進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0207201916100500
論文名稱(中文) P3HT混氧化鋅奈米粒子自供電光檢測器之研究
論文名稱(英文) A study of self-powered photodetector with P3HT blended with ZnO nanoparticles
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 107
學期 2
出版年 108
研究生(中文) 黃大益
研究生(英文) Ta-Yi Huang
學號 Q16061018
學位類別 碩士
語文別 中文
論文頁數 69頁
口試委員 指導教授-彭洞清
口試委員-高宗達
口試委員-鄭德俊
口試委員-孫健仁
中文關鍵字 氧化鎳  聚(3-己烷噻吩)  氧化鋅奈米粒子  自供電  響應速度  紫外光/可見光  光檢測器 
英文關鍵字 NiO  P3HT  ZnO nanoparticles  self-power  response time  ultraviolet/visible  photodetector 
學科別分類
中文摘要 本論文主要是研究p-P3HT/n-氧化鋅奈米複合層沉積在氧化鎳與ITO基板之自供電光檢測器特性。首先,將無機電洞傳輸層氧化鎳薄膜沉積在ITO玻璃基板上。再混合氧化鋅奈米粒子與P3HT作為光感測層並沉積於氧化鎳薄膜上。最後在奈米複合層上熱蒸鍍鋁電極,完成P3HT混氧化鋅奈米粒子自供電光檢測器。
當元件在照射紫外光或可見光時,由氧化鋅奈米粒子與P3HT組成的光感測層會產生光電子電洞對。光產生電洞會從P3HT經由氧化鎳傳輸到ITO電極。同時,光產生電子因為P3HT混合氧化鋅奈米粒子複合層的能帶結構,缺少有效的傳輸路徑並且有強大的量子校應,導致光產生電子會被捕捉在氧化鋅奈米粒子之中。如果提供足夠偏壓給元件會發生電洞注入的現象。本實驗透過X光繞射光譜儀(XRD)、場發射掃描式電子顯微鏡(SEM)、紫外可視近紅外分光光譜儀、半導體元件參數分析儀對光檢測器各層薄膜進行薄膜分析、表面形貌、晶體結構及光電特性之探討。
此論文研究元件在自供電下的光電特性,此奈米複合層光檢測器在零偏壓下照射450 nm波長之可見光,光暗電流比為9.29。上升與下降時間分別為9 ms與14 ms。450 nm可見光主要由P3HT吸收產生電子電洞對。在零偏壓下照射370 nm波長之紫外光,光暗電流比為9.15,上升與下降時間分別為9 ms與12 ms。370 nm紫外光主要由氧化鋅奈米粒子吸收產生電子電洞對。
本研究之光檢測器具有低溫製程、低耗能、自供電之優點。再進一步改善,此光檢測器將具有應用在嚴峻環境的潛力。
英文摘要 This thesis investigates the performance of the self-powered photodetector (PD) with p-P3HT/n-ZnO nanocomposite deposit on NiO/indium tin oxide (ITO) subtract. First, inorganic NiO thin film was deposited onto an ITO glass substrate as a hole transport layer. Then ZnO nanoparticles and P3HT were blended together as an active layer and was deposited onto the NiO layer. Finally, an aluminum film was deposited on the nanocomposite layer by thermal evaporation as the top electrode.
When the device is illuminated with UV or visible light, the ZnO nanoparticles and P3HT in the active layer generate electron/hole pairs. The light-generated holes are transported from P3HT through NiO to the ITO electrode. At the same time, the light-generated electrons are trapped in the ZnO nanoparticles due to lack of a percolation network and the strong quantum confinement effect of the P3HT-ZnO nanoparticles composite energy-band structure. Holes injection occurs if we applied an enough bias voltage to the device. Film’s quality and surface morphologies were analyzed by X-ray diffractometer, scanning electron microscope and UV-VIS-NIR spectrophotometer.
This thesis studied its self-powered mode performance. Under 450 nm visible light illumination and at zero bias, the photo/dark current ratio of the nanocomposite PD is 9.29. The rise and fall time of the nanocomposite PD are 9 ms and 14 ms, respectively. P3HT generated the electron-hole pairs by the 450 nm visible light. If the device is illuminated with 370 nm UV light and at zero bias, the photo/dark current ratio of the nanocomposite PD is 9.15. The rise and fall time of the nanocomposite PD are 9 ms and 12 ms, respectively. ZnO nanoparticles generated the electron-hole pairs by the 370 nm UV light.
The studied PD has advantages of low-temperature processing, low power consumption, and capable of self-power. With further improvement, this PD has a good potential for application to the severe environment.
論文目次 口試合格證明 I
中文摘要 II
英文摘要 IV
目錄 VIII
表目錄 XI
圖目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 材料特性 2
1-2-1 氧化鎳(Nickel Oxide)特性 2
1-2-2 氧化鋅(Zinc Oxide)特性 4
1-2-3 Poly(3-hexylthiophene-2,5-dily) (P3HT)特性 7
1-3 研究動機 8
1-4 論文架構 9
第二章 基礎理論 10
2-1 元件基礎理論 10
2-1-1 P-N半導體接面 10
2-1-2 金屬-半導體接面 13
2-2 半導體光檢測器 15
2-2-1 光檢測器操作原理 15
2-2-2 光導體光檢測器 15
2-2-3 光二極體光檢測器 16
2-3 光檢測器之參數介紹 17
2-3-1 光響應度 17
2-3-2 探測度(Detectivity) 17
2-3-3響應速度(Response speed) 17
第三章 實驗方法及步驟 18
3-1 實驗材料 19
3-2 檢測器製程設備系統 20
3-2-1 方形高溫爐 21
3-2-2 高溫石英爐管 22
3-2-3 旋轉塗佈機 24
3-2-4 離心機 25
3-2-5 手持式超音波細胞破碎儀 26
3-2-6 電阻式熱蒸鍍機 28
3-3 薄膜分析及量測儀器 29
3-3-1 低掠角薄膜X光繞射儀 30
3-3-2 半導體元件參數分析儀 32
3-3-3 場發射掃描式電子顯微鏡 33
3-3-4 紫外可視近紅外分光光譜儀 35
3-4 製程步驟與參數 36
3-4-1 氧化鋅奈米粒子合成 37
3-4-2 氧化銦錫透明導電玻璃基板(ITO Glass)清洗流程 37
3-4-3 旋轉塗佈法沉積氧化鎳薄膜 38
3-4-4 旋轉塗佈法沉積奈米複合感光層 38
3-4-5 蒸鍍鋁電極 39
第四章 結果與討論 40
4-1 光檢測器的工作原理 40
4-2 氧化鎳、氧化鋅奈米粒子與P3HT的材料分析 44
4-2-1 X光繞射分析 44
4-2-2 場發射掃描式電子顯微鏡分析 47
4-2-3 紫外可視近紅外分光光譜儀分析 51
4-3 光檢測器電性分析 54
4-3-1 光/暗電流分析 54
4-3-2 光響應度分析 58
4-3-3 響應速度分析 59
第五章 結論及未來研究方向 62
5-1 結論 62
5-2 未來展望 62
第六章 參考文獻 63
參考文獻 [1] T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, et al., "A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors," Sensors, vol. 9, pp. 6504-6529, 2009.
[2] L. Peng, L. Hu, and X. Fang, "Low‐dimensional nanostructure ultraviolet photodetectors," Advanced Materials, vol. 25, pp. 5321-5328, 2013.
[3] O. Game, U. Singh, T. Kumari, A. Banpurkar, and S. Ogale, "ZnO (N)–Spiro-MeOTAD hybrid photodiode: an efficient self-powered fast-response UV (visible) photosensor," Nanoscale, vol. 6, pp. 503-513, 2014.
[4] F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, et al., "A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection," Nature nanotechnology, vol. 7, p. 798, 2012.
[5] G. Konstantatos and E. H. Sargent, "Nanostructured materials for photon detection," Nature nanotechnology, vol. 5, p. 391, 2010.
[6] X. Li, C. Gao, H. Duan, B. Lu, Y. Wang, L. Chen, et al., "High‐Performance Photoelectrochemical‐Type Self‐Powered UV Photodetector Using Epitaxial TiO2/SnO2 Branched Heterojunction Nanostructure," Small, vol. 9, pp. 2005-2011, 2013.
[7] M. Liao, Y. Koide, and J. Alvarez, "Thermally stable visible-blind diamond photodiode using tungsten carbide Schottky contact," Applied Physics Letters, vol. 87, p. 022105, 2005.
[8] L. Östlund, Q. Wang, R. Esteve, S. Almqvist, D. Rihtnesberg, S. Reshanov, et al., "4H‐and 6H‐SiC UV photodetectors," physica status solidi (c), vol. 9, pp. 1680-1682, 2012.
[9] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. Sanchez, et al., "High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors based on GaN," Applied physics letters, vol. 74, pp. 762-764, 1999.
[10] Y. Jin, J. Wang, B. Sun, J.C. Blakesley, N.C. Greenham, "Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles," Nano Letters, vol. 8, pp. 1649-1653, 2008.
[11] L. Hu, J. Yan, M. Liao, H. Xiang, X. Gong, L. Zhang, and X. Fang, "An Optimized Ultraviolet-A Light Photodetector with Wide-Range Photoresponse Based on ZnS/ZnO Biaxial Nanobelt," Advanced Materials, vol. 24, pp. 2305-2309, 2012.
[12] M.-Y. Chuanga, H.-C. Yua, Y.-K. Su, C.-H. Hsiaoa, T.-H. Kaoa, C.-S. Huangc, Y.-C. Huangc, J.-J. Tsaic, S.-L. Wu, "Density-controlled and seedless growth of laterally bridged ZnOnanorod for UV photodetector applications," Sensors and Actuators, vol. 202, pp. 810-819, 2014.
[13] Q. Hong, Y. Cao, J. Xu, H. Lu, J. He, and J.-L. Sun, " Self-Powered Ultrafast Broadband Photodetector Based on p−n Heterojunctions of CuO/Si Nanowire Array," ACS applied materials & interfaces, vol. 6, pp. 20887-20894, 2014.

[14] C. Lia, C. Han, Y. Zhangb, Z. Zang, M. Wang, X. Tang, J. Du, "Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films," Solar Energy Materials and Solar Cells, vol. 172, pp. 341-346, 2017.
[15] L. Peng, L. Hu, and X. Fang, " Energy Harvesting for Nanostructured Self‐Powered Photodetectors," Advanced Functional Materials, vol. 24, pp. 2591-2610, 2014
[16] B. Zhao, F. Wang, H. Chen, L. Zheng, L. Su, D. Zhao, X. Fang, "An Ultrahigh Responsivity (9.7 mA W^(-1)) Self-Powered Solar-Blind Photodetector Based on Individual ZnO–Ga_2 O_3 Heterostructures," Advanced Functional Materials, vol. 27, p. 1700264, 2017.
[17] B. J. Hansen, Y. Liu, R. Yang, and Z. L. Wang, "Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy," ACS nano, vol. 4, pp. 3647-3652, 2010.
[18] J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. M. Yang, W.-H. Chang, et al., "Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers," Nature Nanotechnology, vol. 11, p. 75, 2016.
[19] H. Zhang, J. Cheng, F. Lin, H. He, J. Mao, K. S. Wong, et al., "Pinhole-Free and Surface-Nanostructured NiOx Film by Room-Temperature Solution Process for High-Performance Flexible Perovskite Solar Cells with Good Stability and Reproducibility," ACS nano, vol. 10, pp. 1503-1511, 2015.
[20] T. Lin, X. Li, and J. Jang, "High performance p-type NiOx thin-film transistor by Sn doping," Applied Physics Letters, vol. 108, p. 233503, 2016.
[21] A. Liu, G. Liu, H. Zhu, B. Shin, E. Fortunato, et al., "Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-k dielectric," Applied Physics Letters, vol. 108, p. 233506, 2016.
[22] I. Hotový, D. Búc, Š. Haščík, O. Nennewitz, "Characterization of NiO thin films deposited by reactive sputtering," Vacuum, vol. 50, pp. 41-44, 1998.
[23] D. Adler, J. Feinleib, "Band Structure of Magnetic Semiconductors," Chemical Communications, vol. 40, pp. 1586-1588, 1969.
[24] S. Mrowec, Z. Grzesik, "Oxidation of nickel and transport properties of nickel oxide," Journal of Physics and Chemistry of Solids, vol. 65, pp. 1651-1657, 2004.
[25] F. A. Kröger, "Point defects and phase stability of transition metal compounds," Journal of Physics and Chemistry of Solids, vol. 29, pp. 1889-1899, 1968.
[26] G. Turgut, E. Sonmez, S. Duman, " Determination of certain sol-gel growth parameters of nickel oxide films," Ceramics International, vol. 41, pp. 2976-2989, 2015.
[27] A. Wisitsoraat, A. Tuantranont, E. Comini, G. Sberveglieri, W. Wlodarski, " Characterization of n-type and p-type semiconductor gas sensors based on NiOx doped TiO2 thin films," Thin Solid Films, vol. 517, pp. 2775-2780, 2009.
[28] Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, A. M. C. Ng, W. K. Chan, H. L. Tam, and K. W. Cheah, "NiO/ZnO light emitting diodes by solution-based growth," Applied Physics Letters, vol. 92, p. 113505, 2008.
[29] Y. Zhao, H. Wang, C. Wu, Z.F. Shi, F.B.Gao, W.C. Li, G.G. Wu, B.L. Zhang, G.T. Du, " Structures, electrical and optical properties of nickel oxide films by radio frequency magnetron sputtering," Vacuum, vol. 103, pp. 14-16, 2014.
[30] Y.-H. You, B.-S. So, and J.-H. Hwang, et al., " Impedance spectroscopy characterization of resistance switching NiO thin films prepared through atomic layer deposition," Applied Physics Letters, vol. 89, p. 222105, 2006.
[31] X. Zhao, P. Wang, and B. Li, "CuO/ZnO core/shell heterostructure nanowire arrays: synthesis, optical property, and energy application," Chemical Communications, vol. 46, pp. 6768-6770, 2010.
[32] H. J. Bolink, E. Coronado, D. Repetto, and M. Sessolo, "Air stable hybrid organic-inorganic light emitting diodes using ZnO as the cathode," Applied Physics Letters, vol. 91, p. 223501, 2007.
[33] C. Fan, Q. Wang, L. Li, S. Zhang, Y. Zhu, X. Zhang, et al., "Bulk moduli of wurtzite, zinc-blende, and rocksalt phases of ZnO from chemical bond method and density functional theory," Applied Physics Letters, vol. 92, p. 101917, 2008.
[34] K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G. K. Paul, and T. Sakurai, "Thin film deposition of Cu2O and application for solar cells," Solar energy, vol. 80, pp. 715-722, 2006.
[35] S. Pearton, D. Norton, K. Ip, Y. Heo, and T. Steiner, "Recent progress in processing and properties of ZnO," Progress in materials science, vol. 50, pp. 293-340, 2005.
[36] B. Cao and W. Cai, "From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions," The Journal of Physical Chemistry C, vol. 112, pp. 680-685, 2008.
[37] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. Aplin, J. Park, et al., "ZnO nanowire UV photodetectors with high internal gain," Nano letters, vol. 7, pp. 1003-1009, 2007.
[38] G. Du, W. Liu, J. Bian, L. Hu, H. Liang, X. Wang, et al., "Room temperature defect related electroluminescence from ZnO homojunctions grown by ultrasonic spray pyrolysis," Applied physics letters, vol. 89, p. 052113, 2006.
[39] M. Bredol, K. Matras, A. Szatkowski, J. Sanetra, "P3HT/ZnS: A new hybrid bulk heterojunction photovoltaic system with very high open circuit voltage," Solar Energy Materials and Solar Cells, vol. 93, pp. 662-666, 2009.
[40] X. Wang, W. Song, B. Liu, G. Chen, D. Chen, C. Zhou, G. Shen, "High‐Performance Organic‐Inorganic Hybrid Photodetectors Based on P3HT:CdSe Nanowire Heterojunctions on Rigid and Flexible Substrates," Advanced Functional Materials, vol. 23, pp. 1202-1209, 2013.
[41] H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, et al., "Two-dimensional charge transport in self-organized, high-mobility conjugated polymers," Nature, vol. 401, pp. 685-688, 1999.
[42] A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, "Highly active oxide photocathode for photoelectrochemical water reduction," Nature materials, vol. 10, p. 456, 2011.
[43] G. Greco, F. Iucolano, F. Roccaforte, "Ohmic contacts to Gallium Nitride materials," Applied Surface Science, vol. 383, pp. 324-345, 2016.

[44] Y. S. Lee, M. T. Winkler, S. C. Siah, R. Brandt, T. Buonassisi, "Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering," Applied Physics Letters, vol. 98, p. 192115, 2011.
[45] X. Gong, M. Tong, Y. Xia, W. Cai, J.S. Moon, Y. Cao, G. Yu, C.-L. Shieh, et al., "High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm," Science, vol. 325, pp. 1665-1667, 2009.
[46] J.P. Liu, S.C. Qu, X.B. Zeng, Y. Xu, X.F. Gou, Z.J. Wang, H.Y. Zhou, Z.G. Wang, "Fabrication of ZnO and its enhancement of charge injection and transport in hybrid organic/inorganic light emitting devices," Applied Surface Science, vol. 253, pp. 7506-7509, 2007.
[47] C. Pacholski, A. Kornowski. H. Weller, "Self‐Assembly of ZnO: From Nanodots to Nanorods," Angewandte Chemie International Edition, vol. 41, pp. 1188-1191, 2002.
[48] B. Sun, H. Sirringhaus, "Solution-Processed Zinc Oxide Field-Effect Transistors Based on Self-Assembly of Colloidal Nanorods," Nano letters, vol. 5, pp. 2408-2413, 2005.
[49] J. R. Manders, T. H. Lai, Y. An, W. Xu, J. Lee, et al., "Low‐Noise Multispectral Photodetectors Made from All Solution‐Processed Inorganic Semiconductors," Advanced Functional Materials, vol. 24, pp. 7205-7210, 2014.
[50] Y. Shen, X. Yan, Z. Bai, X. Zheng, Y. Sun, et al., "A self-powered ultraviolet photodetector based on solution-processed p-NiO/n-ZnO nanorod array heterojunction," RSC Advances, vol. 5, pp. 5976-5981, 2015.
[51] D.Y. Kim, J. Ryu, J. Manders, J. Lee, and F. So, "Air-Stable, Solution-Processed Oxide p–n Heterojunction Ultraviolet Photodetector," ACS Applied Materials & Interfaces, vol. 5, pp. 1370-1374, 2014.
[52] Jesse R. Manders, S.‐W. Tsang, Michael J. Hartel, T.‐H. Lai, S. Chen, Chad M. Amb. John R. Reynolds, F. So, "Solution‐Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells," ADVANCE FUNCTIONAL MATERIALS, vol. 23, pp. 2993-3001, 2013.
[53] Waldo J. E. Beek, Martijn M. Wienk, and René A. J. Janssen, "Hybrid Solar Cells from Regioregular Polythiophene and ZnONanoparticles," ADVANCE FUNCTIONAL MATERIALS, vol. 16, pp. 1112-1116, 2006.
[54] Solenn Berson, Rémi de Bettignies, Séverine Bailly, Stéphane Guillerez, and Bruno Jousselme, "Elaboration of P3HT/CNT/PCBM Composites for OrganicPhotovoltaic Cells," ADVANCE FUNCTIONAL MATERIALS, vol. 17, pp. 3363-3370, 2007.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-06-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-06-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw