進階搜尋


 
系統識別號 U0026-0208201117001400
論文名稱(中文) 應力波應用於樁基礎完整性檢測技術之評估
論文名稱(英文) Evaluation of the Stress Wave Techniques for the Integrity Test of Pile Foundations
校院名稱 成功大學
系所名稱(中) 土木工程學系碩博士班
系所名稱(英) Department of Civil Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 黃烟宏
研究生(英文) Yan-Hong Huang
學號 N6895109
學位類別 博士
語文別 中文
論文頁數 247頁
口試委員 指導教授-倪勝火
口試委員-林炳森
口試委員-陳志南
口試委員-陳景文
口試委員-張文忠
中文關鍵字 基樁  非破壞檢測  缺陷  樁帽  表面反射法  平行震測法  鑽孔距離  修正因子 
英文關鍵字 Pile  Nondestructive  flaw  cap  Surface reflection method  Parallel seismic method  Borehole distance  Correction factor 
學科別分類
中文摘要 本研究採用了數種應力波非破壞檢測法來探討新建與既存樁基礎之長度與完整性,除了以有限元素軟體ABAQUS進行數值模擬分析與參數探討外,並透過現地試驗或文獻資料來驗證分析的結果。研究結果顯示,音波回音法與脈波反應法於樁基礎長度與完整性檢測的能力主要受到缺陷尺寸、缺陷位置與樁周土壤勁度的影響,依照樁土勁度比的不同,其有效應用長徑比將會介於10至32。根據數值模擬的參數分析,本研究建立以音波回音法與脈波反應法評估基樁中可能存在的最小缺陷尺寸評估公式,其為缺陷深度與樁土勁度比之函數。非實心斷面的PCC管樁其檢測結果會受到敲擊位置與接收器間相對位置的影響,若要正確的評估樁體的完整性並提高評估精度時,建議採用基於時間域的音波回音法並限制敲擊位置與接收器之間的相對角度低於90度。
對含樁帽群樁系統使用音波回音法或脈波反應法進行基樁長度或完整性分析時,除樁帽會嚴重減弱樁底回波訊號之強度外,樁帽邊界所造成的反射波訊號亦會干擾紀錄之訊號,因而可能導致試驗資料不易解讀,並導致試驗失敗;而使用平行震測法則可以得到較客觀且易解讀的訊號,然而平行震測法的評估樁長會隨導孔與基樁間的距離增加而增加,故必須對評估結果進行樁長修正,以得到較為保守的評估樁長。本研究經由現地試驗,驗證了目前文獻上發表的2種樁長修正方法具有相當高的一致性,兩者的差異小於50公分。
於基樁側面對既存樁基礎進行表面反射法試驗時,有效將敲擊能量導入平行於基樁軸向的方向是試驗成功最主要的關鍵。採用音波回音法進行試驗分結果分析時,敲擊點位置應盡量靠近樁帽底面,以避免樁底反射波訊號受到來自樁帽底面反射波的干擾,若能再配合超震波法進行分析,則可以明顯辨識並分離出經樁帽底面造成的反射波訊號。
英文摘要 This study investigates the issues of the length and integrity on newly finished and old pile foundations by using stress wave-based nondestructive techniques. Both numerical simulations and field experiments were performed. The analysis results indicate that the efficiency of the sonic echo and impulse response (SE/IR) methods on the pile integrity evaluations would depend on the flaw sizes, flaw locations, and the soil stiffness ratio. According to the results from the numerical simulations, useful formulas for flaw size assessment in a pile based on the SE/IR methods are proposed, considering these factors simultaneously. Furthermore, formulas for predicting the detectable slenderness ratio of a pile was also recommended which correlates with the soil stiffness ratio and it varies from 10 to 32. The SE/IR methods are also applicable on the tube piles. However, detecting the integrity of PCC piles in the time domain seems more appropriate than that in the frequency domain. Also, the relative angle between the impact and receivers should not larger than 90 degrees to obtain a satisfied accuracy on the determination of the flaw depth.
The pile cap and the stress wave reflected from the boundary of the pile cap would interfere and decrease the resolution of the vibration signal, namely the interpretation of the SE/IR tests performed on a group pile system might be difficult. The results of the parallel seismic (PS) method would be more visual and thus can avoid the subjective judgment. However, pile length evaluated by using the PS method would increase with the distance between the borehole and pile. Consequently, correcting the pile length would be necessary to obtain a conservative evaluation. The experimental results also show that the differences between two correction factors of the PS method are less than 50 centimeter, which indicate that both the correction approaches are almost identical.
The key to successfully use of the surface reflection technique on the side surface of old pile foundations depends on the energy of the stress wave introduced into the direction parallel to the axial direction of the pile. The impact should be applied close to the bottom of the pile cap to avoid the interferences of the stress wave reflected from the bottom of the pile cap on the analyzed waveform of the SE method. In addition, the reflected wave from the bottom of the pile cap can easily be identified from the waveform when the ultraseismic method is also adopted.
論文目次 中文摘要 I
英文摘要 III
誌謝 V
目錄 VII
表目錄 XI
圖目錄 XIII
符號說明 XX
第一章 序論 1
1.1研究動機 1
1.2研究目的與方法 2
1.3研究內容 3
第二章 基樁完整性檢測方法 4
2.1樁基礎之非破壞檢測法 4
2.2基於應力波之低應變非破壞檢測技術 5
2.2.1應力波與波傳現象 5
2.2.2基樁應力波傳 6
2.2.3樁基礎之低應變非破壞檢測法 8
2.3混凝土波傳速度與品質之關係 23
第三章 數值模擬軟體簡介 24
3.1前言 24
3.2有限元素法基本理論與ABAQUS軟體簡介 25
3.3數值分析模型 26
3.3.1分析模型之網格 26
3.3.2衝擊外力之定義 27
3.3.3分析模型之元素與時間增量 27
3.3.4分析模型之材料組成模式 29
第四章 基樁長度與缺陷大小之評估 30
4.1前言 30
4.2有限元素模型描述與驗證 33
4.2.1模型參數描述 33
4.2.2模型驗證 34
4.3時間域音波回音法之分析結果與討論 36
4.3.1缺陷深度比之影響 36
4.3.2樁土勁度比之影響 37
4.3.3基樁中最小可辨識缺陷之尺寸 38
4.3.4可檢測長徑比 40
4.3.5基樁直徑及缺陷長度之影響 41
4.4頻率域脈波反應法之分析結果與討論 49
4.4.1缺陷尺寸評估方程式 49
4.4.2缺陷長度的影響 51
4.4.3層狀土層的影響 52
4.4.4最小可檢測缺陷尺寸 53
4.5案例驗證 59
4.5.1案例一:San Jose試驗場址 59
4.5.2案例二:NGES-Amherst試驗場址 61
4.5.3 案例三:NGES-NU試驗場址 62
4.5本章小結 65
第五章 大直徑薄壁管樁之表面反射試驗 66
5.1前言 66
5.2 PCC樁之數值模擬 68
5.2.1模型概述 68
5.2.2完整PCC樁之暫態反應分析 69
5.2.3含缺陷PCC樁之暫態反應分析 70
5.3現地實驗與配置 81
5.3.1試驗場址與儀器 81
5.3.2完整樁PC-A之試驗結果與討論 82
5.3.3非對稱缺陷樁PC-F之試驗結果與討論 83
5.4本章小結 89
第六章 新建含樁帽群樁基礎之非破壞檢測 91
6.1前言 91
6.2試驗場址與儀器描述 92
6.3單樁現地試驗 98
6.3.1音波回音法與脈波反應法之試驗結果與討論 98
6.3.2平行震測法之試驗結果與討論 99
6.4群樁現地試驗 112
6.4.1音波回音法與脈波反應法之試驗結果與討論 112
6.4.2平行震測法之試驗結果與討論 112
6.5本章小結 125
第七章 既存橋梁樁基礎之長度檢測 126
7.1前言 126
7.2數值模擬與分析 128
7.2.1模型描述 128
7.2.2衝擊外力施加方式與接收器配置之影響 129
7.2.3敲擊點與樁帽底面距離之影響 131
7.3現地試驗 146
7.3.1實驗場址 146
7.3.2超音波法試驗 146
7.3.3表面反射法試驗 147
7.4本章小結 151
第八章 結論與建議 153
8.1結論 153
8.2建議 155
參考文獻 157
附錄A 169
附錄B 172
附錄C 177
附錄D 196
自述 242
參考文獻 王景信,「平行震測法與超震波法在實務上之應用研究」,國立成功大學土木工程學系碩士論文,台南 (2005)。
周芃逸、許阿明、廖述濤、童建樺,「無樁帽與含樁帽群樁之三維實體數值模擬與現地非破壞檢測結果之比較研究」,電子計算機於土木水利工程應用,國立成功大學土木工程學系 (2005)。
林明勳、廖述濤,「無樁帽與含樁帽群樁之非破壞檢測案例研究」,台灣公路工程,第30卷,第6期,第2-18頁 (2003)。
倪勝火,「基樁之非破壞性檢測與案例」,地工技術雜誌,第52期,第49-62頁 (1995)。
倪勝火,「影響鑽掘超音波完整性檢測相關因素之探討」,檢測技術,第9卷,第3期,第59-64頁 (1991)。
倪勝火、廖述濤,「基樁之檢測與評估」,第一屆公共工程非破壞檢測技術研討會,第166-194頁 (1999)。
倪勝火、羅國峯、周憲民、黃烟宏、王景信,「非破壞檢測技術應用於老舊橋梁基礎檢測之案例」,台灣公共工程學刊,第4卷,第3期,第1-7頁 (2008)。
倪勝火、羅國峯、黃烟宏、黎杰侖,「營運中橋樑樁基礎之非破壞檢測及評估」,第十三屆非破壞檢測技術研討會暨中華民國非破壞檢測協會年度會議,第1-7頁 (2006)。
張曉健、劉漢龍、高玉峰,「PCC樁芯土室內模型試驗研究」,土木工程學報,第38卷,第12期,第99-102頁 (2005)。
陳政豪,「基樁之平行震測法與超震波法之研究」,中華大學土木工程學系碩士論文,新竹 (1998)。
欽祥偉、張忠苗、費康,「振動沉模現澆大直徑薄壁管樁施工技術研究」,建築施工,第25卷,第4期,第245-246頁 (2003)。
費康、劉漢龍、高玉峰、豐土根,「現澆混凝土薄壁管樁的荷載傳遞機理」,岩土力學,第25卷,第5期,第764-768頁 (2004)。
費康、劉漢龍、張霆,「PCC樁低應變檢測中的三維效應」,岩土力學,第28卷,第6期,第1095-1102頁 (2007)。
黃大治、陳龍珠,「旁孔透射波法檢測既有建築物樁基的三維有限元分析」,岩土力學,第29卷,第6期,第1569-1574頁 (2008)。
廖述濤,「基樁的脈波反應測試及力學導納分析」,檢測科技,第14卷,第2期,第94-103頁 (1996)。
劉漢龍、費康、馬曉輝、高玉峰,「振動沉模大直徑現澆薄壁管樁技術及其應用(I):開發研製與設計」,岩土力學,第24卷,第2期,第164-168頁 (2003)。
蔡政霖、廖述濤、童建樺,「含樁帽基樁受衝擊力作用下在樁側面上之軸向反應的研究」,第12屆非破壞檢測技術研討會,日月潭,台灣(2004)。
賴正昇,「脈波回音法應用於基樁之模擬與分析」,成功大學木工程學系碩士論文,台南 (2005)。
Amir, J.M., “Single-Tube Ultrasonic Testing of Pile Integrity,” Deep Foundations Congress 2002 - International Perspective on Theory, Design, Construction, and Performance, Orlando, Florida, United States, pp. 836-850 (2002).
Baker Jr., C.N., Drumright, E.E., Mensah, F., Parikh, G., and Ealy, C., “Dynamic Testing to Predict Static Performance of Drilled Shafts: Results of Fhwa Research,” Proceedings of the Geotechnical Engineering Congress, Boulder, Colorado, USA, pp. 491-504 (1991a).
Baker Jr., C.N., Drumright, E.E., Mensah, F., Parikh, G., and Ealy, C., “Use of Nondestructive Testing to Evaluate Defects in Drilled Shafts,” Transportation Research Record, Vol. 1331, pp. 28-35 (1991b).
Baldi, G., “Modulus of Sands from CPT's and DMT's,” Proceedings of the Twelfth International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Brazil, pp. 165-170 (1989).
Baxter, S.C., Islam, M.O., and Gassman, S.L., “Impulse Response Evaluation of Drilled Shafts with Pile Caps: Modeling and Experiment,” Canadian Journal of Civil Engineering, Vol. 31, No. 2, pp. 169-177 (2004).
Berger, J.A. and Cotton, D.M., “Low Strain Integrity Testing of Deep Foundations,” Proceedings of the Fifth Annual Members' Conference, Seattle (1990).
Bermingham, P. and Janes, M., “An Innovative Approach to Load Testing of High Capacity Piles,” Proceeding of the International Conference on Piling and Deep Foundation, Lodon, pp. 28-35 (1989).
Bolt, B.A., Earthquakes, W. H. Freeman, New York (1993).
Briaud, J.L., Ballouz, M., and Nasr, G., “Defect and Length Predictions by NDT Methods for Nine Bored Piles,” International Perspective on Theory, Design, Construction, and Performance, Orlando, Florida, United Sates, pp. 173-192 (2002).
Brown, D.A., “Evaluation of Static Capacity of Deep Foundations from Statnamic Testing,” Geotechnical Testing Journal, Vol. 17, No. 4, pp. 403-414 (1994).
Carino, N.J., Sansalone, M., and Hsu, N.N., “Flaw Detection in Concrete by Frequency Spectrum Analysis of Impact-Echo Waveforms,” International Advances in Nondestructive Testing, W. J. McGonnagle, Routledge, pp. 117-146 (1986).
Cheng, C. and Sansalone, M., “The Impact-Echo Response of Concrete Plates Containing Delaminations - Numerical, Experimental and Field Studies,” Materials and Structures, Vol. 26, No. 159, pp. 274-285 (1993).
Chow, Y.K., Phoon, K.K., Chow, W.F., and Wong, K.Y., “Low Strain Integrity Testing of Piles: Three-Dimensional Effects,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 11, pp. 1057-1062 (2003).
Cook, R.D., Malkus, D.S., Plesha, M.E., and Witt, R.J., Concepts and Applications of Finite Element Analysis, John Wiley & Sons., Inc. (2001).
Dassault Systemes Simulia Corporation, Getting Started with Abaqus: Interactive Edition, Dassault Systemes Simulia Corporation (2009).
Davis, A.G. and Dunn, C.S., “From Theory to Field Experience with the Non-Destructive Vibration Testing of Piles,” Proceedings of the Institution of Civil Engineers. Part 1- Design and Construction, London, pp. 571-593 (1974).
Davis, A.G., “Assessing Reliability of Drilled Shaft Integrity Testing,” Transportation Research Record, Vol. 1633, pp. 108-116 (1998).
Dayal, U., “Determination of Shear Strength and Soil Modulus from CPT and Other in Situ Tests,” Penetration Testing, Proceedings of the Second European Symposium, Amsterdam, Netherlands, pp. 529-534 (1982).
Finno, R.J. and Gassman, S.L., “Evaluation of Bridge Foundations by Impulse Response Methods,” Structural Materials Technology III, San Antonio, Texas, United States, pp. 32-43 (1998a).
Finno, R.J. and Gassman, S.L., “Impulse Response Evaluation of Drilled Shafts,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 10, pp. 965-975 (1998b).
Fukuhara, T., Kakurai, M., and Sugimoto, M., “Analytical Evaluation of Defective Piles,” Proceedings of the Fourth International Conference on the Application of Stress-Wave Theory to Piles, Netherlands, pp. 563-569 (1992).
Ganji, V., Gucunski, N., and Maher, A., “Detection of Underground Obstacles by SASW Method - Numerical Aspects,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 123, No. 3, pp. 212-219 (1997).
Gassman, S.L. and Finno, R.J., “Impulse Response Evaluation of Foundations Using Multiple Geophones,” Journal of Performance of Constructed Facilities, Vol. 13, No. 2, pp. 82-89 (1999).
Gnaedinger, J.P. and Gnaedinger, R.J., “Drilled-Shaft Integrity by Wave-Propagation Method - Discussion,” Journal of Geotechnical Engineering, Vol. 109, No. 12, pp. 1600-1602 (1983).
Gomin, H., Coelus, G., and Leonard, M., “Theory and Performance of a New Dynamic Method of Pile Testing,” Proceeding of Second International Conference of Application of Stress-Wave Theory to Pile, Stockholm, pp. 403-410 (1984).
Han, B.W. and Wang, D.G., “Application of Sonic Tomography in the Integrity Testing of Concrete Piles,” Proceedings of the Fourth International Conference on the Application of Stress-Wave Theory to Piles, Netherlands, pp. 231-234 (1992).
Harrell, A.S. and Stokoe, K.H., II, Integrity Evaluation of Drilled Piers by Stress Waves, Transportation Research Center, The University of Taxes at Austin, pp. 265-268 (1984).
Hartung, M., Meier, K., and Rodatz, W., “Integrity Testing on Model Pile,” Proceedings of the Fourth International Conference on the Application of Stress-Wave Theory to Piles, Netherlands, pp. 265-271 (1992).
Hassan, K.M. and O'Neill, M.W., Structural Resistance Factors for Drilled Shafts with Minor Defects-Final Report (Phase I), Department of Civil and Environmental Engineering, University of Houston (1998).
Hearne, T.M., Stokoe, K.H., II, and Reese, L.C., “Drilled-Shaft Integrity by Wave-Propagation Method,” Journal of the Geotechnical Engineering Division, Vol. 107, No. 10, pp. 1327-1344 (1981).
Hertlein, B.H. and Davis, A.G., Nondestructive Testing of Deep Foundations, John Wiley & Sons., Inc., New York (2006).
Hertlein, B.H. and Walton, W.H., “Assessment and Reuse of Old Foundations,” Transportation Research Record, Vol. 1736, pp. 49-54 (2000).
Higgs, J.S., “Integrity Testing of Concrete Piles by Shock Method,” Concrete, Vol. 13, No. 10, pp. 31-33 (1979).
Iskander, M., Roy, D., Ealy, C., and Kelley, S., “Class-A Prediction of Construction Defects in Drilled Shafts,” Transportation Research Record, Vol. 1772, pp. 73-83 (2001).
Iskander, M., Roy, D., Kelley, S., and Ealy, C., “Drilled Shaft Defects: Detection, and Effects on Capacity in Varved Clay,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 12, pp. 1128-1137 (2003).
Kim, D.S. and Kim, H.W., “Effects of Surrounding Soil Stiffness and Shaft Length in the Impact-Echo Test of Drilled Shaft,” KSCE Journal of Civil Engineering, Vol. 7, No. 6, pp. 755-762 (2003).
Kim, D.S. and Kim, H.W., “Evaluation of the Base Condition of Drilled Shafts by the Impact-Echo Method,” Geotechnical Testing Journal, Vol. 27, No. 5, pp. 496-503 (2004).
Kim, D.S., Kim, H.W., and Kim, W.C., “Parametric Study on the Impact-Echo Method Using Mock-up Shafts,” NDT&E International, Vol. 35, No. 8, pp. 595-608 (2002).
Kinsler, L.E., Frey, A.R., and Coppens, A.B., Fundamentals of Acoustics, John Wiley & Sons., Inc., New York (1999).
Kramer, S.L., Geotechnical Earthquake Engineering, Prentice-Hall, Inc. (1996).
Li, D.Q., Zhang, L.M., and Tang, W.H., “Reliability Evaluation of Cross-Hole Sonic Logging for Bored Pile Integrity,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 9, pp. 1130-1138 (2005).
Liao, S.T. and Roesset, J.M., “Dynamic Response of Intact Piles to Impulse Loads,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 21, No. 4, pp. 255-275 (1997a).
Liao, S.T. and Roesset, J.M., “Identification of Defects in Piles through Dynamic Testing,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 21, No. 4, pp. 277-291 (1997b).
Liao, S.T., Tong, J.H., Chen, C.H., and Wu, T.T., “Numerical Simulation and Experimental Study of Parallel Seismic Test for Piles,” International Journal of Solids and Structures, Vol. 43, No. 7-8, pp. 2279-2298 (2006).
Lin, J.M. and Sansalone, M., “Impact-Echo Response of Hollow Cylindrical Concrete Structures Surrounded by Soil and Rock. Part I. Numerical Studies,” Geotechnical Testing Journal, Vol. 17, No. 2, pp. 207-219 (1994a).
Lin, J.M. and Sansalone, M., “Impact-Echo Response of Hollow Cylindrical Concrete Structures Surrounded by Soil and Rock. Part II. Experimental Studies,” Geotechnical Testing Journal, Vol. 17, No. 2, pp. 220-226 (1994b).
Lin, J.M. and Sansalone, M., “The Transverse Elastic Impact Response of Thick Hollow Cylinders,” Journal of Nondestructive Evaluation, Vol. 12, No. 2, pp. 139-149 (1993).
Lin, S.S., Hong, J.L., Lee, W.F., and Chang, Y.H., “Capacity Evaluation of Statnamic Tested Long Piles,” Soil Dynamics and Earthquake Engineering, Vol. 24, No. 11, pp. 829-838 (2004).
Lin, Y., Sansalone, M., and Carino, N.J., “Impact-Echo Response of Concrete Shafts,” Geotechnical Testing Journal, Vol. 14, No. 2, pp. 121-137 (1991).
Liu, H.L., Chen, Y.M., and Liu, J.Y., “Construction of a Large Diameter Cast-in-Situ Concrete Pipe Pile for Ground Improvement,” Advances in Ground Improvement: Research to Practice in the United States and China - 2009 US-China Workshop on Ground Improvement Technologies, Orlando, Florida, United States, pp. 120-129 (2009).
Liu, P.L., Lee, K.H., Wu, T.T., and Kuo, M.K., “Scan of Surface-Opening Cracks in Reinforced Concrete Using Transient Elastic Waves,” NDT & E International, Vol. 34, No. 3, pp. 219-226 (2001).
Liu, P.L., Tsai, C.D., and Wu, T.T., “Imaging of Surface-Braking Concrete Cracks Using Transient Elastic Waves,” NDT & E International, Vol. 29, No. 5, pp. 323-331 (1996).
Malhotra, V.M., Testing Hardened Concrete: Nondestructive Methods, Iowa State University Press (1976).
Mayne, P.W. and Rix, G.J., “Gmax-qc Relationship for Clays,” Geotechnical Testing Journal, Vol. 16, No. 1, pp. 54-60 (1993).
McCabe, W.M. and Felice, C.W., “Assessment of 100-Year-Old Foundation System to Meet Current Retrofit Load Demands,” Transportation Research Record, Vol. 1736, pp. 41-48 (2000).
Min, D.J. and Kim, H.S., “Feasibility of the Surface-Wave Method for the Assessment of Physical Properties of a Dam Using Numerical Analysis,” Journal of Applied Geophysics, Vol. 59, No. 3, pp. 236-243 (2006).
Nazarian, S. and Stokoe, K.H., II, “Use of Surface Waves in Pavement Evaluation,” Transportation Research Record, Vol. 1070, pp. 132-144 (1986).
Nazarian, S. and Stokoe, K.H., II, In Situ Determination of Elastic Moduli of Pavement Systems by Spectral-Analysis-of-Surface-Waves Method (Practical Aspects), Center for Transportation Research, The University of Texas at Austin (1985).
Ni, S.H., Huang, Y.H., Zhou, X.M., and Lo, K.F., “Inclination Correction of the Parallel Seismic Test for Pile Length Detection,” Computers and Geotechnics, Vol. 38, No. 2, pp. 127-132 (2011).
Ni, S.H., Lehmann, L., Charng, J.J., and Lo, K.F., “Low-Strain Integrity Testing of Drilled Piles with High Slenderness Ratio,” Computers and Geotechnics, Vol. 33, No. 6-7, pp. 283-293 (2006).
Olson, L.D. and Aouad, M.F., Unknown Subsurface Bridge Foundation Testing- Final Report, NCHRP 21-5 (2) (2001).
Olson, L.D., Liu, M., and Aouad, M.F., “Borehole NDT Techniques for Unknown Subsurface Bridge Foundation Testing,” Nondestructive Evaluation of Bridges and Highways, Scottsdale, Arizona, United States, pp. 10-16 (1996).
Olson, S.D. and Tinkey, Y., “In-Place Nondestructive Evaluation of Foundations of Unknown Type and Depth,” Proceedings of the Eighth International Conference on the Application of Stress-Wave Theory to Piles, Lisbon, Portugal, pp. 443-451 (2008).
O'Neill, M.W. and Reese, L.C., Drilled Shafts: Construction Procedures and Design Methods (Report No.: FHWA-IF-99-025), Federal Highway Administration (1999).
O'Neill, M.W., “Construction Practices and Defects in Drilled Shafts,” Advances in Designing and Testing Deep Foundations, pp. 39-47 (2005).
Paquet, J., “A New Method for Testing Integrity of Piles by Dynamic Impulse: The Impedance Log,” Colloquium on Deep Foundations, Paris, pp. 1-10 (1991).
Petek, K., Felice, C.W., and Holtz, R.D., “Capacity Analysis of Drilled Shafts with Defects,” Deep Foundations 2002: An International Perspective on Theory, Design, Construction, and Performance, Orlando, Florida, United States, pp. 1120-1135 (2002).
Potts, D.M. and Zdravkovic, L., Finite Element Analysis in Geotechnical Engineering: Theory, Thomas Telford Publishing, London (1999).
Prakash, C., Bhandari, R.K., Sharma, A.K., and Rastogi, P.C., “Pile Diagnostics by FDPS,” Symposium on Underground Excavations in Soils and Rocks, Including Earth Pressure Theories, Buried Structures and Tunnels, Bangkok, Thailand, pp. 167-167 (1991).
Rausche, F., Likins, G., and Hussein, M., “Formalized Procedure for Quality Assessment of Cast-in-Place Shafts Using Sonic Pulse Echo Methods,” Transportation Research Record, Vol. 1447, pp. 30-38 (1994).
Richart Jr, F.E., Hall Jr, J.R., and Woods, R.D., Vibrations of Soils and Foundations, Prentice-Hall, Inc. (1970).
Rix, G.J., Jacobs, L.J., and Reichert, C.D., “Evaluation of Nondestructive Test Methods for Length, Diameter, and Stiffness Measurements on Drilled Shafts,” Transportation Research Record, Vol. 1415, pp. 69-77 (1993).
Sadri, A., “Application of Impact-Echo Technique in Diagnoses and Repair of Stone Masonry Structures,” NDT & E International, Vol. 36, No. 4, pp. 195-202 (2003).
Sansalone, M. and Carino, N.J., “Impact-Echo Method,” Concrete International, pp. 38-46 (1988).
Sansalone, M. and Streett, W.B., Impact-Echo: Nondestructive Evaluation of Concrete and Masonry, Bullbrier Press, New York (1997).
Sarhan, H.A., O'Neill, M.W., and Hassan, K.M., “Flexural Performance of Drilled Shafts with Minor Flaws in Stiff Clay,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 128, No. 12, pp. 974-985 (2002).
Sarhan, H.A., O'Neill, M.W., and Tabsh, S.W., “Structural Capacity Reduction for Drilled Shafts with Minor Flaws,” ACI Structural Journal, Vol. 101, No. 3, pp. 291-297 (2004).
Seed, H.B., Wong, R.T., Idriss, I.M., and Tokimatsu, K., “Moduli and Damping Factors for Dynamic Analyses of Cohesionless Soils,” Journal of Geotechnical Engineering, Vol. 112, No. 11, pp. 1016-1032 (1986).
Seitz, J.M., “Low Strain Integrity Testing of Bored Piles,” Proceedings of the Second International Conference on the Aapplication of Stress-Wave Theory to Piles, Stockholm, Sweden, pp. 94-102 (1985).
Seitz, J.M., “Pile Integrity by Low Strain Amplitude- a State-of-Art,” Proceedings of the Fourth International Conference on the Application of Stress-Wave Theory to Piles, Netherlands, pp. 627-637 (1992).
Sliwinski, Z.J. and Fleming, W.G.K., “Integrity and Performance of Bored Piles,” Proceedings of the International Conference on Advances in Piling and Ground Treatment for Foundations, London, England, pp. 211-223 (1984).
Stain, R.T., “Integrity Testing,” Civil Engineering, pp. 53-59 (1982).
Stokoe, K.H., II, Wright, S.G., Bay, J.A., and Röesset, J.M., “Characterization of Geotechnical Sites by SASW Method,” In: Geophysical Characterization of Sites, R. D. Woods, ed., A.A. Balkema Publishers, pp. 15-25 (1994).
Sully, J.P. and Campanella, R.G., “Correlation of Maximum Shear Modulus with DMT Test Results in Sand,” Proceedings of the Twelfth International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Brazil, pp. 339-343 (1989).
Yu, C.P. and Liao, S.T., “Theoretical Basis and Numerical Simulation of Impedance Log Test for Evaluating the Integrity of Columns and Piles,” Canadian Geotechnical Journal, Vol. 43, No. 12, pp. 1238-1248 (2006).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-08-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw