進階搜尋


下載電子全文  
系統識別號 U0026-0207202020162900
論文名稱(中文) 應用模式樹分析實價登錄資料以過濾影響不動產漲跌的重要因子
論文名稱(英文) Applying Model Trees on Actual Registration Data to Filter Critical Factors for the Variation of Real Estates
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系碩士在職專班
系所名稱(英) Department of Industrial and Information Management (on the job class)
學年度 108
學期 2
出版年 109
研究生(中文) 謝宜靜
研究生(英文) I-Ching Hsieh
學號 R37071320
學位類別 碩士
語文別 中文
論文頁數 74頁
口試委員 指導教授-翁慈宗
口試委員-張秀雲
口試委員-胡政宏
中文關鍵字 數值預測  開放資料  實價登錄  房價漲跌  模式樹 
英文關鍵字 Model tree  numeric prediction  open data  real estate  real value registration. 
學科別分類
中文摘要 政府為居住正義而實施的實價登錄政策,提供民眾有更多資訊來評估不動產的價值、縮小買賣雙方資訊不對稱的情形,政府的開放資料也帶動民間自由運用資料進行分析,使資料產生更大的效益。本研究使用實價登錄開放資料進行研究,針對民國105年至107年間,計算研究標的於各年度的不動產交易價格變化,討論不動產漲跌與各標的屬性關係。但礙於政府目前公開的資訊為區段化資料,因此利用區段化門牌縮小不動產的範圍,用以計算不動產的漲跌幅,使分析結果能較符合現實狀況,並提供有用的分析結果供參考。研究方法將檢驗屬性間的相關性,排除屬性間可能的共線性問題後,利用模式樹呈現不動產屬性與漲跌的因果關係。研究結果顯示集合式住宅明顯影響漲幅的屬性為持有期間,依每年顯示的結果,並無明顯的交易屬性對跌幅的影響較大;透天厝影響漲幅較大的屬性為土地移轉總面積,而建物移轉總面積則較影響跌幅,其中的屋齡可能因環境的變化,所以每年影響的漲跌變化較大。本研究的研究方向,主要想以不動產漲跌幅呈現交易資訊中隱含的因果關係,分析的結果將有助於民眾對不動產的認知,期望能藉此活用政府的開放資料、帶動民眾對開放資料的認同,使開放資料能結合更多領域的資料,並發掘有用的資訊成為不動產交易的知識。
英文摘要 The government’s real-value registry policy for residential justice provides more information for people to assess the values of real estates. This policy could reduce the information asymmetry between buyers and sellers. Many applications have been developed for this kind of open data to filter useful information for the market of real estate. This study collects the real-value registry data from years 2016 to 2018 located in Tainan city to determine the critical attributes for the up and down percentage of real estates. The objects of real estimate are divided into three categories: land, townhouse, and apartment. Since the address of an object is not fully revealed, the objects with the same area located in the same section are used to estimate the up and down percentage of its value. Then the attributes with strong collinearity are removed. The remaining attributes are employed to grow a model tree year by year for class prediction and result interpretation. The experimental results suggest that the period of hold has the most significant positive impact on the value of an apartment. The size of land area has a positive impact on the value of a townhouse, while the impact of the size of its floor area is negative. The age of a townhouse is also an important attribute for its value. No explicit conclusions can be made for lands. These results can be helpful for people to estimate the prices of real estates and to recognize the usefulness of open data.

論文目次 第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 研究範圍 4
1.4 論文架構 5
第二章 文獻探討 7
2.1 開放資料 8
2.2 線性回歸分析 12
2.3 樹的節點與分枝 13
2.4 小結 18
第三章 研究方法 19
3.1 研究架構 19
3.2 資料預處理 20
3.3 多元線性回歸分析 32
3.4 模式樹建模 34
3.5 驗證方式 36
第四章 實作驗證 39
4.1 屬性的處理與選擇 39
4.2 多元線性回歸分析 40
4.3 模式樹建模 41
4.4 小結 50
第五章 結論與建議 52
5.1 研究限制 52
5.2 結論 52
5.3 未來建議 55
參考文獻 56
附錄 59
參考文獻 中文文獻
王進祥. (2012). 實價登錄與稅制改革. 土地問題研究季刊, 11(3), 98-108.
林哲民. (2014). 實價登錄制度對住宅價格定錨效果與分散效果之影響─以台北市為例. (碩士). 國立屏東商業技術學院, 屏東縣.
法務部全國法規資料庫工作小組. (2019). 修正平均地權條例條文. Retrieved from https://law.moj.gov.tw/News/NewsDetail.aspx?msgid=149938
高明志. (1998). 類神經網路應用於房地產估價之研究. (碩士). 國立政治大學, 台北市.
國家發展委員會. (2013). 政府資料開放加值應用研究分析書面報告. Retrieved from https://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzEwL3JlbGZpbGUvNTY5OC80OTEwLzAwMjc5MjlfMi5wZGY%3d&n=MzkzMDE0NzE0NzEucGRm&icon=..pdf
湯穎奇. (2005). 應用K-means分群演算法於選取模式樹節點屬性之研究. 成功大學, Available from Airiti AiritiLibrary database. (2005年)
歐陽榆. (2015). 從各國不動產制度看我國實價登錄. Retrieved from https://www.rde.ntpc.gov.tw/userfiles/ntpc/files/5_%E5%BE%9E%E5%90%84%E5%9C%8B%E4%B8%8D%E5%8B%95%E7%94%A2%E5%88%B6%E5%BA%A6%E7%9C%8B%E6%88%91%E5%9C%8B%E5%AF%A6%E5%83%B9%E7%99%BB%E9%8C%84.pdf
英文文獻
Acciani, C., Fucilli, V., & Sardaro, R. (2008). Model Tree: An Application in Real Estate Appraisal.
Attard, J., Orlandi, F., Scerri, S., & Auer, S. (2015). A Systematic Review of Open Government Data Initiatives. Government Information Quarterly, 32(4), 399-418.
Bradford, J. P., Kunz, C., Kohavi, R., Brunk, C., & Brodley, C. E. (1998). Pruning Decision Trees with Misclassification Costs. Paper Presented at the European Conference on Machine Learning, Chemnitz, Germany.
Chen, M. C., & Wang, P. D. (2018). A Roadmap to Determine the Important Factors of the House Value: A Case Study by Using Actual Price Registration Data of Taipei Housing Transactions. Independent Journal of Management & Production, 9(1), 245-261.
Curry, B., Morgan, P., & Silver, M. (2002). Neural Networks and Non-linear Statistical Methods: An Application to the Modelling of Price–Quality Relationships. Computers & Operations Research, 29(8), 951-969.
Fan, G.-Z., Ong, S. E., & Koh, H. C. (2006). Determinants of House Price: A Decision Tree Approach. Urban Studies, 43(12), 2301-2315.
Frank, E., Wang, Y., Inglis, S., Holmes, G., & Witten, I. H. (1998). Using Model Trees for Classification. Machine Learning, 32(1), 63-76.
Huijboom, N., & Van den Broek, T. (2011). Open Data: An International Comparison of Strategies. European Journal of EPractice, 12(1), 4-16.
Jothiprakash, V., & Kote, A. S. (2010). Effect of Pruning and Smoothing while Using M5 Model Tree Technique for Reservoir Inflow Prediction. Journal of Hydrologic Engineering, 16(7), 563-574.
Maguire, P., Miller, R., Moser, P., & Maguire, R. (2016). A Robust House Price Index Using Sparse and Frugal Data. Journal of Property Research, 33(4), 293-308.
Marquaridt, D. W. (1970). Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation. Technometrics, 12(3), 591-612.
Mason, C. H., & Perreault Jr, W. D. (1991). Collinearity, Power, and Interpretation of Multiple Regression Analysis. Journal of Marketing Research, 28(3), 268-280.
Northcraft, G. B., & Neale, M. A. (1987). Experts, Amateurs, and Real-Estate - An Anchoring-and-Adjustment Perspective on Property Pricing Decisions. Organizational Behavior and Human Decision Processes, 39(1), 84-97.
OpenKnowledgeFoundation. (2019). Open Data Handbook. Retrieved from http://opendatahandbook.org/guide/zh_TW/what-is-open-data/
Quinlan, J. R. (1992). Learning with Continuous Classes. Paper presented at the 5th Australian joint conference on artificial intelligence.
Render, B., Stair, R. J., & Hanna, M. E. (2012). Quantitative Analysis for Management. In: Pearson Education.
Saranya, C., & Manikandan, G. (2013). A Study on Normalization Techniques for Privacy Preserving Data Mining. International Journal of Engineering and Technology (IJET), 5(3), 2701-2704.
Wang, Y., & Witten, I. H. (1996). Induction of Model Trees for Predicting Continuous Classes.(Working paper 96/23). Hamilton, New Zealand: University of Waikato, Department of Computer Science.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-07-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw