進階搜尋


下載電子全文  
系統識別號 U0026-0208201113501500
論文名稱(中文) 使用3D影像探討拇指腕掌關節滑動及接觸
論文名稱(英文) In Vivo Study of Trapeziometacarpal Joint Gliding and Contact Using 3D Images
校院名稱 成功大學
系所名稱(中) 醫學工程研究所碩博士班
系所名稱(英) Institute of Biomedical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 陳冠伯
研究生(英文) Guan-Bo Chen
學號 p86981156
學位類別 碩士
語文別 英文
論文頁數 84頁
口試委員 指導教授-蘇芳慶
共同指導教授-郭立杰
口試委員-孫永年
口試委員-周一鳴
口試委員-王建國
中文關鍵字 拇指掌腕關節  關節接觸  關節滑動  電腦斷層 
英文關鍵字 Trapeziometacarpal joint  Joint gliding  Joint contact  Computer Topography 
學科別分類
中文摘要 人類手部功能在日常生活扮演重要的角色,正常抓握技巧能因應不同物品操作而有不同的抓握模式,大部分抓握技巧包含人類拇指特有的對掌動作,因此拇指在抓握技巧中扮演重要的角色。但因拇指關節面面積較其他軀幹關節小,使得拇指底部的掌腕關節承受較大壓力,使得長久使用下拇指的掌腕關節於全部手指關節中,發生退化性關節炎的比率是最高的。
在臨床治療拇指退化性關節炎之多種策略中,植入人造關節能有效的減緩疼痛,並提高抓握技巧之恢復。現今常使用人造關節之型態多屬於球窩關節,但球窩關節因力學結構與原本鞍形關節不同,使得人造關節容易產生不正常之剪力,造成關節置入失敗。但若要設計鞍形人造關節,過去研究資料仍不足,且少有資料是以三維觀點,探討該關節在執行各種功能性抓握時,關節內之骨骼構造偏移量及接觸區域等因子之表現,因此了解這些因子之特性除了能用來作為評估的方式,同時也能作為未來在鞍型人造關節設計上重要之依據。
本研究以三維運動學模型之觀點,探討拇指掌腕關節於最大關節活動度及功能性側握等狀況下,關節內的骨骼構造偏移量及接觸情況。本研究招募30位健康男性受測者,慣用手皆為右手,年齡範圍為20~40歲,並隨機分成2組,每組15人。兩組皆接受電腦斷層拍攝右手手掌部位,一組拍攝不同側握點及不同握力下側握姿勢,簡稱拇指側握組;另一組量測拇指外展-內收、彎曲-伸直及環行動作,簡稱拇指動作組;兩組皆計算關節內的骨骼構造滑動及接觸區域。
本研究以Avizo 6軟體進行立體影像重建,並以國際生物力學學會及Cheze所建議的方式,使用骨頭特徵點在拇指腕骨、掌骨建立座標系,用以運算拇指運動學;關節內的骨骼構造滑動之計算方式,是於掌骨關節面中點作參考點,計算不同動作下骨骼構造參考點的滑動量,並以腕骨座標系及關節座標系描述滑動方向,及計算滑動比率;關節接觸計算,使用Avizo 6軟體計算兩關節面相對距離,本實驗定義關節面距離小於1.5公厘為關節接觸。
結果發現,相對於腕骨座標系,外展內縮動作在橈-尺方向有最高滑動比率,彎曲伸直動作在掌背方向有最高滑動比率;相對於關節座標系,外展內縮及彎曲伸直最高滑動比率皆在掌背方向。功能性側握部分,相對於腕骨座標系,隨著側握出力越大,掌骨會往掌側、遠端及尺側滑動,除了側握遠端指骨,側握力增加掌骨會向橈側滑動;相對於關節座標系,隨側握力增加,掌骨會滑向背側、近端及尺側,但側握遠端指骨,隨力量增加則會滑向掌側。關節面接觸則多偏向橈側,且在伸直、內縮及側握於食指掌指關節下,關節接觸位置落於退化性關節炎之關節面軟骨相對較薄的位置,故推測以這些動作操作物品,易造成軟骨磨損,進而容易發生退化性關節炎。
本實驗藉由計算不同拇指動作表現下之關節偏移量和接觸區域,以深入了解該關節之三維動作特性。因受測者為正常族群,故研究資料可以提供給臨床與病人比較,作為診斷上之依據;另一方面,也能提供給人造關節設計者,了解健康掌腕關節的關節內的骨骼構造滑動量及關節接觸情況,作為在設計人造關節時之依據。
英文摘要 Opposition is the most important hand function which uses the thumb to touch other fingers and assists in various manipulative tasks. This crucial opposition is mainly contributed from the basal joint of the thumb. Consequently, the trapeziometacarpal (TMC) joint receive more stresses from repeated hand manipulations, so that this joint has more opportunities to become osteoarthritis (OA).
The artificial implant which most often used to surgically treat OA of the TMC joint is ball-and-socket type. We assume that high failure rate of the implant might be due to abnormal shear force generated by different geometry between TMC joint and implant. Normal database are seldom used as evidential references to design a saddle type implant. Especially, joint contact patterns and relative movements of TMC joint are the important factors required for implant design, but those data are still lack.
The purpose of this study is to measure the joint displacement and joint contact patterns of TMC joint for normal participants. Thirty volunteered male participants were recruited in our study with age range 20~40 years old. These subjects were divided into two groups randomly, and each group has 15 subjects. One group took CT images under different thumb motions (Thumb Motions group) and the other received images under different functional pinch conditions (Thumb Pinching group).
We used Avizo 6 to reconstruct 3D models from CT data, and use bony landmark to establish coordination system of 1st metacarpal bone and trapezium according to Wu’s and Cheze’s studies. We defined the metacarpal base center as a reference point, and the joint displacement is the position change of the reference point between different thumb postures. We described the joint displacement in terms of coordination system of trapezium and joint coordination system, respectively. To find the joint contact patterns, we used Avizo 6 to calculate the distance between articular surfaces of 1st metacarpal and trapezium, and assumed joint contact occurred with distance smaller than 1.5mm.
Results showed that 1st metacarpal bone majorly glided in radial-ulnar and dorsal volar directions for abduction-adduction (AA) and flexion-extension (FE), respectively, respective to the coordination system of trapezium; and in the joint coordination system, the gliding ratios were greater in dorsal-volar direction for all thumb motions. In the functional pinch, the 1st metacarpal bone glided to volar, distal and radial directions with pinch force raising of all pinching locations in the coordination system of trapezium, except pinching distal phalange that metacarpal glided to ulnar direction with pinching force; In the joint coordination system, metacarpal slid to dorsal, proximal and radial directions with pinching force increasing, except pinching distal phalange that metacarpal slid to volar direction with pinch force.
Joint contacts at center and radial region of articular surface of trapezium in most thumb motions. In extension, adduction postures and pinching MP joint, joint contacts regions are in dorsal-radial region where most cartilage degeneration of osteoarthritis patients. Operation tasks with these postures may cause cartilage erosion easily and have high opportunity to become osteoarthritis.
Our study found the joint displacement and joint contact patterns of healthy TMC joint in different thumb motions. The results not only can provide the implant designer as the basis for designing TMC joint implant, but also provide useful information for diagnosis OA of TMC joint in clinical application.
論文目次 中文摘要 I
Abstract III
致謝 V
List of Table IX
List of Figure X
Chapter 1 Introduction 1
1.1 Role of thumb in hand function 1
1.2 Structure of thumb 2
1.3 Osteoarthritis of hand joint 4
1.4 kinematic analysis of thumb 5
1.4.1 Definition of local coordination system 5
1.4.2 Joint laxity test 8
1.4.3 Joint contact 10
1.5 Artificial TMC joint implant 11
1.6 Purposes 13
Chapter 2 Methods and materials 14
2.1 Subjects 14
2.2 Equipments 15
2.3 Experiment procedure 18
2.3.1 Procedure for TP group 18
2.3.2 Procedure for TM group 20
2.4 Data analysis 24
2.4.1 3D model of thumb 24
2.4.2 Model pre-stage preparation 24
2.4.3 Coordination system of 1st metacarpal 28
2.4.4 Coordination system of trapezium 30
2.4.5 Joint coordination system of TMC joint 32
2.4.6 Joint gliding 32
2.4.7 Gliding ratio 34
2.4.8 Joint contact region 35
2.5 Statistical analysis 36
Chapter 3 Results 37
3.1 Range of motion 37
3.2 Joint gliding of thumb motion 38
3.3 Joint gliding of thumb pinch 44
3.4 Contact region of TMC joint 53
3.4.1 Contact for TM group 53
3.4.2 Contact for TP group 57
Chapter 4 Discussion 59
4.1 Range of motion 59
4.2 Joint gliding in TM group 61
4.2.1 Joint gliding in CS of trapezium 61
4.2.2 Joint gliding in JCS 63
4.3 Joint gliding in TP group 65
4.3.1 Joint gliding in CS of trapezium 65
4.3.2 Joint gliding in JCS 68
4.4 Contact pattern 70
4.4.1 Contact region of TM group 71
4.4.2 Contact region of TP group 74
4.4.3 Cartilage degeneration 76
4.5 Limitations 77
Chapter 5 Conclusion 78
5.1 Future works 79
Reference 80
Appendix A Table for TM group 83
參考文獻 1. Cooney, W.P., 3rd and E.Y. Chao, Biomechanical analysis of static forces in the thumb during hand function. J Bone Joint Surg Am, 1977. 59(1): p. 27-36.
2. Youngleson, J.H., The management of the contracted first web space. S Afr Med J, 1965. 39(32): p. 716-9.
3. Bettinger, P.C., et al., Material properties of the trapezial and trapeziometacarpal ligaments. J Hand Surg Am, 2000. 25(6): p. 1085-95.
4. Xu, L., et al., Topography of the osteoarthritic thumb carpometacarpal joint and its variations with regard to gender, age, site, and osteoarthritic stage. J Hand Surg Am, 1998. 23(3): p. 454-64.
5. Haara, M.M., et al., Osteoarthritis in the carpometacarpal joint of the thumb. Prevalence and associations with disability and mortality. J Bone Joint Surg Am, 2004. 86-A(7): p. 1452-7.
6. Goubier, J.N., et al., Normal range-of-motion of trapeziometacarpal joint. Chir Main, 2009. 28(5): p. 297-300.
7. Ateshian, G.A., et al., Contact areas in the thumb carpometacarpal joint. J Orthop Res, 1995. 13(3): p. 450-8.
8. Kuo, L.C., et al., A quantitative method to measure maximal workspace of the trapeziometacarpal joint--normal model development. J Orthop Res, 2004. 22(3): p. 600-6.
9. Cerveri, P., et al., In vivo validation of a realistic kinematic model for the trapezio-metacarpal joint using an optoelectronic system. Ann Biomed Eng, 2008. 36(7): p. 1268-80.
10. Wolf, J.M., et al., The carpometacarpal stress view radiograph in the evaluation of trapeziometacarpal joint laxity. J Hand Surg Am, 2009. 34(8): p. 1402-6.
11. Kuo, L.C., et al., Feasibility of using surface markers for assessing motion of the thumb trapeziometacarpal joint. Clin Biomech (Bristol, Avon), 2003. 18(6): p. 558-63.
12. Wu, G., et al., ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: shoulder, elbow, wrist and hand. J Biomech, 2005. 38(5): p. 981-992.
13. Cooney, W.P., 3rd, et al., The kinesiology of the thumb trapeziometacarpal joint. J Bone Joint Surg Am, 1981. 63(9): p. 1371-81.
14. Cheze, L., et al., A joint coordinate system proposal for the study of the trapeziometacarpal joint kinematics. Comput Methods Biomech Biomed Engin, 2009. 12(3): p. 277-82.
15. Koff, M.F., et al., An in vitro analysis of ligament reconstruction or extension osteotomy on trapeziometacarpal joint stability and contact area. J Hand Surg Am, 2006. 31(3): p. 429-39.
16. Wan, L., et al., Determination of in-vivo articular cartilage contact areas of human talocrural joint under weightbearing conditions. Osteoarthritis Cartilage, 2006. 14(12): p. 1294-301.
17. Yoshida, H., et al., Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living. J Biomech, 2006. 39(11): p. 1996-2004.
18. Wachtl, S.W., P.R. Guggenheim, and G.R. Sennwald, Cemented and non-cemented replacements of the trapeziometacarpal joint. J Bone Joint Surg Br, 1998. 80(1): p. 121-5.
19. van Rijn, J. and T. Gosens, A cemented surface replacement prosthesis in the basal thumb joint. J Hand Surg Am, 2010. 35(4): p. 572-9.
20. Puig, S., Care Dose 4D: A New Tool for Automatic Exposure Control in Multidetector-Spiral CT—Clinical Results of Chest Examinations in Children and Adolescents, in Radiology's Global Forum. 2004: North America.
21. Besl, P.J. and N.D. McKay, A method for registration of 3D shapes. IEEE Transactions on Pattern Analysis and Machine Intellinegce, 1992. 14: p. 239-254.
22. Grood, E.S. and W.J. Suntay, A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng, 1983. 105(2): p. 136-44.
23. Hunter, D.J., et al., Trapeziometacarpal subluxation predisposes to incident trapeziometacarpal osteoarthritis (OA): the Framingham Study. Osteoarthritis Cartilage, 2005. 13(11): p. 953-7.
24. Koff, M.F., et al., Sequential wear patterns of the articular cartilage of the thumb carpometacarpal joint in osteoarthritis. J Hand Surg Am, 2003. 28(4): p. 597-604.
25. Imaeda, T., et al., Kinematics of the trapeziometacarpal joint after sectioning of ligaments. J Orthop Res, 1994. 12(2): p. 205-10.
26. Imaeda, T., et al., Kinematics of the normal trapeziometacarpal joint. J Orthop Res, 1994. 12(2): p. 197-204.
27. Pellegrini, V.D., Jr., C.W. Olcott, and G. Hollenberg, Contact patterns in the trapeziometacarpal joint: the role of the palmar beak ligament. J Hand Surg Am, 1993. 18(2): p. 238-44.
28. Eaton, R.G. and J.W. Littler, Ligament reconstruction for the painful thumb carpometacarpal joint. J Bone Joint Surg Am, 1973. 55(8): p. 1655-66.
29. Moulton, M.J., et al., Influence of metacarpophalangeal joint position on basal joint-loading in the thumb. J Bone Joint Surg Am, 2001. 83-A(5): p. 709-16.
30. Humes, D., et al., The osteology of the trapezium. J Hand Surg Br, 2004. 29(1): p. 42-5.
31. Chang, J.H., K.Y. Ho, and F.C. Su, Kinetic analysis of the thumb in jar-opening activity among female adults. Ergonomics, 2008. 51(6): p. 843-57.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-08-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-08-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw