.
[19]T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer,K. Takeuchi, M. Takamiya, T. Sakurai and T. Someya, Science, “Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays.”, 326, 1516–1519,2009.
[20]Y. Qiu, Y. Hu, G. Dong, L. Wang, J. Xie, and Y. Ma., “H2O effect on the stability of organic thin-film field-effect transistors.”, Appl. Phys. Lett., 83, 1644, 2003.
[21]M. Ling, Z. N. Bao, and D. W. Li., “Transistor performance of top rough surface of pentacene measured by laminated double insulated-gate supported on a poly (dimethylsiloxanes) base structure.”, Appl. Phys. Lett., 88, 033502, 2006.
[22] C. R. Kagan, A. Afzali, and T. O. Graham, “Operational and environmental stability of pentacene thin-film transistors”, Appl. Phys. Lett., 86, 193305, 2005.
[23]S. H. Kim, H. Yang, S. Y. Yang, K. Hong, D. Choi, C. Yang, D. S. Chung, and C. E. Park, “Effect of water in ambient air on hysteresis in pentacene field-effect transistors containing gate dielectrics coated with polymers with different functional groups”, Org. Electron., 9, 673, 2008.
[24]F. D. Angelis, G. Das, and E. D. Fabrizio, “Analysis of the interactions between pentacene film and air molecules by means of Raman spectroscopy”, Chem. Phys. Lett., 462, 234, 2008.
[25] E. M. Conwell, “Impurity Band Conduction in Germanium and Slilcon”, Phys. Rev., 103, 51, 1956.
[26]N. F. Mott, Canadian J., “ON THE TRANSITION TO METALLIC CONDUCTION IN SEMICONDUCTORS”, Phys., 34, 1356, 1956.
[27]Miller, E. Abrahams, “Impurity conduction at low concentrations”, Phys. Rev., 120, 745-755, 1956.
[28]G. Horowitz, “Organic field-effect transistors”, Advanced Materials, 10, 365- 377, 1998.
[29]R. Schmechel, M. Ahles, H. V. Seggem, “A pentacene ambipolar transistor : Experiment and theory”, Journal of Applied Physics, 98, 084511, 2005.
[30]http://chrom.tutms.tut.ac.jp/JINNO/DATABASE/17pentacene.html- Physical Properties
[31] H. Tada, A. E. Kumpel, R. E. Lathrop, J. B. Slanina, “Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures”, Journal of Applied Physics, 87, 4189-4193, 2000.
[32] Hajime Nakanotani, Masayuki Yahiro, Chihaya Adachi, Koki Yano, “Ambipolar field-effect transistor based on organic-inorganic hybrid structure”, Appl. Phys. Lett., 90, 262104, 2007.
[33] Bhola Nath Pal, Phylicia Trottman, Jia Sun, Howard E. Katz, “Solution-Deposited Zinc Oxide and Zinc Oxide/Pentacene Bilayer Transistors: High Mobility n-Channel, Ambipolar, and Nonvolatile Devices”, Advanced Functional Materials, 18, 1832-1839, 2008.
[34] Jana Zaumseil and Henning Sirringhaus, “Electron and Ambipolar Transport in Organic Field-Effect Transistors”, Chem. Rev., 107, 1296–1323, 2007.
[35] Edsger C. P. Smits, Thomas D. Anthopoulos, Sepas Setayesh, Erik van Veenendaal, Reinder Coehoorn, Paul W. M. Blom, Bert de Boer, and Dago M. de Leeuw, “Ambipolar charge transport in organic field-effect transistors”, Phys. Rev., 73, 205316, 2006.
[36] Thomas D. Anthopoulos, Dago M. de Leeuw, Eugenio Cantatore, Sepas Setayesh, Eduard J. Meijer, Cristina Tanase, Jan C. Hummelen, and Paul W. M. Blom, “Organic complementary-like inverters employing methanofullerene-based ambipolar field-effect transistors”, Appl. Phys. Lett., 85, 4205, 2004.
[37] G. Paasch, Th. Lindner, C. Rost-Bietsch, S. Karg, W. Riess et al., “Operation and properties of ambipolar organic field-effect transistors”, J. Appl. Phys., 98, 084505, 2005.
[38] Min-Jun An, Hoon-Seok Seo, Ying Zhang, Jeong-Do Oh, and Jong-Ho Choi, “Air stable, ambipolar organic transistors and inverters based upon a heterojunction structure of pentacene On N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic di-imide”, Appl. Phys. Lett., 97, 023506, 2010.
[39] E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. van Veenendaal, B. -H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf and T. M. Klapwijk, “Solution-processed ambipolar organic field-effect transistors and inverters”, Nature Materials, 2, 678 – 682, 2003.
[40] Th. B. Singh, P. Senkarabacak, N. S. Sariciftci, A. Tanda, C. Lackner et al, “Organic inverter circuits employing ambipolar pentacene field-effect transistors”, Appl. Phys. Lett., 89, 033512, 2006.
[41] Martin Schidleja, Christian Melzer, Michael Roth, Thorsten Schwalm, Christian Gawrisch et a, “The impact of contact formation on the light emission from ambipolar transistors”, Appl. Phys. Lett., 95, 113303, 2009.
[42] Marcus Ahles, Roland Schmechel, and Heinz von Seggern, “Complementary inverter based on interface doped pentacene”, Appl. Phys. Lett., 87, 113505, 2005.
[43] Yong-Young Noh, Dong-Yu Kim, “Organic phototransistor based on pentacene as an efficient red light sensor”, Solid-State Electronics, 51, 1052–1055, 2007.
[44] Nicola Wrachien, Andrea Cester, Daniele Bari, Ján Jakaboviˇc,Jaroslav Kováˇc, Daniel Donoval, and Gaudenzio Meneghesso, “Visible Light and Low-Energy UV Effects on Organic Thin-Film Transistors”, IEEE TRANSACTIONS ON ELECTRON DEVICES, 59, 5, 2012.
[45] Lijuan Zhen, Liwei Shang, Ming Liu, Deyu Tu, Zhuoyu Ji, Xinghua Liu, Ge Liu, Jiang Liu, and Hong Wang, “Light-induced hysteresis characteristics of copper phthalocyanine organic thin-film transistors”, Appl. Phys. Lett., 93, 203302, 2008.
[46] Z. Bao, A. J. Lovinger, and A. Dodabalapur, “Organic field-effect transistors with high mobility based on copper phthalocyanine”, Appl. Phys. Lett., 69, 3066, 1996.
[47] R. Parashkov, E. Becker, G. Ginev, T. Riedl, H.-H. Johannes, and W.Kowalsky, “All-organic thin-film transistors made of poly (3-butylthiophene) semiconducting and various polymeric insulating layers”, J. Appl. Phys. 95, 1594, 2004.
[48] Fang-Chung Chen, Chih-Wei Chu, Jun He, and Yang Yang, “Organic thin-film transistors with nanocomposite dielectric gate insulator”, Appl. Phys. Lett., 85, 3295, 2004.
[49] H. Klauk, M. Halik, U. Zschieschang, G.Schmid, and W. Radlik, “High mobility polymer gate dielectric pentacene thin film transistors”, J. Appl. Phys., 92, 5259, 2002.
[50] D.J., Gundlach, C.-C., Kuo, S.F. Nelson, and T.N. Jackson, “Organic thin film transistors with field effect mobility >2 cm 2/V-s”, 57th Annual Device Research Conference Digest, 164-165, 1999.
[51] S. K. Park, C.-C. Kuo, J.E. Anthony, and T.N. Jackson, “High mobility solution-processed OTFTs”, IEEE International Electron Devices Meeting, 4, 2005.
[52] C.-C. Kuo, M.M. Payne, J.E. Anthony, and J.E. Jackson, “TES anthradithiophene solution-processed OTFTs with 1 cm2/V-s mobility”, IEEE International Electron Devices Meeting, 373-376, 2004.
[53] D.J. Gundlach, H. Klauk, C.D. Sheraw, C.-C. Kuo, J.-R. Huang and T.N. Jackson, “High-mobility, low voltage organic thin film transistors”, 111-114, 1999.
[54] Takeshi Yasuda, Takeshi Goto, Katsuhiko Fujita, Tetsuo Tsutsui, “Ambipolar pentacene field-effect transistors with calcium source-drain electrodes”, Appl. Phys. Lett., 85, 2098, 2004.
[55] R. Rahimia and D. Korakakis, “Transport mechanism in ambipolar pentacene organic thin film transistors with lithium fluoride gate dielectric”, J. Appl. Phys., 110, 013702, 2011.
[56]W. J. Chiang, C. J. Lin, Y. C. King, “Embedded Optical Sensor Using Gate-Body-Tied Thin-Film Transistor on Low-Temperature Poly-Silicon Display Panel”, Electrochemical and Solid-State Lett., 12, 51, 2009.
[57]P. V. Pesavento, R. J. Chesterfield, C. R. Newman and C. D. Frisbie, “Gated four-probe measurements on pentacene thin-film transistors : Contact resistance as a function of gate voltage and temperature”, J. Appl. Phys., 96, 7312-7324, 2004.
[58] R. Hattori, J. Kanicki, “Contact Resistance in Schottky Contact Gated-Four-Probe a-Si Thin-Film Transistor”, Jpn. J. Appl. Phys. , 42, 907-909, 2003.
[59]P. V. Necliudov, M. S. Shur, D. J. Gundlach and T. N. Jackson, “Contact resistance extraction in pentacene thin film transistors” , Solid-State Electronics., 47, 259-262, 2003.
[60]I. Yagi, K. Tsukagoshi and Y. Aoyagi, “Direct observation of contact and channel resistance in pentacene four-terminal thin-film transistor patterned by laser ablation method”, Appl. Phys. Lett., 84, 813-815, 2004.
[61] P. V. Necliudov, M. S. Shur, D. J. Gundlach and T. N. Jackson, “Contact resistance extraction in pentacene thin film transistors”, Solid-State electron., 47, 259, 2003.
[62]D. R. Gamota, P. Brazis, K. Kalyanasundaram and J. Zhang, “Printed organic and molecular electronics”, Kluwer Academic Publishers, Norwell, 2004.
[63] J. Cornil, J. L. Bredas, J. Zaumseil, H. Sirringhaus, “Ambipolar transport in organic conjugated materials”, Advanced Materials, 19, 1791-1799, 2007.
[64] A. Facchetti, M. H. Yoon, T. J. Marks, “Gate dielectrics for organic field-effect transistors:New opportunities for organic electronics”, Advanced Materials, 17, 1705-1725, 2005.
[65] E. J. Meijer, D. M. De Leeuw, S. Setayesh, E. V. Veenendaal, B. -H. Huisman, P.M.W.Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk, “Solution-processed ambipolar organic field-effect transistors and inverters”, Nature Materials, 2, 678-682, 2003.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw