進階搜尋


下載電子全文  
系統識別號 U0026-0208201111254300
論文名稱(中文) 雙特異性去磷酸酶-2對於腫瘤生成及抗藥性所扮演的角色
論文名稱(英文) The roles of dual specificity phosphatase-2 (DUSP2) in tumor progression and drug resistance
校院名稱 成功大學
系所名稱(中) 基礎醫學研究所
系所名稱(英) Institute of Basic Medical Sciences
學年度 99
學期 2
出版年 100
研究生(中文) 林世杰
研究生(英文) Shih-Chieh Lin
學號 S5896131
學位類別 博士
語文別 英文
論文頁數 142頁
口試委員 指導教授-蔡少正
召集委員-林以行
口試委員-楊倍昌
口試委員-蔣輯武
口試委員-吳國瑞
口試委員-洪文俊
中文關鍵字 缺氧  細胞外訊息調節激酶  雙特異性去磷酸酶-2  抗藥性 
英文關鍵字 hypoxia  ERK  DUSP2  drug resistance 
學科別分類
中文摘要 缺氧以及不正常活化的細胞外訊息調節激酶是兩個廣為人知的因子,對於癌症生成以及產生抗藥性扮演重要的角色。然而,過去對於造成持續活化的細胞外訊息調節激酶的機制眾說紛紜。過去研究已知,缺氧可造成細胞外訊息調節激酶的活性增加而防止癌細胞自戕,促進癌細胞的轉移,甚至產生抗藥性,但是,對於缺氧如何增加胞外訊息調節激酶的活性,其詳細機制目前並不清楚。
在本研究當中,我們發現一個可以抑制有絲分裂素激活蛋白激酶活性的雙特異性去磷酸酶-2,在許多種類的人類癌症組織中,其表現量有減少的現象,並且隨著腫瘤的惡性程度增加其表現量下降越是明顯;此外,在雙特異性去磷酸酶-2表現量下降的區域我們也發現缺氧指標基因的表現量有大量增加的現象;為了探討缺氧對於雙特異性去磷酸酶-2基因表現量的影響,我們發現在處理缺氧的癌細胞當中主要是透過缺氧活化因子-1alpha直接結合在雙特異性去磷酸酶-2啟動子區域中,進而導致雙特異性去磷酸酶-2的表現量呈現顯著性下降。接著,我們也發現,缺氧抑制了雙特異性去磷酸酶-2的表現,而導致細胞外訊息調節激酶活性持續增加,而造成癌細胞的抗藥性。在缺氧情形下,恢復雙特異性去磷酸酶-2的表現不只造成胞外訊息調節激酶的活性下降,同時也減緩由缺氧所造成的抗藥性。相反的,利用RNA干擾技術使雙特異性去磷酸酶-2表現量下降的癌細胞中,發現可直接導致癌細胞產生抗藥性。而在免疫缺失老鼠體內植入人類的癌細胞株的研究發現;在癌症生成過程當中恢復雙特異性去磷酸酶-2的表現,可有效地抑制腫瘤生長以及增加癌細胞對抗癌藥物的敏感性。然而;在癌細胞中,若表現較少的雙特異性去磷酸酶-2,則可明顯地促進癌症生長。
最後,藉由功能性獲得以及功能性失去的實驗;我們發現在有氧情形下,表現較少的雙特異性去磷酸酶-2,可增加許多跟癌細胞存活、血管新生、抗細胞凋亡以及藥物輸出幫浦有關的抗藥性基因表現量。然而;在缺氧情形下,恢復雙特異性去磷酸酶-2的表現,卻可抑制上述基因的表現。總而言之,我們首次發現在缺氧活化因子-1alpha所調控的下游基因中,雙特異性去磷酸酶-2是一個重要樞紐,可藉由調控參與在不同機制的基因,而導致腫瘤生長及抗藥性。基於我們的研究結果,雙特異性去磷酸酶-2將可成為一個新穎的癌症治療的分子標靶。
英文摘要 Hypoxia and constitutive activation of extracellular signal-regulated kinase (ERK) are well known factors that play roles in tumorigenesis and drug resistance in a variety of cancers. However, the underlying mechanism causing aberrant activation of ERK in the majority of cancers is still unclear. It has been reported that hypoxia can prevent apoptosis, promote cell invasion and even increase drug resistance by activating ERK signaling pathway through an unknown mechanism in cancer cells. Herein, we show that dual specificity phosphatase-2 (DUSP2), a mitogen-activated protein kinase (MAPK)-specific phosphatase is markedly reduced in many human cancers and its expression level is inversely correlated with cancer malignancy and with hypoxic index. To further investigate the effect of hypoxia on DUSP2 expression, we found that DUSP2 expressions are repressed by hypoxia in a variety of cancer cell lines. Moreover, hypoxia-repressed DUSP2 is mainly controlled at the transcriptional level by hypoxia-inducible factor-1 alpha (HIF-1 alpha) through a directly binding to the predicted hypoxia response element (HRE) located in DUSP2 promoter region (-100~-117). Suppression of DUSP2 by hypoxia leads to prolonged ERK phosphorylation and drug resistance. Restoration of DUSP2 expression under hypoxia not only inhibits abnormal ERK activation but also attenuates hypoxia-induced drug resistance. In contrast, knockdown of DUSP2 in cancer cells is sufficient to increase drug resistance. Furthermore, xenografted mice inoculated with human cancer cells demonstrate that restoration of DUSP2 expression during cancer progression significantly inhibits tumor growth and enhances drug sensitivity while loss of DUSP2 promotes tumor growth. Lastly, we found that loss of DUSP2 under normoxia causes an increase in a number of drug resistance-related genes while re-expression of DUSP2 under hypoxia decreases the expression of these genes. Taken together, our findings provide the first evidence to demonstrate that DUSP2 may serve as a master regulator downstream of HIF-1alpha to regulate tumor growth and drug resistance via multiple mechanisms. In light of these findings, DUSP2 may be a novel molecular target for cancer therapy.
論文目次 Abstract 3
Chinese Abstract 5
Abbreviation 14
Chapter 1: Introduction 17
1.1. Hypoxia in solid tumors 17
1.2. The regulation of HIF-1 18
1.3. HIF-1 and Mitogen-activated protein kinase (MAPK) 19
1.4. MAPK in cancer 20
1.5. The duration, magnitude and compartmentalization of ERK activity 21
1.6. Dual specificity phosphatases (DUSPs) 23
1.6.1. DUSP in physiological processes 24
1.6.2. DUSPs in cancer 25
1.6.3. The regulation of DUSP in cancer 27
1.7. Drug resistance 29
1.7.1. Hypoxia and drug resistance 30
1.7.2. MAPK and drug resistance 32
1.7.3. DUSPs and drug resistance 34
Chapter 2: Objective and specific aims 36
Chapter 3: Materials and Methods 38
3.1. Cell culture and treatment 38
3.2. RNA extraction and Real Time PCR 38
3.3. Extraction of nuclei protein 38
3.4. Western Blotting 39
3.5. Promoter activity assays 39
3.6. Construction of expression plasmids 40
3.7. Short Interference RNA (siRNA) 40
3.8. Chromatin Immunoprecipitation (ChIP) Assay 41
3.9. Cell viability assay 42
3.10. Collection of clinical tissue samples and Immunohistochemistry 42
3.11. To setup xenograft mouse model 43
3.12. Colony formation assay 43
3.13. TUNEL assay 44
3.14. To construct gene regulatory network 44
3.15. Statistical Analysis 45
Chapter 4: Results 46
4.1. Expression of DUSP2 in cancer tissues 46
4.2. DUSP2 expression is repressed by hypoxia in most examined human cancer cell lines 47
4.3. Hypoxia-inhibited DUSP2 expression is HIF-1-dependent 48
4.4. Hypoxia stimulates prolonged ERK1/2 phosphorylation 50
4.5. Hypoxia-induced phosphorylation of ERK is mediated by downregulation of DUSP2 50
4.6. To establish a tetracycline-inducible DUSP2 system to investigate the functional role of DUSP2 in cancer progression 52
4.7. Induction of DUSP2 during cancer progression promotes cell apoptosis and tumor regression 52
4.8. Stable knockdown of DUSP2 promotes tumor growth 53
4.9. Hypoxia-induced drug resistance is mediated by activation of ERK pathway 54
4.10. Restoration of DUSP2 under hypoxia increases drug sensitivity 55
4.11. Loss of DUSP directly increases drug resistance under normoxia 56
4.12. DUSP2 negatively regulates drug resistance genes 56
Chapter 5: Discussion 58
Chapter 6: Conclusion 67
Chapter 7: References 68
Chapter 8: Figures 82
Tables 138
Table 1: Relation of DUSP2 expression and various prognostic factors in 102 patients with colon cancer 138
Table 2: List of primers used in this study 139
Table 3: List of siRNAs used in this study. 141
Publications 142
Figures
Figure 1. DUSP2 expression is significantly reduced in different kind of cancer cells. 82
Figure 2. DUSP2 antibody has a good specificity to detect endogenous and exogenous DUSP2. 83
Figure 3. DUSP2 protein is downregulated and inversely correlated with hypoxic index in cervical cancer. 84
Figure 4. The levels of DUSP2 protein is reduced in colorectal cancer and inversely correlated with stage of the disease. 85
Figure 5. Hypoxia inhibits DUSP2 expression. 86
Figure 6. PDK1 expression is used to be a positive control under hypoxia. 87
Figure 7. Hypoxia inhibits DUSP2 protein expression in cervical and colorectal cancer cell lines. 88
Figure 8. Hypoxia fails to repress DUSP2 expression in liver caner cell lines. 89
Figure 9. Hypoxia inhibits DUSP2 mRNA expression in cervical and colorectal cancer cell lines. 90
Figure 10. Hypoxia-repressed DUSP2 expression is mediated by HIF-1alpha. 91
Figure 11. Forced-expression of HIF-1alpha under normoxia directly represses DUSP2 protein expression. 92
Figure 12. Hypoxia-inhibited DUSP2 promoter activity is through the HRE in DUSP2 promoter. 93
Figure 13. HRE is conserved in mammalians. 94
Figure 14. Overexpression of HIF-1alpha under normoxia directly inhibits DUSP2 promoter in cervical cancer cell line but not in liver cancer cell line. 95
Figure 15. HIF-1alpha directly binds to predicted HRE in DUSP2 promoter region. 96
Figure 16. Hypoxia causes ERK prolonged-phosphorylation. 97
Figure 17. Hypoxia fails to stimulate phospho-p38 and phospho-JNK activation. 98
Figure 18. Forced-expression of HIF-1alpha directly decreases DUSP2 expression while increases ERK phosphorylation. 99
Figure 19. Hypoxia-induced phospho-ERK mainly accumulates in nucleus. 100
Figure 20. Hypoxia-repressed DUSP2 expression occurs at earlier time point. 101
Figure 21. Hypoxia-induced phospho-ERK occurs at later time point. 102
Figure 22. Hypoxia induces DUSP1, DUSP4 and DUSP5 expression. 103
Figure 23. Hypoxia-induced DUSP1, DUSP4 and DUSP5 expressions are ERK dependent. 104
Figure 24. Hypoxia-induced DUSP1, DUSP4 and DUSP5 expressions are DUSP2 dependent. 105
Figure 25. Substrate specificity of DUSP1 and DUSP2. 106
Figure 26. Hypoxia-induced ERK phosphorylation is mediated by downregulation of DUSP2. 107
Figure 27. Hypoxia-induced ERK phosphorylation is attenuated by overexpression of DUSP2 under hypoxia. 108
Figure 28. Induction of DUSP2-GFP reduced activity of ERK and p38 in different inducible clones. 109
Figure 29. Induction of exogenous DUSP2-GFP expresses higher level than endogenous DUSP2 expression in inducible clone. 110
Figure 30. Hypoxia-induced ERK phosphorylation is attenuated by induction of DUSP2 under hypoxia. 111
Figure 31. Hypoxia-induced ERK phosphorylation is not affected by induction of GFP under hypoxia. 112
Figure 32. Induction of DUSP2 under normoxia directly caused cell apoptosis. 113
Figure 33. Induction of DUSP2 during cancer formation inhibits tumor growth. 114
Figure 34. Induction of DUSP2 during cancer formation significantly reduces tumor weight. 115
Figure 35. Induction of DUSP2 during cancer formation causes cell apoptosis. 116
Figure 36. Induction of GFP alone during cancer formation fail to inhibit tumor growth. 117
Figure 37. Induction of GFP alone during cancer formation fails to reduce tumor weight. 118
Figure 38. HeLa cells carrying DUSP2-GFP funsion or GFP alone are still successfully induced in mice tumor model. 119
Figure 39. DUSP2 shRNA successfully and specifically knocks down endogenous DUSP2 expression. 120
Figure 40. Loss of DUSP2 expression significantly promotes tumor growth. 121
Figure 41. Dose-dependent killing of HeLa and HCT116 cells by paclitaxel, cisplatin, and oxaliplatin under normoxia. 122
Figure 42. Hypoxia causes drug resistance. 123
Figure 43. Chemical hypoxia also causes drug resistance. 124
Figure 44. Hypoxia-induced drug resistance is attenuated by blocking ERK signaling pathway. 125
Figure 45. Hypoxia-induced drug resistance is attenuated by induction of DUSP2 expression under hypoxia. 126
Figure 46. 10 mg/kg body weight of paclitaxel fails to synergistically reduce tumor growth with induction of DUSP2. 127
Figure 47. Induction of DUSP2 in xenograft tumors restores drug sensitivity of cancer cells. 128
Figure 48. Stable knockdown of DUSP2 significantly increase drug resistance under normoxia. 129
Figure 49. Stable knockdown of DUSP2 significantly increase cell number and sizes of colonies when grown in soft agar. 130
Figure 50. HIF-1α mediates gene regulatory network via regulation of DUSP2 expression. 131
Figure 51. Hypoxia increases EGR1 expression. 132
Figure 52. Hypoxia-induced EGR1 expression is through ERK signaling pathway. 133
Figure 53. DUSP2 negatively regulates EGR-1 expression. 134
Figure 54. Loss of DUSP2 expression significantly upregulates downstream target gene expressions involved in increasing drug resistance. 135
Figure 55. Induction of DUSP2 expression under hypoxia reduces downstream target gene expressions involved in increasing drug resistance. 136
Figure 56. New insight of hypoxia-induced drug resistance via downregulation of DUSP2 in cancer cells. 137
參考文獻 Abrams, S. L., L. S. Steelman, et al. (2010). "The Raf/MEK/ERK pathway can govern drug resistance, apoptosis and sensitivity to targeted therapy." Cell Cycle 9(9): 1781-91.
Alessi, D. R., N. Gomez, et al. (1995). "Inactivation of p42 MAP kinase by protein phosphatase 2A and a protein tyrosine phosphatase, but not CL100, in various cell lines." Curr Biol 5(3): 283-95.
Alonso, A., J. J. Merlo, et al. (2002). "Inhibition of T cell antigen receptor signaling by VHR-related MKPX (VHX), a new dual specificity phosphatase related to VH1 related (VHR)." J Biol Chem 277(7): 5524-8.
Alonso, A., S. Rahmouni, et al. (2003). "Tyrosine phosphorylation of VHR phosphatase by ZAP-70." Nat Immunol 4(1): 44-8.
Armstrong, S. P., C. J. Caunt, et al. (2009). "Gonadotropin-releasing hormone and protein kinase C signaling to ERK: spatiotemporal regulation of ERK by docking domains and dual-specificity phosphatases." Mol Endocrinol 23(4): 510-9.
Balko, J. M., B. R. Jones, et al. (2009). "Combined MEK and EGFR inhibition demonstrates synergistic activity in EGFR-dependent NSCLC." Cancer Biol Ther 8(6).
Balmanno, K. and S. J. Cook (1999). "Sustained MAP kinase activation is required for the expression of cyclin D1, p21Cip1 and a subset of AP-1 proteins in CCL39 cells." Oncogene 18(20): 3085-97.
Balmanno, K. and S. J. Cook (2009). "Tumour cell survival signalling by the ERK1/2 pathway." Cell Death Differ 16(3): 368-77.
Bang, Y. J., J. H. Kwon, et al. (1998). "Increased MAPK activity and MKP-1 overexpression in human gastric adenocarcinoma." Biochem Biophys Res Commun 250(1): 43-7.
Benson, J. D., Y. N. Chen, et al. (2006). "Validating cancer drug targets." Nature 441(7092): 451-6.
Bermudez, O., P. Jouandin, et al. (2010). "Post-transcriptional regulation of the DUSP6/MKP-3 phosphatase by MEK/ERK signaling and hypoxia." J Cell Physiol 226(1): 276-84.
Bernstein, B. E., T. S. Mikkelsen, et al. (2006). "A bivalent chromatin structure marks key developmental genes in embryonic stem cells." Cell 125(2): 315-26.
Berra, E., D. Roux, et al. (2001). "Hypoxia-inducible factor-1 alpha (HIF-1 alpha) escapes O(2)-driven proteasomal degradation irrespective of its subcellular localization: nucleus or cytoplasm." EMBO Rep 2(7): 615-20.
Bleau, A. M., N. Planque, et al. (2005). "CCN proteins and cancer: two to tango." Front Biosci 10: 998-1009.
Bloethner, S., B. Chen, et al. (2005). "Effect of common B-RAF and N-RAS mutations on global gene expression in melanoma cell lines." Carcinogenesis 26(7): 1224-32.
Brahimi-Horn, C. and J. Pouyssegur (2006). "The role of the hypoxia-inducible factor in tumor metabolism growth and invasion." Bull Cancer 93(8): E73-80.
Brahimi-Horn, M. C., J. Chiche, et al. (2007). "Hypoxia and cancer." J Mol Med 85(12): 1301-7.
Camps, M., A. Nichols, et al. (2000). "Dual specificity phosphatases: a gene family for control of MAP kinase function." FASEB J 14(1): 6-16.
Caunt, C. J., A. R. Finch, et al. (2006). "Seven-transmembrane receptor signalling and ERK compartmentalization." Trends Endocrinol Metab 17(7): 276-83.
Caunt, C. J., C. A. Rivers, et al. (2008). "Epidermal growth factor receptor and protein kinase C signaling to ERK2: spatiotemporal regulation of ERK2 by dual specificity phosphatases." J Biol Chem 283(10): 6241-52.
Chakraborti, S., M. Mandal, et al. (2003). "Regulation of matrix metalloproteinases: an overview." Mol Cell Biochem 253(1-2): 269-85.
Chan, D. W., V. W. Liu, et al. (2008). "Loss of MKP3 mediated by oxidative stress enhances tumorigenicity and chemoresistance of ovarian cancer cells." Carcinogenesis 29(9): 1742-50.
Chen, K. F., Y. Y. Lai, et al. (2005). "Transcriptional repression of human cad gene by hypoxia inducible factor-1alpha." Nucleic Acids Res 33(16): 5190-8.
Chien, C. W., S. C. Lin, et al. (2008). "Regulation of CD151 by hypoxia controls cell adhesion and metastasis in colorectal cancer." Clin Cancer Res 14(24): 8043-51.
Chu, Y., P. A. Solski, et al. (1996). "The mitogen-activated protein kinase phosphatases PAC1, MKP-1, and MKP-2 have unique substrate specificities and reduced activity in vivo toward the ERK2 sevenmaker mutation." J Biol Chem 271(11): 6497-501.
Comerford, K. M., E. P. Cummins, et al. (2004). "c-Jun NH2-terminal kinase activation contributes to hypoxia-inducible factor 1alpha-dependent P-glycoprotein expression in hypoxia." Cancer Res 64(24): 9057-61.
Comerford, K. M., T. J. Wallace, et al. (2002). "Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene." Cancer Res 62(12): 3387-94.
Conrad, P. W., T. L. Freeman, et al. (1999). "EPAS1 trans-activation during hypoxia requires p42/p44 MAPK." J Biol Chem 274(47): 33709-13.
Corcoran, R. B., D. Dias-Santagata, et al. (2010). "BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAF V600E mutation." Sci Signal 3(149): ra84.
Croonquist, P. A., M. A. Linden, et al. (2003). "Gene profiling of a myeloma cell line reveals similarities and unique signatures among IL-6 response, N-ras-activating mutations, and coculture with bone marrow stromal cells." Blood 102(7): 2581-92.
Cui, Y., I. Parra, et al. (2006). "Elevated expression of mitogen-activated protein kinase phosphatase 3 in breast tumors: a mechanism of tamoxifen resistance." Cancer Res 66(11): 5950-9.
Davies, H., G. R. Bignell, et al. (2002). "Mutations of the BRAF gene in human cancer." Nature 417(6892): 949-54.
Denkert, C., W. D. Schmitt, et al. (2002). "Expression of mitogen-activated protein kinase phosphatase-1 (MKP-1) in primary human ovarian carcinoma." Int J Cancer 102(5): 507-13.
Dewhirst, M. W., Y. Cao, et al. (2008). "Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response." Nat Rev Cancer 8(6): 425-37.
Dhillon, A. S., S. Hagan, et al. (2007). "MAP kinase signalling pathways in cancer." Oncogene 26(22): 3279-90.
Diep, C. H., R. M. Munoz, et al. (2011). "Synergistic effect between erlotinib and MEK inhibitors in KRAS wild-type human pancreatic cancer cells." Clin Cancer Res 17(9): 2744-56.
Ding, Z., L. Yang, et al. (2010). "Expression and significance of hypoxia-inducible factor-1 alpha and MDR1/P-glycoprotein in human colon carcinoma tissue and cells." J Cancer Res Clin Oncol 136(11): 1697-707.
Dobrowolski, S., M. Harter, et al. (1994). "Cellular ras activity is required for passage through multiple points of the G0/G1 phase in BALB/c 3T3 cells." Mol Cell Biol 14(8): 5441-9.
Dong, C., R. J. Davis, et al. (2002). "MAP kinases in the immune response." Annu Rev Immunol 20: 55-72.
Dong, Y., L. Jia, et al. (2011). "Selective inhibition of PDGFR by imatinib elicits the sustained activation of ERK and downstream receptor signaling in malignant glioma cells." Int J Oncol 38(2): 555-69.
Downward, J. (2003). "Targeting RAS signalling pathways in cancer therapy." Nat Rev Cancer 3(1): 11-22.
Dowsett, M. and A. K. Dunbier (2008). "Emerging biomarkers and new understanding of traditional markers in personalized therapy for breast cancer." Clin Cancer Res 14(24): 8019-26.
Ebisuya, M., K. Kondoh, et al. (2005). "The duration, magnitude and compartmentalization of ERK MAP kinase activity: mechanisms for providing signaling specificity." J Cell Sci 118(Pt 14): 2997-3002.
Engelmann, D. and B. M. Putzer (2010). "Translating DNA damage into cancer cell death-A roadmap for E2F1 apoptotic signalling and opportunities for new drug combinations to overcome chemoresistance." Drug Resist Updat 13(4-5): 119-31.
Flamant, L., A. Notte, et al. (2010). "Anti-apoptotic role of HIF-1 and AP-1 in paclitaxel exposed breast cancer cells under hypoxia." Mol Cancer 9: 191.
Gao, P., H. Zhang, et al. (2007). "HIF-dependent antitumorigenic effect of antioxidants in vivo." Cancer Cell 12(3): 230-8.
Garland, L. L., C. Rankin, et al. (2007). "Phase II study of erlotinib in patients with malignant pleural mesothelioma: a Southwest Oncology Group Study." J Clin Oncol 25(17): 2406-13.
Gatti, L. and F. Zunino (2005). "Overview of tumor cell chemoresistance mechanisms." Methods Mol Med 111: 127-48.
Gerlinger, M. and C. Swanton (2010). "How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine." Br J Cancer 103(8): 1139-43.
Gioeli, D., J. W. Mandell, et al. (1999). "Activation of mitogen-activated protein kinase associated with prostate cancer progression." Cancer Res 59(2): 279-84.
Givant-Horwitz, V., B. Davidson, et al. (2004). "The PAC-1 dual specificity phosphatase predicts poor outcome in serous ovarian carcinoma." Gynecol Oncol 93(2): 517-23.
Gonzalez-Fernandez, L., C. Ortega-Ferrusola, et al. (2009). "Identification of protein tyrosine phosphatases and dual-specificity phosphatases in mammalian spermatozoa and their role in sperm motility and protein tyrosine phosphorylation." Biol Reprod 80(6): 1239-52.
Gottesman, M. M. (2002). "Mechanisms of cancer drug resistance." Annu Rev Med 53: 615-27.
Gray, L. H., A. D. Conger, et al. (1953). "The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy." Br J Radiol 26(312): 638-48.
Greenblatt, M. S., W. P. Bennett, et al. (1994). "Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis." Cancer Res 54(18): 4855-78.
Grumont, R. J., J. E. Rasko, et al. (1996). "Activation of the mitogen-activated protein kinase pathway induces transcription of the PAC-1 phosphatase gene." Mol Cell Biol 16(6): 2913-21.
Gu, T., R. Ohashi, et al. (2009). "Osteopontin is involved in the development of acquired chemo-resistance of cisplatin in small cell lung cancer." Lung Cancer 66(2): 176-83.
Gutierrez, M. C., S. Detre, et al. (2005). "Molecular changes in tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase." J Clin Oncol 23(11): 2469-76.
Hammond, E. M. and A. J. Giaccia (2006). "Hypoxia-inducible factor-1 and p53: friends, acquaintances, or strangers?" Clin Cancer Res 12(17): 5007-9.
Hao, J., X. Song, et al. (2008). "Effects of lentivirus-mediated HIF-1alpha knockdown on hypoxia-related cisplatin resistance and their dependence on p53 status in fibrosarcoma cells." Cancer Gene Ther 15(7): 449-55.
Helczynska, K., A. M. Larsson, et al. (2008). "Hypoxia-inducible factor-2alpha correlates to distant recurrence and poor outcome in invasive breast cancer." Cancer Res 68(22): 9212-20.
Hewitson, K. S., L. A. McNeill, et al. (2002). "Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family." J Biol Chem 277(29): 26351-5.
Hoshino, R., Y. Chatani, et al. (1999). "Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors." Oncogene 18(3): 813-22.
Hu, C. J., L. Y. Wang, et al. (2003). "Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation." Mol Cell Biol 23(24): 9361-74.
Huang, C., K. Jacobson, et al. (2004). "MAP kinases and cell migration." J Cell Sci 117(Pt 20): 4619-28.
Hur, E., K. Y. Chang, et al. (2001). "Mitogen-activated protein kinase kinase inhibitor PD98059 blocks the trans-activation but not the stabilization or DNA binding ability of hypoxia-inducible factor-1alpha." Mol Pharmacol 59(5): 1216-24.
Jeanneteau, F., K. Deinhardt, et al. (2010). "The MAP kinase phosphatase MKP-1 regulates BDNF-induced axon branching." Nat Neurosci 13(11): 1373-9.
Jeffrey, K. L., T. Brummer, et al. (2006). "Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1." Nat Immunol 7(3): 274-83.
Jeffrey, K. L., M. Camps, et al. (2007). "Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses." Nat Rev Drug Discov 6(5): 391-403.
Jimeno, A., B. Rubio-Viqueira, et al. (2007). "Dual mitogen-activated protein kinase and epidermal growth factor receptor inhibition in biliary and pancreatic cancer." Mol Cancer Ther 6(3): 1079-88.
Johannessen, C. M., J. S. Boehm, et al. (2010). "COT drives resistance to RAF inhibition through MAP kinase pathway reactivation." Nature 468(7326): 968-72.
Johnson, G. L. and R. Lapadat (2002). "Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases." Science 298(5600): 1911-2.
Johnston, N. I., V. K. Gunasekharan, et al. (2008). "Osteopontin as a target for cancer therapy." Front Biosci 13: 4361-72.
Johnstone, R. W., A. A. Ruefli, et al. (2002). "Apoptosis: a link between cancer genetics and chemotherapy." Cell 108(2): 153-64.
Kallio, P. J., I. Pongratz, et al. (1997). "Activation of hypoxia-inducible factor 1alpha: posttranscriptional regulation and conformational change by recruitment of the Arnt transcription factor." Proc Natl Acad Sci U S A 94(11): 5667-72.
Karlsson, M., M. Mandl, et al. (2006). "Spatio-temporal regulation of mitogen-activated protein kinase (MAPK) signalling by protein phosphatases." Biochem Soc Trans 34(Pt 5): 842-5.
Ke, Q. and M. Costa (2006). "Hypoxia-inducible factor-1 (HIF-1)." Mol Pharmacol 70(5): 1469-80.
Kim, J. Y., H. J. Ahn, et al. (2004). "BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor 1alpha." J Exp Med 199(1): 113-24.
Kim, S. C., J. S. Hahn, et al. (1999). "Constitutive activation of extracellular signal-regulated kinase in human acute leukemias: combined role of activation of MEK, hyperexpression of extracellular signal-regulated kinase, and downregulation of a phosphatase, PAC1." Blood 93(11): 3893-9.
Kohno, M. and J. Pouyssegur (2006). "Targeting the ERK signaling pathway in cancer therapy." Ann Med 38(3): 200-11.
Komiya, Y., N. Kurabe, et al. (2008). "A novel binding factor of 14-3-3beta functions as a transcriptional repressor and promotes anchorage-independent growth, tumorigenicity, and metastasis." J Biol Chem 283(27): 18753-64.
Kondoh, K. and E. Nishida (2007). "Regulation of MAP kinases by MAP kinase phosphatases." Biochim Biophys Acta 1773(8): 1227-37.
Koumenis, C., R. Alarcon, et al. (2001). "Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation." Mol Cell Biol 21(4): 1297-310.
Ku, M., R. P. Koche, et al. (2008). "Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains." PLoS Genet 4(10): e1000242.
Kucharska, A., L. K. Rushworth, et al. (2009). "Regulation of the inducible nuclear dual-specificity phosphatase DUSP5 by ERK MAPK." Cell Signal 21(12): 1794-805.
Kwon, H. C., S. H. Kim, et al. (2010). "Clinicopathological significance of p53, hypoxia-inducible factor 1alpha, and vascular endothelial growth factor expression in colorectal cancer." Anticancer Res 30(10): 4163-8.
Lando, D., D. J. Peet, et al. (2002). "Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch." Science 295(5556): 858-61.
Lang, R., M. Hammer, et al. (2006). "DUSP meet immunology: dual specificity MAPK phosphatases in control of the inflammatory response." J Immunol 177(11): 7497-504.
Lee, A. S. (2001). "The glucose-regulated proteins: stress induction and clinical applications." Trends Biochem Sci 26(8): 504-10.
Lee, F. S. and M. J. Percy (2011). "The HIF pathway and erythrocytosis." Annu Rev Pathol 6: 165-92.
Lee, K. H., E. Y. Choi, et al. (2004). "Involvement of MAPK pathway in hypoxia-induced up-regulation of urokinase plasminogen activator receptor in a human prostatic cancer cell line, PC3MLN4." Exp Mol Med 36(1): 57-64.
Lee, K. J., K. Y. Lee, et al. (2010). "Downregulation of a tumor suppressor RECK by hypoxia through recruitment of HDAC1 and HIF-1alpha to reverse HRE site in the promoter." Biochim Biophys Acta 1803(5): 608-16.
Lee, S., S. Yoon, et al. (2007). "A high nuclear basal level of ERK2 phosphorylation contributes to the resistance of cisplatin-resistant human ovarian cancer cells." Gynecol Oncol 104(2): 338-44.
Lewis, C. E. and J. W. Pollard (2006). "Distinct role of macrophages in different tumor microenvironments." Cancer Res 66(2): 605-12.
Liao, Q., J. Guo, et al. (2003). "Down-regulation of the dual-specificity phosphatase MKP-1 suppresses tumorigenicity of pancreatic cancer cells." Gastroenterology 124(7): 1830-45.
Little, A. S., K. Balmanno, et al. (2011). "Amplification of the driving oncogene, KRAS or BRAF, underpins acquired resistance to MEK1/2 inhibitors in colorectal cancer cells." Sci Signal 4(166): ra17.
Liu, C., Y. Shi, et al. (2005). "Dual-specificity phosphatase DUSP1 protects overactivation of hypoxia-inducible factor 1 through inactivating ERK MAPK." Exp Cell Res 309(2): 410-8.
Liu, C., Y. Shi, et al. (2003). "Suppression of the dual-specificity phosphatase MKP-1 enhances HIF-1 trans-activation and increases expression of EPO." Biochem Biophys Res Commun 312(3): 780-6.
Liu, Y., J. Lagowski, et al. (2007). "Microtubule disruption and tumor suppression by mitogen-activated protein kinase phosphatase 4." Cancer Res 67(22): 10711-9.
Loda, M., P. Capodieci, et al. (1996). "Expression of mitogen-activated protein kinase phosphatase-1 in the early phases of human epithelial carcinogenesis." Am J Pathol 149(5): 1553-64.
MacKeigan, J. P., T. S. Collins, et al. (2000). "MEK inhibition enhances paclitaxel-induced tumor apoptosis." J Biol Chem 275(50): 38953-6.
Makino, Y., R. Cao, et al. (2001). "Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression." Nature 414(6863): 550-4.
Marti, F., A. Krause, et al. (2001). "Negative-feedback regulation of CD28 costimulation by a novel mitogen-activated protein kinase phosphatase, MKP6." J Immunol 166(1): 197-206.
Masiero, M., S. Minuzzo, et al. (2011). "Notch3-mediated regulation of MKP-1 levels promotes survival of T acute lymphoblastic leukemia cells." Leukemia 25(4): 588-98.
Matsui, Y., J. Watanabe, et al. (2008). "Cancer-specific enhancement of cisplatin-induced cytotoxicity with triptolide through an interaction of inactivated glycogen synthase kinase-3beta with p53." Oncogene 27(33): 4603-14.
McCubrey, J. A., M. M. Lahair, et al. (2006). "Reactive oxygen species-induced activation of the MAP kinase signaling pathways." Antioxid Redox Signal 8(9-10): 1775-89.
Mellor, H. R. and R. Callaghan (2008). "Resistance to chemotherapy in cancer: a complex and integrated cellular response." Pharmacology 81(4): 275-300.
Menendez, J. A., L. Vellon, et al. (2005). "A novel CYR61-triggered 'CYR61-alphavbeta3 integrin loop' regulates breast cancer cell survival and chemosensitivity through activation of ERK1/ERK2 MAPK signaling pathway." Oncogene 24(5): 761-79.
Meyuhas, R., E. Pikarsky, et al. (2008). "A Key role for cyclic AMP-responsive element binding protein in hypoxia-mediated activation of the angiogenesis factor CCN1 (CYR61) in Tumor cells." Mol Cancer Res 6(9): 1397-409.
Mhaidat, N. M., F. Q. Alali, et al. (2009). "Inhibition of MEK sensitizes paclitaxel-induced apoptosis of human colorectal cancer cells by downregulation of GRP78." Anticancer Drugs 20(7): 601-6.
Minet, E., T. Arnould, et al. (2000). "ERK activation upon hypoxia: involvement in HIF-1 activation." FEBS Lett 468(1): 53-8.
Morin, P. J. (2003). "Drug resistance and the microenvironment: nature and nurture." Drug Resist Updat 6(4): 169-72.
Muda, M., A. Theodosiou, et al. (1998). "The mitogen-activated protein kinase phosphatase-3 N-terminal noncatalytic region is responsible for tight substrate binding and enzymatic specificity." J Biol Chem 273(15): 9323-9.
Murphy, L. O. and J. Blenis (2006). "MAPK signal specificity: the right place at the right time." Trends Biochem Sci 31(5): 268-75.
Murphy, L. O., S. Smith, et al. (2002). "Molecular interpretation of ERK signal duration by immediate early gene products." Nat Cell Biol 4(8): 556-64.
Namgoong, G. M., P. Khanal, et al. (2010). "The prolyl isomerase Pin1 induces LC-3 expression and mediates tamoxifen resistance in breast cancer." J Biol Chem 285(31): 23829-41.
Nazarian, R., H. Shi, et al. (2010). "Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation." Nature 468(7326): 973-7.
Oka, H., Y. Chatani, et al. (1995). "Constitutive activation of mitogen-activated protein (MAP) kinases in human renal cell carcinoma." Cancer Res 55(18): 4182-7.
Okudela, K., T. Yazawa, et al. (2009). "Down-regulation of DUSP6 expression in lung cancer: its mechanism and potential role in carcinogenesis." Am J Pathol 175(2): 867-81.
Paez, J. G., P. A. Janne, et al. (2004). "EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy." Science 304(5676): 1497-500.
Paillas, S., F. Boissiere, et al. (2010). "Targeting the p38 MAPK pathway inhibits irinotecan resistance in colon adenocarcinoma." Cancer Res 71(3): 1041-9.
Parra, E. and J. Ferreira (2010). "The effect of siRNA-Egr-1 and camptothecin on growth and chemosensitivity of breast cancer cell lines." Oncol Rep 23(4): 1159-65.
Patterson, K. I., T. Brummer, et al. (2009). "Dual-specificity phosphatases: critical regulators with diverse cellular targets." Biochem J 418(3): 475-89.
Peng, W. X., F. Y. Pan, et al. (2010). "Hypoxia stabilizes microtubule networks and decreases tumor cell chemosensitivity to anticancer drugs through Egr-1." Anat Rec (Hoboken) 293(3): 414-20.
Peng, X. H., P. Karna, et al. (2006). "Cross-talk between epidermal growth factor receptor and hypoxia-inducible factor-1alpha signal pathways increases resistance to apoptosis by up-regulating survivin gene expression." J Biol Chem 281(36): 25903-14.
Pietersen, A. M. and M. van Lohuizen (2008). "Stem cell regulation by polycomb repressors: postponing commitment." Curr Opin Cell Biol 20(2): 201-7.
Pramanik, K., C. Z. Chun, et al. (2009). "Dusp-5 and Snrk-1 coordinately function during vascular development and disease." Blood 113(5): 1184-91.
Pulido, R., A. Zuniga, et al. (1998). "PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif." EMBO J 17(24): 7337-50.
Pyrko, P., A. H. Schonthal, et al. (2007). "The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas." Cancer Res 67(20): 9809-16.
Quintero, M., P. A. Brennan, et al. (2006). "Nitric oxide is a factor in the stabilization of hypoxia-inducible factor-1alpha in cancer: role of free radical formation." Cancer Res 66(2): 770-4.
Ramnarain, D. B., S. Park, et al. (2006). "Differential gene expression analysis reveals generation of an autocrine loop by a mutant epidermal growth factor receptor in glioma cells." Cancer Res 66(2): 867-74.
Rankin, E. B. and A. J. Giaccia (2008). "The role of hypoxia-inducible factors in tumorigenesis." Cell Death Differ 15(4): 678-85.
Rauhala, H. E., K. P. Porkka, et al. (2005). "Dual-specificity phosphatase 1 and serum/glucocorticoid-regulated kinase are downregulated in prostate cancer." Int J Cancer 117(5): 738-45.
Richard, D. E., E. Berra, et al. (1999). "p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1." J Biol Chem 274(46): 32631-7.
Roberts, P. J. and C. J. Der (2007). "Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer." Oncogene 26(22): 3291-310.
Rohan, P. J., P. Davis, et al. (1993). "PAC-1: a mitogen-induced nuclear protein tyrosine phosphatase." Science 259(5102): 1763-6.
Rohwer, N. and T. Cramer (2011). "Hypoxia-mediated drug resistance: Novel insights on the functional interaction of HIFs and cell death pathways." Drug Resist Updat 14(3): 191-201.
Roizin-Towle, L. and E. J. Hall (1978). "Studies with bleomycin and misonidazole on aerated and hypoxic cells." Br J Cancer 37(2): 254-60.
Ryu, K., C. Park, et al. (2011). "Hypoxia-inducible factor 1 alpha represses the transcription of the estrogen receptor alpha gene in human breast cancer cells." Biochem Biophys Res Commun 407(4): 831-6.
Salojin, K. and T. Oravecz (2007). "Regulation of innate immunity by MAPK dual-specificity phosphatases: knockout models reveal new tricks of old genes." J Leukoc Biol 81(4): 860-9.
Sang, N., J. Fang, et al. (2002). "Carboxyl-terminal transactivation activity of hypoxia-inducible factor 1 alpha is governed by a von Hippel-Lindau protein-independent, hydroxylation-regulated association with p300/CBP." Mol Cell Biol 22(9): 2984-92.
Sang, N., D. P. Stiehl, et al. (2003). "MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300." J Biol Chem 278(16): 14013-9.
Sano, H., S. Wada, et al. (2011). "Quantitative prediction of tumor response to neoadjuvant chemotherapy in breast cancer: novel marker genes and prediction model using the expression levels." Breast Cancer.
Sasabe, E., Y. Tatemoto, et al. (2005). "Mechanism of HIF-1alpha-dependent suppression of hypoxia-induced apoptosis in squamous cell carcinoma cells." Cancer Sci 96(7): 394-402.
Sasabe, E., X. Zhou, et al. (2007). "The involvement of hypoxia-inducible factor-1alpha in the susceptibility to gamma-rays and chemotherapeutic drugs of oral squamous cell carcinoma cells." Int J Cancer 120(2): 268-77.
Saxena, M., S. Williams, et al. (1999). "Inhibition of T cell signaling by mitogen-activated protein kinase-targeted hematopoietic tyrosine phosphatase (HePTP)." J Biol Chem 274(17): 11693-700.
Schmid, T., J. Zhou, et al. (2004). "HIF-1 and p53: communication of transcription factors under hypoxia." J Cell Mol Med 8(4): 423-31.
Schofield, C. J. and Z. Zhang (1999). "Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes." Curr Opin Struct Biol 9(6): 722-31.
Sebolt-Leopold, J. S., D. T. Dudley, et al. (1999). "Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo." Nat Med 5(7): 810-6.
Seimiya, H., M. Tanji, et al. (1999). "Hypoxia up-regulates telomerase activity via mitogen-activated protein kinase signaling in human solid tumor cells." Biochem Biophys Res Commun 260(2): 365-70.
Sermeus, A., J. P. Cosse, et al. (2008). "Hypoxia induces protection against etoposide-induced apoptosis: molecular profiling of changes in gene expression and transcription factor activity." Mol Cancer 7: 27.
Seta, K. A., R. Kim, et al. (2001). "Hypoxia-induced regulation of MAPK phosphatase-1 as identified by subtractive suppression hybridization and cDNA microarray analysis." J Biol Chem 276(48): 44405-12.
Sewing, A., B. Wiseman, et al. (1997). "High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1." Mol Cell Biol 17(9): 5588-97.
Shen, W. H., J. Wang, et al. (2006). "Mitogen-activated protein kinase phosphatase 2: a novel transcription target of p53 in apoptosis." Cancer Res 66(12): 6033-9.
Shukla, A., J. M. Hillegass, et al. (2010). "Blocking of ERK1 and ERK2 sensitizes human mesothelioma cells to doxorubicin." Mol Cancer 9: 314.
Siveen, K. S. and G. Kuttan (2009). "Role of macrophages in tumour progression." Immunol Lett 123(2): 97-102.
Small, G. W., Y. Y. Shi, et al. (2007). "Mitogen-activated protein kinase phosphatase-1 is a mediator of breast cancer chemoresistance." Cancer Res 67(9): 4459-66.
Sodhi, A., S. Montaner, et al. (2000). "The Kaposi's sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1alpha." Cancer Res 60(17): 4873-80.
Song, M. S., Y. K. Park, et al. (2001). "Induction of glucose-regulated protein 78 by chronic hypoxia in human gastric tumor cells through a protein kinase C-epsilon/ERK/AP-1 signaling cascade." Cancer Res 61(22): 8322-30.
Sowter, H. M., P. J. Ratcliffe, et al. (2001). "HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors." Cancer Res 61(18): 6669-73.
Sparmann, A. and M. van Lohuizen (2006). "Polycomb silencers control cell fate, development and cancer." Nat Rev Cancer 6(11): 846-56.
Stahle, M., C. Veit, et al. (2003). "Mechanisms in LPA-induced tumor cell migration: critical role of phosphorylated ERK." J Cell Sci 116(Pt 18): 3835-46.
Sullivan, R. and C. H. Graham (2009). "Hypoxia prevents etoposide-induced DNA damage in cancer cells through a mechanism involving hypoxia-inducible factor 1." Mol Cancer Ther 8(6): 1702-13.
Talks, K. L., H. Turley, et al. (2000). "The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages." Am J Pathol 157(2): 411-21.
Tannock, I. (1978). "Cell kinetics and chemotherapy: a critical review." Cancer Treat Rep 62(8): 1117-33.
Tanoue, T., T. Moriguchi, et al. (1999). "Molecular cloning and characterization of a novel dual specificity phosphatase, MKP-5." J Biol Chem 274(28): 19949-56.
Torii, S., T. Yamamoto, et al. (2006). "ERK MAP kinase in G cell cycle progression and cancer." Cancer Sci 97(8): 697-702.
Tsujita, E., A. Taketomi, et al. (2005). "Suppressed MKP-1 is an independent predictor of outcome in patients with hepatocellular carcinoma." Oncology 69(4): 342-7.
Ueda, K., H. Arakawa, et al. (2003). "Dual-specificity phosphatase 5 (DUSP5) as a direct transcriptional target of tumor suppressor p53." Oncogene 22(36): 5586-91.
Urness, L. D., C. Li, et al. (2008). "Expression of ERK signaling inhibitors Dusp6, Dusp7, and Dusp9 during mouse ear development." Dev Dyn 237(1): 163-9.
Vicent, S., M. Garayoa, et al. (2004). "Mitogen-activated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients." Clin Cancer Res 10(11): 3639-49.
Wagner, E. F. and A. R. Nebreda (2009). "Signal integration by JNK and p38 MAPK pathways in cancer development." Nat Rev Cancer 9(8): 537-49.
Waha, A., J. Felsberg, et al. (2010). "Epigenetic downregulation of mitogen-activated protein kinase phosphatase MKP-2 relieves its growth suppressive activity in glioma cells." Cancer Res 70(4): 1689-99.
Wan, P. T., M. J. Garnett, et al. (2004). "Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF." Cell 116(6): 855-67.
Wang, G. L., B. H. Jiang, et al. (1995). "Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension." Proc Natl Acad Sci U S A 92(12): 5510-4.
Wang, H. Y., Z. Cheng, et al. (2003). "Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer." Cancer Lett 191(2): 229-37.
Wang, J., W. H. Shen, et al. (2007). "A molecular link between E2F-1 and the MAPK cascade." J Biol Chem 282(25): 18521-31.
Wang, J., D. P. Yin, et al. (2007). "Dual specificity phosphatase 1/CL100 is a direct transcriptional target of E2F-1 in the apoptotic response to oxidative stress." Cancer Res 67(14): 6737-44.
Wang, J., J. Y. Zhou, et al. (2007). "ERK-dependent MKP-1-mediated cisplatin resistance in human ovarian cancer cells." Cancer Res 67(24): 11933-41.
Wang, J., J. Y. Zhou, et al. (2009). "Involvement of MKP-1 and Bcl-2 in acquired cisplatin resistance in ovarian cancer cells." Cell Cycle 8(19): 3191-8.
Wang, Y., K. Van Becelaere, et al. (2005). "A role for K-ras in conferring resistance to the MEK inhibitor, CI-1040." Neoplasia 7(4): 336-47.
Wang, Z., J. Xu, et al. (2006). "Mitogen-activated protein kinase phosphatase-1 is required for cisplatin resistance." Cancer Res 66(17): 8870-7.
Wang, Z., J. Y. Zhou, et al. (2008). "High level of mitogen-activated protein kinase phosphatase-1 expression is associated with cisplatin resistance in osteosarcoma." Pediatr Blood Cancer 51(6): 754-9.
Warmka, J. K., L. J. Mauro, et al. (2004). "Mitogen-activated protein kinase phosphatase-3 is a tumor promoter target in initiated cells that express oncogenic Ras." J Biol Chem 279(32): 33085-92.
Wiesener, M. S., H. Turley, et al. (1998). "Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1alpha." Blood 92(7): 2260-8.
Wilson, W. R. and M. P. Hay (2011). "Targeting hypoxia in cancer therapy." Nat Rev Cancer 11(6): 393-410.
Wirthner, R., S. Wrann, et al. (2008). "Impaired DNA double-strand break repair contributes to chemoresistance in HIF-1 alpha-deficient mouse embryonic fibroblasts." Carcinogenesis 29(12): 2306-16.
Wu, G. S. (2007). "Role of mitogen-activated protein kinase phosphatases (MKPs) in cancer." Cancer Metastasis Rev 26(3-4): 579-85.
Wu, J., Y. J. Jin, et al. (2007). "PAC1 is a direct transcription target of E2F-1 in apoptotic signaling." Oncogene 26(45): 6526-35.
Wu, X. H., C. Qian, et al. (2011). "Correlations of hypoxia-inducible factor-1alpha/hypoxia-inducible factor-2alpha expression with angiogenesis factors expression and prognosis in non-small cell lung cancer." Chin Med J (Engl) 124(1): 11-8.
Wu, Z., P. Jiao, et al. (2010). "MAPK phosphatase-3 promotes hepatic gluconeogenesis through dephosphorylation of forkhead box O1 in mice." J Clin Invest 120(11): 3901-11.
Xiang, Z. L., Z. C. Zeng, et al. (2011). "The expression of HIF-1alpha in primary hepatocellular carcinoma and its correlation with radiotherapy response and clinical outcome." Mol Biol Rep.
Xu, L., P. S. Pathak, et al. (2004). "Hypoxia-induced activation of p38 mitogen-activated protein kinase and phosphatidylinositol 3'-kinase signaling pathways contributes to expression of interleukin 8 in human ovarian carcinoma cells." Clin Cancer Res 10(2): 701-7.
Xu, S., T. Furukawa, et al. (2005). "Abrogation of DUSP6 by hypermethylation in human pancreatic cancer." J Hum Genet 50(4): 159-67.
Yang, M. H., D. S. Hsu, et al. (2010). "Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition." Nat Cell Biol 12(10): 982-92.
Yang, M. H., M. Z. Wu, et al. (2008). "Direct regulation of TWIST by HIF-1alpha promotes metastasis." Nat Cell Biol 10(3): 295-305.
Yin, Y., Y. X. Liu, et al. (2003). "PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression." Nature 422(6931): 527-31.
Yip-Schneider, M. T., A. Lin, et al. (2001). "Pancreatic tumor cells with mutant K-ras suppress ERK activity by MEK-dependent induction of MAP kinase phosphatase-2." Biochem Biophys Res Commun 280(4): 992-7.
Yoshiba, S., D. Ito, et al. (2009). "Hypoxia induces resistance to 5-fluorouracil in oral cancer cells via G(1) phase cell cycle arrest." Oral Oncol 45(2): 109-15.
Zhang, H., X. Zhao, et al. (2011). "Similar expression to FGF (Sef) reduces endometrial adenocarcinoma cells proliferation via inhibiting fibroblast growth factor 2-mediated MAPK/ERK signaling pathway." Gynecol Oncol.
Zhang, Q., M. Muller, et al. (2005). "New insights into the catalytic activation of the MAPK phosphatase PAC-1 induced by its substrate MAPK ERK2 binding." J Mol Biol 354(4): 777-88.
Zhong, H., A. M. De Marzo, et al. (1999). "Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases." Cancer Res 59(22): 5830-5.
Zhu, Y., D. T. Denhardt, et al. (2005). "Hypoxia upregulates osteopontin expression in NIH-3T3 cells via a Ras-activated enhancer." Oncogene 24(43): 6555-63.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-12起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-08-12起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw