進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0207202001093300
論文名稱(中文) 白河水庫集水區新興污染物─除草劑與抗菌劑於水體與底泥分布濃度調查
論文名稱(英文) Occurrence of herbicides and antibacterial agents in surface water and sediment around Baihe reservoir
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 曹書涵
研究生(英文) Shu-Han Tsao
學號 P56071028
學位類別 碩士
語文別 英文
論文頁數 104頁
口試委員 指導教授-陳女菀如
口試委員-陳威翔
口試委員-張智華
中文關鍵字 新興污染物  水庫集水區  嘉磷塞  AMPA  固殺草  三氯沙  三氯卡班 
英文關鍵字 emerging contaminant  reservoir catchment  glyphosate  AMPA  glufosinate  triclosan  triclocarban 
學科別分類
中文摘要   因人類活動而導致新興污染物進入並殘留環境之議題一直受到大眾關注,考量到在台灣時有經濟活動區域與水庫水源保護區重疊,本研究自2018年12月至2020年4月針對集水區中涵蓋農業用地與知名溫泉觀光產業的台南白河水庫進行為期一年半共12次的採樣與監測,重點檢測項目包含對應潛在污染源之五種新興污染物,分別為除草劑嘉磷塞(glyphosate)、固殺草(glufosinate)與嘉磷塞之降解產物aminomethylphosphonic acid (AMPA),以及常作為抗菌劑添加於日常用品中之三氯沙(triclosan)與三氯卡班(triclocarban)。除了對承受污染風險之河川水體與溫泉旅館廢水進行採樣檢測,亦收集溫泉泥漿樣本分析污染物濃度,以探討其吸附累積於固相之潛勢。
  在除草劑項目水相樣本中共135個樣本顯示,嘉磷塞比固殺草擁有更高的檢出濃度與頻率(嘉磷塞: 0.11±0.79 μg/L, 10%; 固殺草: 0.004±0.024 μg/L, 5%),反應出含嘉磷塞成分之除草劑在該地區被廣泛使用。降解產物AMPA比嘉磷塞有更高的殘留濃度與頻率(0.17±0.51 μg/L, 35%),顯示AMPA有更長之環境半生期並比原化合物有更長久之影響。在抗菌劑項目共126個水相樣本中,檢出濃度與頻率分別為三氯沙之3.97±13.41 ng/L, 47.6%與三氯卡班之0.86±1.83 ng/L, 47.2%,最高濃度貢獻者多為溫泉旅館廢水。抗菌劑平均濃度雖比除草劑成分低了約數百至千倍,反之擁有更高的檢出頻率,前者可歸因於除草劑具有高水溶性與抗菌劑易光解特性而不易高濃度殘留,後者可與除草劑使用頻率不比含抗菌劑成分之日常用品來得頻繁產生連結。考慮到雨季對雜草生長之影響與溫泉觀光區來客數多在寒冷氣候達到高峰,本研究更進一步地將檢出結果依季節分類,發現除草劑與抗菌劑之最高檢出濃度與頻率分別發生在採樣時段中的炎熱時期(嘉磷塞: 0.19±1.10 μg/L, 11%; AMPA: 0.25±0.66 μg/L, 37%; 固殺草: 0.01±0.03 μg/L, 4%)與寒冷時期(三氯沙: 7.0±19.7 ng/L, 58.2%; 三氯卡班: 1.1±2.0 ng/L, 58.2%),顯現出不同的污染高峰時間點。若以白水溪中三條支流(溫泉坑溪、柚子頭溪、關子嶺排水)探討其貢獻濃度,除草劑方面在寒冷與炎熱時期都以關子嶺排水較高,抗菌劑在寒冷時期以溫泉坑溪居多,炎熱時期則是關子嶺排水與溫泉坑溪皆有一定程度的貢獻。
  因白河水庫集水區為較上游之地區,鮮少底泥累積,固體樣本以該地盛產之泥漿溫泉固體物為主,採自溫泉源頭周遭與旅館廢水積累之泥漿。在固相樣本共13個樣本數中的平均濃度與頻率分別為嘉磷塞無檢出、AMPA 0.93±3.37 μg/kg, 7.7%、固殺草0.90±3.25 μg/kg, 7.7%、三氯沙 4.98±5.63 μg/kg, 61.5%、三氯卡班 2.06±2.57 μg/kg, 46.2%,而三氯沙與三氯卡班甚至在旅館廢水的泥漿樣本檢測頻率高達100%。結果顯示抗菌劑比除草劑被檢出更高的固相殘留濃度,推測為其擁有較高的土壤吸附特性,與採樣點鄰近抗菌劑重點污染源之旅館廢水所致。利用現有數據計算有機碳吸附係數(log Koc)後發現三氯沙與三氯卡班其平均值各為5.31±0.26與5.63±0.65,顯示其對固相之吸附傾向;而由於本研究缺乏除草劑於固相與水相中同時檢出之數據,無進行該項目相關Koc之討論。
  本研究提供水體環境中除草劑與抗菌劑項目之相異污染濃度高峰時間點與污染熱點,並顯現出抗菌劑在泥漿中相對較高之吸附濃度,以利日後該水源區之水質監測方案之實施與規劃。
英文摘要 Nowadays, the occurrence of emerging contaminants is greatly influenced and released by human activity. Due to the development of advanced analytical instruments, the detection of trace contaminants in water samples has become easier through proper pretreatments. This study aimed to investigate the occurrence of emerging contaminants in Baihe reservoir related to agricultural activities and hot-spring tourism. Based on the potential pollution sources in this area, several herbicides (glyphosate, aminomethylphosphonic acid (AMPA) and glufosinate) and antibacterial agents (triclosan and triclocarban) were monitored to investigate whether reservoir water quality is influenced by human activities. In addition to the water in the adjacent aquatic system, the contaminants in solid phase was also traced so that we can fully understand their residue levels in the sampling area. The water samples were collected during Dec. 2018 to Apr. 2020 for 12 times, and the mud samples were collected during Sep. 2019 to Apr. 2020 for 7 times, respectively.
In our results, the detected concentration and frequency of herbicides in 135 water samples (glyphosate: 0.11±0.79 μg/L, 10%, AMPA: 0.17±0.51 μg/L, 35%, glufosinate: 0.004±0.024 μg/L, 5%) indicates that glyphosate and its metabolite AMPA seem to be more common than glufosinate. By contrast, antibacterial agents (sample number n=126) existed in sub-ppt levels but the frequency of occurrence was relatively high (triclosan: 3.97±13.41 ng/L, 47.6%, triclocarban: 0.86±1.83 ng/L, 47.2%), which may be resulted from their photodegradable properties and application in daily based detergents or personal care products. In hot weather season, as shown by the seasonal pattern, the concentration and detection frequency of herbicides are higher (glyphosate: 0.19±1.10 μg/L, 11%; AMPA: 0.25±0.66 μg/L, 37%; glufosinate: 0.01±0.03 μg/L, 4%), which corresponds to the weed control program. On the contrary, due to the peak tourist season in the hot spring tourism, more antibacterial agents are detected in cold weather season (TCS: 7.0±19.7 ng/L, 58.2%; TCC: 1.1±2.0 ng/L, 58.2%). Therefore, this trend can be used to select an appropriate time to monitor different contaminants in Baihe reservoir catchment. Furthermore, to discuss the contaminants contribution from 3 tributaries of Baisui River (Wen Quan Keng Creek, You Zitou Creek and Guan Zilling Drainage), herbicides had been detected with higher level in Guan Zilling Drainage during whole sampling period; antibacterial agents had been detected with more concentration in Wen Quan Keng Creek in cold weather season, and in both Wen Quan Keng Creek and Guan Zilling Drainage in hot weather season.
Regarding the accumulation in the solid phase, the adsorption of herbicides and antibacterial agents is also discussed. Because there was very little sediment in the upstream area, only two locations with mud samples were collected. The carbon content of hot-spring mud samples (n=13) in two sampling sites were 0.23±0.13% and 0.82±0.47%. The percentage of triclosan and triclocarban detected at the hotel sampling sites was 100%, and the average cumulative concentration of all mud samples were 4.98±5.63 μg/kg (Triclosan) and 2.06±2.57 μg/kg (Triclocarban) respectively. In contrast to common residue of antibacterial agents, AMPA and glufosinate were only detected one time in mud samples with average concentration 0.93±3.37 μg/kg and 0.90±3.25 μg/kg. No occurrence of glyphosate in mud samples. The calculated organic carbon adsorption coefficient (log Koc) values of triclosan and triclocarban were 5.31±0.26 and 5.63±0.65, indicating their strong adsorption tendency on the solid phase. Our results showed that antibacterial agents seem to be more likely to remain on solid phase than herbicides, and the main pollution source in the surrounding environment (such as hotel wastewater) may lead to higher accumulative levels of triclosan and triclocarban.
論文目次 Contents
摘要 I
Abstract III
誌謝 VI
Contents VII
Tables X
Figures XI
Chapter 1 Introduction 1
Chapter 2 Literature review 3
2-1 Emerging contaminants 3
2-2 Glyphosate, aminomethylphosphonic acid and glufosinate 4
2-2-1 Chemical properties and toxicity 4
2-2-2 Usage and regulation 5
2-2-3 Occurrence and environmental concern 6
2-3 Triclosan and triclocarban 14
2-3-1 Chemical properties and toxicity 14
2-3-2 Usage and regulation 14
2-2-3 Occurrence and environmental concerns 15
2-4 Mud hot spring 23
2-4-1 Water qualities and environmental concern 23
2-4-2 Regulation 23
Chapter 3 Materials and Methods 25
3-1 Chemicals 25
3-2 Study area 25
3-2-1 Baihe reservoir catchment 25
3-2-2 Hotel in Tainan 28
3-3 Sampling and pretreatment 29
3-3-1 Liquid samples (river and hotel wastewater) 29
3-3-2 Solid samples (hot spring mud in hotel wastewater) 30
3-4 Analysis 32
3-4-1 LC-MS/MS 32
3-4-2 Basic water qualities parameters 33
Chapter 4 Result and discussion 35
4-1 Sampling background information and sample recovery rate 35
4-1-1 Rainfall and temperature 35
4-1-2 Number of visitors in Guan Ziling 36
4-1-3 Analytical method validation 37
4-2 Monitoring of herbicides in Baihe reservoir 41
4-2-1 Occurrence at different sampling sites 41
4-2-2 Occurrence in different seasons 46
4-2-3 Occurrence comparison of relation between sampling sites and seasons in the liquid samples 49
4-3 Monitoring of antibacterial agents in Baihe reservoir 53
4-3-1 Occurrence at different sampling sites 53
4-3-2 Occurrence in different seasons 57
4-3-3 Occurrence comparison of relation between sampling sites and seasons in the liquid samples 60
4-3-4 Occurrence comparison of hotel in Baihe reservoir catchment and Tainan downtown 64
4-4 The relation between emerging contaminants and water quality parameters 65
4-5 Soil organic content and distribution coefficient influence on contaminants adsorption 66
Chapter 5 Conclusion and suggestion 71
5-1 Conclusion 71
5-2 Suggestion 72
Reference 73
Appendix 81
Appendix (A) Data of target compounds in water samples 81
Appendix (B) Data of target compounds in mud samples 87
Appendix (C) Data of basic water quality parameters 89
Appendix (D) The relation between water qualities and target compounds 103
參考文獻 Accinelli, C., Screpanti, C., Vicari, A., & Catizone, P. Influence of insecticidal toxins from Bacillus thuringiensis subsp. kurstaki on the degradation of glyphosate and glufosinate-ammonium in soil samples. Agriculture, Ecosystems & Environment, 103(3), 497-507.(2004)
Aparicio, V. C., De Gerónimo, E., Marino, D., Primost, J., Carriquiriborde, P., & Costa, J. L. Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere, 93(9), 1866-1873.(2013)
Aranami, K., & Readman, J. W. Photolytic degradation of triclosan in freshwater and seawater. Chemosphere, 66(6), 1052-1056.(2007)
Battaglin, W. A., Meyer, M., Kuivila, K., & Dietze, J. Glyphosate and its degradation product AMPA occur frequently and widely in US soils, surface water, groundwater, and precipitation. JAWRA Journal of the American Water Resources Association, 50(2), 275-290.(2014)
Borggaard, O. K., & Gimsing, A. L. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Management Science: formerly Pesticide Science, 64(4), 441-456.(2008)
Cha, J., & Cupples, A. M. Detection of the antimicrobials triclocarban and triclosan in agricultural soils following land application of municipal biosolids. Water research, 43(9), 2522-2530.(2009)
Chen, K. Y., & Chou, P. H. Detection of endocrine active substances in the aquatic environment in southern Taiwan using bioassays and LC-MS/MS. Chemosphere, 152, 214-220.(2016)
Chu, S., & Metcalfe, C. D. Simultaneous determination of triclocarban and triclosan in municipal biosolids by liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 1164(1-2), 212-218.(2007)
Coogan, M. A., Edziyie, R. E., La Point, T. W., & Venables, B. J. Algal bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater treatment plant receiving stream. Chemosphere, 67(10), 1911-1918.(2007)
Gallina, M. A., & Stephenson, G. R. Dissipation of [14C] glufosinate ammonium in two Ontario soils. Journal of Agricultural and Food Chemistry, 40(1), 165-168.(1992)
Gasnier, C., Dumont, C., Benachour, N., Clair, E., Chagnon, M.-C., & Séralini, G.-E. Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology, 262(3), 184-191.(2009)
Giesy, J. P., Dobson, S., & Solomon, K. R. (2000). Ecotoxicological risk assessment for Roundup® herbicide. In Reviews of environmental contamination and toxicology (pp. 35-120): Springer.
Gimsing, A., Borggaard, O., & Bang, M. Influence of soil composition on adsorption of glyphosate and phosphate by contrasting Danish surface soils. European Journal of Soil Science, 55(1), 183-191.(2004)
Grunewald, K., Schmidt, W., Unger, C., & Hanschmann, G. Behavior of glyphosate and aminomethylphosphonic acid (AMPA) in soils and water of reservoir Radeburg II catchment (Saxony/Germany). Journal of Plant Nutrition and Soil Science, 164(1), 65-70.(2001)
Gunarathna, S., Gunawardana, B., Jayaweera, M., Manatunge, J., & Zoysa, K. Glyphosate and AMPA of agricultural soil, surface water, groundwater and sediments in areas prevalent with chronic kidney disease of unknown etiology, Sri Lanka. Journal of Environmental Science and Health, Part B, 53(11), 729-737.(2018)
Halden, R. U., & Paull, D. H. Co-occurrence of triclocarban and triclosan in US water resources. Environmental science & technology, 39(6), 1420-1426.(2005)
Heim, L. Adsorption of 14C-triclosan to suspended solids. Performed for Ciba-Geigy Corporation, Greensboro (NC), Columbia (MO): ABC Laboratories.(1997)
Hua, W., Bennett, E. R., & Letcher, R. J. Triclosan in waste and surface waters from the upper Detroit River by liquid chromatography-electrospray-tandem quadrupole mass spectrometry. Environment international, 31(5), 621-630.(2005)
Huang, S.-W., Hsu, B.-M., Wu, S.-F., Fan, C.-W., Shih, F.-C., Lin, Y.-C., & Ji, D.-D. Water quality parameters associated with prevalence of Legionella in hot spring facility water bodies. Water research, 44(16), 4805-4811.(2010)
Jacob, G., Garbow, J., Hallas, L., Kimack, N., Kishore, G., & Schaefer, J. Metabolism of glyphosate in Pseudomonas sp. strain LBr. Applied and environmental microbiology, 54(12), 2953-2958.(1988)
Kantiani, L., Farré, M., Asperger, D., Rubio, F., González, S., de Alda, M. J. L., . . . Barceló, D. Triclosan and methyl-triclosan monitoring study in the northeast of Spain using a magnetic particle enzyme immunoassay and confirmatory analysis by gas chromatography–mass spectrometry. Journal of hydrology, 361(1-2), 1-9.(2008)
Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999− 2000: A national reconnaissance. Environmental science & technology, 36(6), 1202-1211.(2002)
Landry, D., Dousset, S., Fournier, J.-C., & Andreux, F. Leaching of glyphosate and AMPA under two soil management practices in Burgundy vineyards (Vosne-Romanée, 21-France). Environmental Pollution, 138(2), 191-200.(2005)
Laugeray, A., Herzine, A., Perche, O., Hébert, B., Aguillon-Naury, M., Richard, O., . . . Briault, S. Pre-and postnatal exposure to low dose glufosinate ammonium induces autism-like phenotypes in mice. Frontiers in behavioral neuroscience, 8, 390.(2014)
Lee, H. B., Peart, T. E., & Svoboda, M. L. Determination of endocrine-disrupting phenols, acidic pharmaceuticals, and personal-care products in sewage by solid-phase extraction and gas chromatography–mass spectrometry. Journal of Chromatography A, 1094(1-2), 122-129.(2005)
Lee, J. D., Lee, J. Y., Kwack, S. J., Shin, C. Y., Jang, H.-J., Kim, H. Y., . . . Kim, K.-B. Risk assessment of triclosan, a cosmetic preservative. Toxicological research, 35(2), 137-154.(2019)
Lin, J.-F. Residue Analysis of Glyphosate and Glufosinate in Water and Sediments by Liquid Chromatography Tandem Mass Spectrometry. 國立虎尾科技大學生物科技系學士論文.(2018)
Lindström, A., Buerge, I. J., Poiger, T., Bergqvist, P.-A., Müller, M. D., & Buser, H.-R. Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environmental science & technology, 36(11), 2322-2329.(2002)
Mörtl, M., Németh, G., Juracsek, J., Darvas, B., Kamp, L., Rubio, F., & Székács, A. Determination of glyphosate residues in Hungarian water samples by immunoassay. Microchemical Journal, 107, 143-151.(2013)
Mañas, F., Peralta, L., Raviolo, J., Ovando, H. G., Weyers, A., Ugnia, L., . . . Gorla, N. Genotoxicity of AMPA, the environmental metabolite of glyphosate, assessed by the Comet assay and cytogenetic tests. Ecotoxicology and Environmental Safety, 72(3), 834-837.(2009)
Maity, J. P., Liu, C.-C., Nath, B., Bundschuh, J., Kar, S., Jean, J.-S., . . . Chen, C.-Y. Biogeochemical characteristics of Kuan-Tzu-Ling, Chung-Lun and Bao-Lai hot springs in southern Taiwan. Journal of Environmental Science and Health, Part A, 46(11), 1207-1217.(2011)
Mao, Y.-C., Hung, D.-Z., Wu, M.-L., Tsai, W.-J., Wang, L.-M., Ger, J., . . . Yang, C.-C. Acute human glufosinate-containing herbicide poisoning. Clinical toxicology, 50(5), 396-402.(2012)
Masiol, M., Giannì, B., & Prete, M. Herbicides in river water across the northeastern Italy: occurrence and spatial patterns of glyphosate, aminomethylphosphonic acid, and glufosinate ammonium. Environmental Science and Pollution Research, 25(24), 24368-24378.(2018)
McAvoy, D. C., Schatowitz, B., Jacob, M., Hauk, A., & Eckhoff, W. S. Measurement of triclosan in wastewater treatment systems. Environmental Toxicology and Chemistry: An International Journal, 21(7), 1323-1329.(2002)
Miller, T. R., Heidler, J., Chillrud, S. N., DeLaquil, A., Ritchie, J. C., Mihalic, J. N., . . . Halden, R. U. Fate of triclosan and evidence for reductive dechlorination of triclocarban in estuarine sediments. Environmental science & technology, 42(12), 4570-4576.(2008)
Morales, S., Canosa, P., Rodríguez, I., Rubí, E., & Cela, R. Microwave assisted extraction followed by gas chromatography with tandem mass spectrometry for the determination of triclosan and two related chlorophenols in sludge and sediments. Journal of Chromatography A, 1082(2), 128-135.(2005)
Nolen, G., & Dierckman, T. Reproduction and teratogenic studies of a 2: 1 mixture of 3, 4, 4′-trichlorocarbanilide and 3-trifluoromethyl-4, 4′-dichlorocarbanilide in rats and rabbits. Toxicology and applied pharmacology, 51(3), 417-425.(1979)
Orvos, D. R., Versteeg, D. J., Inauen, J., Capdevielle, M., Rothenstein, A., & Cunningham, V. Aquatic toxicity of triclosan. Environmental Toxicology and Chemistry: An International Journal, 21(7), 1338-1349.(2002)
Perencevich, E. N., Wong, M. T., & Harris, A. D. National and regional assessment of the antibacterial soap market: a step toward determining the impact of prevalent antibacterial soaps. American journal of infection control, 29(5), 281-283.(2001)
Peruzzo, P. J., Porta, A. A., & Ronco, A. E. Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environmental Pollution, 156(1), 61-66.(2008)
Ramaswamy, B. R., Shanmugam, G., Velu, G., Rengarajan, B., & Larsson, D. J. GC–MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers. Journal of hazardous materials, 186(2-3), 1586-1593.(2011)
Reiss, R., Mackay, N., Habig, C., & Griffin, J. An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States. Environmental Toxicology and Chemistry: An International Journal, 21(11), 2483-2492.(2002)
Richardson, S. D. Water analysis: emerging contaminants and current issues. Analytical chemistry, 81(12), 4645-4677.(2009)
Ronco, A. E., Marino, D. J. G., Abelando, M., Almada, P., & Apartin, C. D. Water quality of the main tributaries of the Paraná Basin: glyphosate and AMPA in surface water and bottom sediments. Environmental monitoring and assessment, 188(8), 458.(2016)
Sabaliunas, D., Webb, S. F., Hauk, A., Jacob, M., & Eckhoff, W. S. Environmental fate of triclosan in the River Aire Basin, UK. Water research, 37(13), 3145-3154.(2003)
Sapkota, A., Heidler, J., & Halden, R. U. Detection of triclocarban and two co-contaminating chlorocarbanilides in US aquatic environments using isotope dilution liquid chromatography tandem mass spectrometry. Environmental Research, 103(1), 21-29.(2007)
Sauvé, S., & Desrosiers, M. A review of what is an emerging contaminant. Chemistry Central Journal, 8(1), 1-7.(2014)
Screpanti, C., Accinelli, C., Vicari, A., & Catizone, P. Glyphosate and glufosinate-ammonium runoff from a corn-growing area in Italy.(2005)
Scribner, E. A., Battaglin, W. A., Gilliom, R. J., & Meyer, M. T. (2007). Concentrations of Glyphosate, Its Degradation Product, Aminomethylphosphonic Acid, and Glufosinate in Ground- and Surface-Water, Rainfall, and Soil Samples Collected in the United States, 2001-06. Retrieved from
Skark, C., Zullei-Seibert, N., Schöttler, U., & Schlett, C. The occurrence of glyphosate in surface water. International Journal of Environmental Analytical Chemistry, 70(1-4), 93-104.(1998)
Snyder, E. H., O'Connor, G. A., & McAvoy, D. C. Measured physicochemical characteristics and biosolids-borne concentrations of the antimicrobial Triclocarban (TCC). Science of the Total Environment, 408(13), 2667-2673.(2010)
Stasinakis, A. S., Thomaidis, N. S., Arvaniti, O. S., Asimakopoulos, A. G., Samaras, V. G., Ajibola, A., . . . Lekkas, T. D. Contribution of primary and secondary treatment on the removal of benzothiazoles, benzotriazoles, endocrine disruptors, pharmaceuticals and perfluorinated compounds in a sewage treatment plant. Science of the Total Environment, 463, 1067-1075.(2013)
Struger, J., Thompson, D., Staznik, B., Martin, P., McDaniel, T., & Marvin, C. Occurrence of glyphosate in surface waters of southern Ontario. Bulletin of Environmental Contamination and Toxicology, 80(4), 378-384.(2008)
Thongprakaisang, S., Thiantanawat, A., Rangkadilok, N., Suriyo, T., & Satayavivad, J. Glyphosate induces human breast cancer cells growth via estrogen receptors. Food and Chemical Toxicology, 59, 129-136.(2013)
U.S. Food and Drug Administration. (2016). FDA issues final rule on safety and effectiveness of antibacterial soaps. Retrieved from https://www.fda.gov/news-events/press-announcements/fda-issues-final-rule-safety-and-effectiveness-antibacterial-soaps
United States Department of Agriculture, A. R. S. (1995). The ARS Pesticide Properties Database. Retrieved from https://www.ars.usda.gov/ARSUserFiles/00000000/DatabaseFiles/PesticidePropertiesDatabase/IndividualPesticideFiles/GLYPHOSATE.TXT
Wang, L., Ying, G.-G., Zhao, J.-L., Liu, S., Yang, B., Zhou, L.-J., . . . Su, H.-C. Assessing estrogenic activity in surface water and sediment of the Liao River system in northeast China using combined chemical and biological tools. Environmental Pollution, 159(1), 148-156.(2011)
Wu, C., Spongberg, A. L., & Witter, J. D. Adsorption and degradation of triclosan and triclocarban in soils and biosolids-amended soils. Journal of Agricultural and Food Chemistry, 57(11), 4900-4905.(2009)
Xu, J., Wu, L., & Chang, A. C. Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils. Chemosphere, 77(10), 1299-1305.(2009)
Yang, G. C., Tsai, H.-J., & Chang, F.-K. Occurrence of triclosan in the tropical rivers receiving the effluents from the hospital wastewater treatment plant. Environmental monitoring and assessment, 187(3), 151.(2015)
Yang, G. C., Yen, C. H., & Wang, C. L. Monitoring and removal of residual phthalate esters and pharmaceuticals in the drinking water of Kaohsiung City, Taiwan. J Hazard Mater, 277, 53-61.(2014)
Yeh, G.-H., Yang, T. F., Chen, J.-C., Chen, Y.-G., & Song, S.-R. Fluid geochemistry of mud volcanoes in Taiwan. Mud Volcanoes, Geodynamics and Seismicity. Springer, Netherlands, 227-237.(2005)
Yu, Y., Wu, L., & Chang, A. C. Seasonal variation of endocrine disrupting compounds, pharmaceuticals and personal care products in wastewater treatment plants. Science of the Total Environment, 442, 310-316.(2013)
Zhao, J. L., Ying, G. G., Liu, Y. S., Chen, F., Yang, J. F., & Wang, L. Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China: from source to the receiving environment. J Hazard Mater, 179(1-3), 215-222.(2010)
Zhao, J. L., Zhang, Q.-Q., Chen, F., Wang, L., Ying, G.-G., Liu, Y.-S., . . . Su, H.-C. Evaluation of triclosan and triclocarban at river basin scale using monitoring and modeling tools: implications for controlling of urban domestic sewage discharge. Water research, 47(1), 395-405.(2013)
方麗萍. 非選擇性除草劑在臺灣一甲子. 中華民國雜草學會會刊, 38(1), 63-75.(2017)
李貽華, 翁愫慎, & 李國欽. 臺灣地區水源中農藥殘量之探討. 臺灣農業, 27(3), 22-31.(1991)
葉奕伯. 以生物試驗法及液相層析串聯式質譜儀分析污水處理廠中內分泌干擾物質及其衍生物之變化. 成功大學環境工程學系學位論文, 1-159.(2014)
蔣永正, & 蔣慕琰. (2006). 農田雜草與除草劑要覽: 行政院農業委會農業藥物毒物試驗所.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw