進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0207202013243800
論文名稱(中文) 兩個相互耦合半導體雷射在穩定鎖住動態下的直接調制特性
論文名稱(英文) Direct Modulation Characteristics in Two Mutually Delay-Coupled Semiconductor Laser at Stable Locking Dynamic
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 108
學期 2
出版年 108
研究生(中文) 王雋堯
研究生(英文) Chun-Yao Wang
學號 L76084030
學位類別 碩士
語文別 中文
論文頁數 62頁
口試委員 指導教授-黃勝廣
口試委員-魏明達
口試委員-曾碩彥
口試委員- 魏嘉建
中文關鍵字 半導體雷射  互相耦合  非線性穩定鎖住動態  鬆弛共振  直接調制響應 
英文關鍵字 semiconductor lasers  mutually coupled oscillators  nonlinear stable locking laser dynamics  relaxation resonance  direct modulation response 
學科別分類
中文摘要 互注入穩定鎖住動態已被研究出可以改善半導體雷射的調制特性。但在大多數的研究裡,幾乎都假設兩個相互耦合半導體雷射系統的操作條件為相同、對稱的情況,但在實際情況下,兩個雷射間的操作條件是存在一些不對稱的情況。因此在本論文中,我們將以數值模擬的方式針對系統的對稱或不對稱性來分析各種不同的雷射操作條件,如:延遲長度、耦合強度、兩雷射間頻率差及線寬增加因子,對直接調制特性的影響。根據我們的研究也發現,延遲長度很大程度會影響鬆弛共振頻率,令雷射系統的調製響應產生顯著改變。最後,根據不同條件個別討論出來的結果,同時操作在雷射系統上進行分析,討論出互注入雷射直調響應系統最佳化的條件。
英文摘要 Mutual injection locking dynamic has been demonstrated to significantly improve the modulation characteristics of semiconductor lasers. However, most prior studies on mutually delay-coupled semiconductor lasers have assumed that the operating conditions of the two lasers are the same (i.e., symmetric). This assumption is, however, not valid in practical situations where the operating conditions are generally different (i.e., asymmetric).In this study, we numerically investigate the effects of symmetric or asymmetric operating conditions, including delay length, coupling strength, detuning frequency, and linewidth enhancement factor, on direct modulation response of the laser system .We also study the effect of the coupling delay length which, based on our observation, plays a significant role in the enhancement of relaxation resonance frequency that is strongly related to the direct modulation response of the laser system. Based on the discuss of the effects of all operating conditions, the optimized operating condition is studied.
論文目次 摘要 I
摘要 III
表目錄 V
圖目錄 V
第一章 前言 1
1.1 研究背景 1
1.2 研究動機 3
1.3 論文大綱 4
第二章 模擬模型 5
2.1 基本雷射原理 5
2.2 非線性機制 6
2.3 單注入雷射模型 6
2.4 互注入雷射模型 8
2.5 非線性動態 13
第三章 直調頻率響應 16
3.1 直調頻率響應之特性 16
3.2 延遲長度 17
3.3 頻率差 24
3.4 對稱注入強度 26
3.5 非對稱注入強度 28
3.6 最佳化條件 34
第四章 線寬增加因子b之影響 43
4.1 線寬增加因子b介紹 43
4.2 動態規則之分析 44
4.3 線寬增加因子b對動態地圖之影響 47
4.4 穩定動態直調頻率響應 55

第五章 結論與未來展望 58
參考資料 60

參考文獻 [1]Christophe Peucheret, “Direct and External Modulation of Light ,” 34129 Experimental Course in Optical Communication, 2006.
[2]R. Nagarajan, D. Tauber, and J. E. Bowers, “High speed semiconductor lasers,” Int. J. High Speed Electron. Syst., vol. 5, pp. 1-44, 1994.
[3]K. Y. Lau and A. Yariv, “ Ultra-high speed semiconductor lasers,” IEEE J. Quantum EZectron., vol. QE-21, pp. 121-137, 1985.
[4]Ralston, J.D., Weisser, S., Larkins, E.C., Rosenzweig, J., Tasker, P.J., Fleissner, J. “Control of Differential Gain, Nonlinear Gain, and Damping Factor for High-Speed Application of GaAs-Based MQW Lasers ,”IEEE Journal of Quantum Electronics, 29 (6), pp. 1648-1659, 1993.
[5]Matsui, Y., Murai, H., Arahira, S., Ogawa, Y., Suzuki, A. “Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers ,” IEEE Journal of Quantum Electronics, 34 (10), pp. 1970-1978, 1998.
[6]J. M. Liu, H. F. Chen, X. J. Meng and T. B. Simpson, "Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking," in IEEE Photonics Technology Letters, vol. 9, no. 10, pp. 1325-1327, Oct. 1997.
[7]J. Wang, M. K. Haldar, L. Li and F. V. C. Mendis, "Enhancement of modulation bandwidth of laser diodes by injection locking," in IEEE Photonics Technology Letters, vol. 8, no. 1, pp. 34-36, Jan. 1996.
[8]S. K. Hwang, J. M. Liu and J. K. White, "35-GHz intrinsic bandwidth for direct modulation in 1.3-/spl mu/m semiconductor lasers subject to strong injection locking," in IEEE Photonics Technology Letters, vol. 16, no. 4, pp. 972-974, 2004.
[9]C. Lin and F. Mengel, “Reduction of frequency chirping and dynamic linewidth in high-speed directly modulated semiconductor lasers by injection locking,” Electron. Lett., vol. 20, nos. 25/26, pp. 1073–1075, 1984.
[10]Okajima, Y., Hwang, S.K., Liu, J.M. “Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection,” Optics Communications, 219 (1-6), pp. 357-364, 2003.
[11]Heil, T., Fischer, I., Elsässer, W., Mulet, J., Mrasso, C.R. “Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semcionductor lasers ,”Physical Review Letters, 86 (5), pp. 795-798, 2001.
[12]Mulet, J., Mrasso, C., Heil, T., Fischer, I. “Synchronization scenario of two distant mutually coupled semiconductor lasers,” Journal of Optics B: Quantum and Semclassical Optics, 6 (1), pp. 97-105, 2004
[13]Argyris, A., Syvridis, D., Larger, L., Annovazzi-Lodi, V., Colet, P., Fischer, I., García-Ojalvo, J., Mirasso, C.R., Pesquera, L., Shore, K.A. “Chaos-based communications at high bit rates using commercial fiber-optic links ,” Nature, 438 (7066), pp. 343-346, 2005.
[14]Chien, C.-Y., Lo, Y.-H., Wu, Y.-C., Hsu, S.-C., Tseng, H.-R., Lin, C.-C. “Compact photonic integrated chip for tunable microwave generation ,”IEEE Photonics Technology Letters, 26 (5), pp. 490-493, 2014.
[15]Lo, Y.-H., Wu, Y.-C., Hsu, S.-C., Hwang, Y.-C., Chen, B.-C., Lin, C.-C. “Tunable microwave generation of a monolithic dual-wavelength distributed feedback laser ,” Optics Express, 22 (11), pp. 13125-13137, 2014.
[16]Mao, Y., Ren, Z., Zhang, R., Wang, H., Huang, Y., Ji, C., Kan, Q., Wang, W. “Extending the direct modulation bandwidth by mutual injection locking in integrated coupled DFB lasers,” 30th Annual Conference of the IEEE Photonics Society, pp. 651-652, 2017.
[17]C. Sun et al., "Modulation Characteristics Enhancement of Monolithically Integrated Laser Diodes Under Mutual Injection Locking," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, no. 6, pp. 628-635, 2015.
[18]Liu, D., Sun, C., Xiong, B., Luo, Y. “Suppression of chaos in integrated twin DFB lasers for millimeter-wave generation ,”Optics Express, 21 (2), pp. 2444-2451, 2013.
[19]Junges, L., Gallas, J.A.C. “Stability diagrams for continuous wide-range control of two mutually delay-coupled semiconductor lasers ,”New Journal of Physics, 17 (5), 053038, 2015.
[20]Liu, D., Sun, C., Xiong, B., Luo, Y. “Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay ,” Optics Express, 22 (5), pp. 5614-5622, 2014.
[21]Chow, W.W., Yang, Z.S., Vawter, G.A., Skogen, E.J. “Modulation response improvement with isolator-free injection-locking ,” IEEE Photonics Technology Letters, 21 (13), pp. 839-841, 2009.
[22]Zhang, Y., Li, L., Zhou, Y., Zhao, G., Shi, Y., Zheng, J., Zhang, Z., Yu, L.I.U., Zou, Z., Zhou, Y., Du, Y., Chen, X. “Modulation properties enhancement in a monolithic integrated two-section DFB laser utilizing side-mode injection locking method ,”Optics Express, 25 (22), pp. 27595-27608, 2017.
[23]Tauke-Pedretti, A., Vawter, G.A., Skogen, E.J., Peake, G., Overberg, M., Alford, C., Chow, W.W., Yang, Z.S., Torres, D., Cajas, F. “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers ,” IEEE Photonics Technology Letters, 23 (13), pp. 908-910, 2011.
[24]X. J. Meng, T. Chau, and M. C. Wu, “Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 7, pp. 1172– 1176, 1999.
[25]X. Jin and S. L. Chuang, “Relative intensity noise characteristics of injection-locked semiconductor lasers,” Appl. Phys. Lett., vol. 77, no. 9, pp. 1250–1252, 2000.
[26]Sung, H.-K., Jung, T., Wu, M.C., Tishinin, D., Tanbun-Ek, T., Liou, K.Y., Tsang, W.T. “Modulation bandwidth enhancement and nonlinear distortion suppression in directly modulated monolithic injection-locked DFB lasers, ”MWP 2003 - Proceedings, International Topical Meeting on Microwave Photonics, pp. 27-30, 2003.
[27]Yi-Chen Sung, ”Effect of time delay asymmetry on two mutually coupled lasers,” Unpublished Master’s thesis, National Cheng Kung University, Department of Photonics, 2018.
[28]Hwang, S.K., Liu, J.M. “Dynamical characteristics of an optically injected semiconductor laser ,” Optics Communications, 183 (1), pp. 195-205, 2000.
[29]Chuang, C.-F., Liao, Y.-H., Lin, C.-H., Chen, S.-Y., Grillot, F., Lin, F.-Y. “Linewidth enhancement factor in semiconductor lasers subject to various external optical feedback conditions ,” Optics Express, 22 (5), pp. 5651-5658, 2014.
[30]Lester, L.F., Naderi, N.A., Grillot, F., Raghunathan, R., Kovanis, V.” Strong optical injection and the differential gain in a quantum dash laser,” Optics Express, 22 (6), pp. 7222-7228, 2014.
[31]Liu J.M., Chen H.F., Tang S., “Dynamics and Synchronization of Semiconductor Lasers for Chaotic Optical Communications. In Digital Communications Using Chaos and Nonlinear Dynamics,” Larson L.E., Tsimring L.S. and Liu J.M, Editors, Springer, New York, NY, p.285~340, 2006.
[32]Arecchi, F.T., Lippi, G.L., Puccioni, G.P., Tredicce, J.R. “Deterministic chaos in laser with injected signal ,” Optics Communications, 51 (5), pp. 308-314, 1984.
[33]J. M. Liu, H. F. Chen and S. Tang, "Optical-communication systems based on chaos in semiconductor lasers," in IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 48, no. 12, pp. 1475-1483, 2001.
[34]Sheng-Kwang Hwang, Jia-Ming Liu and J. K. White, "Characteristics of period-one oscillations in semiconductor lasers subject to optical injection," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, no. 5, pp. 974-981, 2004.
[35]Simpson, T.B., Liu, J.M., Huang, K.F., Tai, K. “Nonlinear dynamics induced by external optical injection in semiconductor lasers ,” Journal of Optics B: Quantum and Semiclassical Optics, 9 (5), pp. 765-784, 1997.
[36]Liu, J.-M., Simpson, T.B. “Four-Wave Mixing and Optical Modulation in a Semiconductor Laser ,” IEEE Journal of Quantum Electronics, 30 (4), pp. 957-965, 1994.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw