系統識別號 U0026-0207201903222100
論文名稱(中文) 磁控電子束轟擊金屬離子推進器之開發
論文名稱(英文) Development of Metallic Ion Thruster using Magnetron Electron-beam Bombardment
校院名稱 成功大學
系所名稱(中) 太空與電漿科學研究所
系所名稱(英) Institute of Space and Plasma Sciences
學年度 107
學期 2
出版年 108
研究生(中文) 陳國益
研究生(英文) Kuo-Yi Chen
電子信箱 aaaa8444@gmail.com
學號 LA6064038
學位類別 碩士
語文別 英文
論文頁數 103頁
口試委員 指導教授-張博宇
中文關鍵字 電推進器  物理氣相沉積  電子束蒸發技術  固態推進劑 
英文關鍵字 Electric thrust  Physical vapor deposition  Electron-beam vaporizer  Solid propellant 
中文摘要 我們開發出了一種使用固態金屬作為推進劑的新型態離子推進器:磁控電子束轟擊金屬離子推進器Metallic Ion Thruster using Magnetron E-beam Bombardment (MIT-MEB)。不同於使用惰性氣體作為推進劑的經典離子推進器/電漿推進器,MIT-MEB使用固體金屬作為推進劑,因此有儲存密度高、成本低廉、易於儲存、安全等優點。可以使用任何導體作為推進劑。而元素週期表上有八成是金屬,因此相較傳統離子推進器而言,MIT-MEB在材料選擇上有絕對的優勢。本設計分為三個部分:金屬離子產生器和離子加速器以及中和器。首先自由電子從熱燈絲發射並被電場加速衝向金屬靶,使得金屬被加熱並蒸發。而金屬靶表面和燈絲之間具有約0.2~0.3T的磁場用於聚焦電子,當金屬蒸氣通過被磁場侷限而形成的高密度的電子雲時,會被其中的高能電子碰撞並游離。金屬被游離成離子後會被電場加速並排出裝置,而外部的中和器則釋放電子並與離子一同離開推進器。推進器最終排出等量的高速離子與電子藉以保持裝置的電中性。由於電子束工作條件與真空條件無關,因此可在超高真空環境中運作。我們已經製作並測試了原型機,通過電子束轟擊將金屬靶加熱至超過415℃。在5 kV/3 mA和1 kV/15 mA的電子束電流轟擊下,使用鋅片作為測試靶材,測得其質量流率為(2.2±0.4)E-4(g/s)與(1.8±0.3)E-5(g/s),游離率為0.03±0.01 %和1.1±0.3 %。因此,離子貢獻之推進力理論值分別為9.0±1.0 μN和10.3±0.7 μN,總功率約為25 W左右。比衝Isp理論值分別為12300 s和5500 s。若考慮未游離之蒸氣的貢獻,則總推進力分別為99±40 μN 和 17.3±4.0 μN.
英文摘要 The electric thruster is a device that uses electromagnetic fields to control and accelerate ions. An ion thruster using a metallic target as the propellant has been developed. Different from the inert gas used in conventional plasma thrusters, the metallic target is in the solid state, high density, easy to be stored and cheap. The design is divided into three parts: a metallic evaporator and an ion accelerator and a neutralizer. The principle of electron-beam (E-beam) evaporation, where a metal target is evaporated and ionized by thermal-emitted electrons, is used. The working condition is independent of the vacuum condition so that it works in the ultra-high vacuum space. A focusing magnet with a magnetic field about 0.2~0.3 T between the target surface and the filament is used to guide electrons toward the center of the target so that the metal is evaporated and ionized. A prototype has been built and tested. The metallic targets were heated to more than 415 °C by electron bombardment. A mass flow rate of (2.2±0.4)E-4 (g/s) and (1.8±0.3)E-5 (g/s) using Zn at 5 kV/3 mA and 1 kV/ 15mA E-beam current was measured. An ionization rate of 0.03±0.01 % and 1.1±0.3 % using Zn at 5 kV and 1 kV E-beam current was measured. Therefore, the estimated thrust is 9.0±1.0 μN and 10.3±0.7 μN with a power of about 25 W. The Estimated Isp is 12,300 s and 5,500 s respectively. Considering the contribution of vapors, the total thrust is 99±40 μN and 17.3±4.0 μN respectively.
論文目次 摘要 i
Abstract ii
致謝 iii
List of tables viii
List of figures ix
Chapter 1 1
1-1 Principle of ion thrusters 1
1-1-1 Thrusts 2
1-1-2 Specific impulse (Isp) 2
1-2 Different types of electric propulsions 4
1-2-1 Gridded ion thrusters 4
1-2-2 Hall thrusters 5
1-2-3 Pulsed-plasma thrusters (PPT) 6
1-3 Metallic Ion Thruster using Magnetron Electron-beam Bombardment 7
Chapter 2 9
2-1 Physical vapor deposition 9
2-1-1 Thermal evaporation 10
2-1-2 Magnetron sputtering 11
2-1-3 Electron beam evaporation 12
2-1-4 Choice of the appropriate evaporation method for ion thrusters 14
2-2 Background knowledge of the electron-beam technology 15
2-2-1 Electron generation 15
2-2-2 Electron manipulations 19
2-3 Metallic ions generated by E-beam bombardments 25
Chapter 3 27
3-1 Magnetron E-beam 27
3-1-1 Principle of guiding electron-beams 28
3-1-2 Magnetic field measurements 28
3-1-3 Simulation results of the magnetic field 30
3-1-4 Simulation results of electric fields 31
3-1-5 Calculations of gyroradius 32
3-2 The structure of MIT-MEB 34
3-2-1 The Ion generator 34
3-2-2 The accelerator 35
3-2-3 The neutralizer 36
3-2-4 Choice of the material for the propellant 37
3-2-5 Evaporation rate and Ionization rate 38
3-2-6 The ion mass flow rate 39
3-2-7 Estimation of thrusts 39
3-3 Prototype of MIT-MEB 40
3-4 Physical picture of MIT-MEB 42
Chapter 4 44
4-1 Basic Vacuum knowledge 44
4-1-1 Units and range of vacuum pressure 45
4-1-2 Velocity of moleculars 46
4-1-3 Mean free path 47
4-2 Building a vacuum system 48
4-2-1 Viscous flows and molecular flows 48
4-2-2 Roughing pumps 49
4-2-3 High vacuum pumps 50
4-2-4 Vacuum gauges 53
4-2-5 The Vacuum chamber 55
Chapter 5 58
5-1 Experimental procedures 58
5-1-1 Process of vacuuming the chamber 58
5-1-2 Testing procedures 59
5-2 Parameter measurements 60
5-3 Evaporation rate 64
5-4 Ionization rates 64
Chapter 6 65
6-2 E-beam evaporators 67
6-2-1 Characteristics of the E-beam 68
6-2-2 Characteristics of the E-gun filaments 69
6-2-3 Vacuum conditions 69
6-2-4 Evaporation rates 70
6-3 Results of MIT-MEB of 5 kV/3 mA E-beam 71
6-3-1 Electrical characteristics of the E-beam 71
6-3-2 Evaporation rates 72
6-3-3 Ionization rates 73
6-3-4 Expected thrusts 74
6-3-5 Expected Isp 74
6-4 Result of MIT-MEB of 1 kV/15 mA E-beam 74
6-4-1 Electrical characteristics of the E-beam 74
6-4-2 Evaporation rates 76
6-4-3 Ionization rates 76
6-4-4 Expected thrusts 77
6-4-5 Expected Isp 77
6-5 Comparison 77
Chapter 7 79
7-1 Cross section of electron impact ionization for zinc 79
7-2 The contribution of thrust from vapor 80
7-3 Comparisons with other ion thrusters 81
7-4 Diffusion of metallic vapor in a vacuum chamber 82
7-5 Future work 84
Chapter 8 88
References 90
APPENDIX A Drawings of MIT-MEB 93
APPENDIX B Experimental raw data 98
APPENDIX C Parts in this study and manufacturers 102
參考文獻 [1] Ming-Hsueh Shen. Development of a micro ecr ion thruster for space propulsion. Master’s thesis, National Cheng Kung University, 2016. Replotted form Kuriki, K. and Arakawa. Y., Introduction to electric propulsion, U. Tokyo Press., Tokyo, 2003.

[2] K. Kuriki and Y. Arakawa. Introduction to electric propulsion. University of Tokyo Press, 2003.

[3] Ashkenazy, Joseph & Appelbaum, G & Ram-Cohen, T & Warshavsky, A & Tidhar, I & Rabinovich, L. (2007). VENµS Technological Payload - The Israeli Hall Effect Thruster Electric Propulsion System. 10.13140/2.1.4172.4801.

[4] Burton, Rodney L. "Pulsed plasma thrusters." Encyclopedia of Aerospace Engineering (2010).

[5] Ulrich Walach. Schematic layout of a Pulsed Plasma Thruster, Wikipedia.

[6] Changsha Mingguan Metal Technology Co. http://www.tungstenmoly.com/html/Pure-Tungsten/79.html.

[7] Kurt J. Lesker Company. Deep Cup Evaporation Boat. Tungsten Wire/Evaporation Coil, https://www.lesker.com/newweb/evaporation_sources/thermal_boat_notched.cfm?pgid=4

[8] Jatosado. Electron Beam Deposition, Wikipedia.

[9] Crowell, C. R. "The Richardson constant for thermionic emission in Schottky barrier diodes." Solid-State Electronics 8.4 (1965): 395-399.

[10] K.S Sree Harsha. Principle of Vapor Deposition of Thin Films. Elsevier Science, 2006

[11] SPM Science. Thermionic Emission. http://spmphysics.onlinetuition.com.my/2013/06/thermionic-emission.html

[12] Giubileo, F.; Di Bartolomeo, A.; Iemmo, L.; Luongo, G.; Urban, F. Field Emission from Carbon Nanostructures. Appl. Sci. 2018, 8, 526.

[13] Inductiveload. Beta-minus Decay.svg. Wikipedia.

[14] Jaro.p. Lorentz force.svg. Wikipedia.

[15] Marcin Białek. Cyclotron motion wide view.jpg. Wikipedia.

[16] Magnetic mirror

[17] Märk, Tilmann D., and Gordon H. Dunn, eds. Electron impact ionization. Springer Science & Business Media, 2013.

[18] First Ionization Energy. Wikipedia.

[19] Goldstein, Joseph I., et al. Scanning electron microscopy and X-ray microanalysis. Springer, 2017.

[120] K. Burak Ucer/L06-Vacuum_Evaporation/Department of Physics Wake Forest

[21] [Online] https://luxel.com/wp-content/uploads/2013/04/Luxel-Vapor-Pressure-Chart.pdf.

[22] Gao-Yu Hsiung, Vacuum Technology The sixth OCPA Accelerator School (OCPA2010),July 29 to August 7, in Beijing, China

[23] Turbomolecular pump structure https://www.lesker.com/newweb/faqs/question.cfm?id=477

[24] Structure of hot cathode ion gauge

[25] Jaya Mukherjee, V Dileep Kumar, S P Yadav, Tripti A Barnwal, and Biswaranjan Dikshit. Plasma diagnosis as a tool for the determination of the parameters of electron beam evaporation and sources of ionization. Measurement Science and Technology, 27(7):075007, jun 2016.

[26] J.J Scholtz, D Dijkkamp, and R.W.A Schmitz. Secondary electron emission properties. Philips Journal of Research, 50(3):375 – 389, 1996. New Flat, Thin Display Technology.
[27] David M. Suszcynsky and Joseph E. Borovsky. Modified sternglass theory for the emission of secondary electrons by fast-electron impact. Phys. Rev. A, 45:6424–6428, May 1992.

[28] R. K. Yadav and R. Shanker. Contribution of backscattered electrons to the total electron yield produced in collisions of 8–28 kev electrons with tungsten. Pramana, 68(3):507–515, Mar 2007.
[29] Jaspreet Kaur, Dhanoj Gupta, Rahla Naghma, Debdeep Ghoshal, and Bobby Antony. Electron impact ionization cross sections of atoms. Canadian Journal of Physics, 93(6):617–625, 2015.

[30] H. Tawara and T. Kato. Total and partial ionization cross sections of atoms and ions by electron impact. Atomic Data and Nuclear Data Tables, 36(2):167 – 353, 1987.
[31] A. Kramida, Yu. Ralchenko, J. Reader, and and NIST ASD Team. NIST Atomic Spectra Database (ver. 5.5.1), [Online]. Available: https://physics.nist.gov/asd [2017, December 24]. National Institute of Standards and Technology, Gaithersburg, MD., 2017.

[32] Dan M. Goebel and Ira Katz. Fundamentals of Electric Propulsion: Ion and Hall Thrusters. Wiley, 1st edition, November 2008.
  • 同意授權校內瀏覽/列印電子全文服務,於2019-07-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-07-16起公開。

  • 如您有疑問,請聯絡圖書館