進階搜尋


下載電子全文  
系統識別號 U0026-0207201821511000
論文名稱(中文) 氧化鋅奈米柱/氧化亞銅異質介面應用在太陽能電池及PVK 緩衝層光檢測器
論文名稱(英文) A study of ZnO nanorods/Cu2O heterojunction applications to solar cells and to photodetectors with a poly-(N-vinylcarbazole) intermediate layer
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 106
學期 2
出版年 107
研究生(中文) 洪敏皓
研究生(英文) Min-Hao Hong
學號 q18981078
學位類別 博士
語文別 英文
論文頁數 139頁
口試委員 口試委員-朱聖緣
口試委員-鄭德俊
口試委員-林大欽
口試委員-高宗達
口試委員-張連璧
指導教授-彭洞清
中文關鍵字 太陽能電池  氧化亞銅  氧化鋅奈米柱  化學水浴法  高短路電流密度  氧化鋅  PVK  氧化亞銅  紫外光  光二極體 
英文關鍵字 solar cells  cuprous oxide  ZnO nanorods  Mirror  Heterojunction  PVK  ultraviolet detection  visible-blind photodetector 
學科別分類
中文摘要 本研究探討氧化鋅奈米柱/氧化亞銅異質介面應用在太陽能電池其短路電流特性及使用PVK 緩衝層之光檢測器其光響應能力。首先在太陽能電池部分,以低成本電鍍製成之半透明氧化亞銅/ 氧化鋅奈米柱太陽能電池達成高短路電流密度(Jsc)9.53 mA/cm2. 首先利用化學水浴法合成高品質氧化鋅奈米柱藉以取代傳統電鍍的氧化鋅薄膜作為載子收集之路徑,如此短路電流密度(Jsc)從1.63到 6.41 mA/cm2,幾乎增加了四倍。接下來減少氧化亞銅吸收層電鍍的厚度來彌補因少數載子漂移及擴散的複合損失(二者長度大約為 100 nm),因此短路電流密度(Jsc)更進一步的被提高到7.77 mA/cm2。最後將銀鏡沉積於玻璃基板背面來產生額外的光生載子以加強太陽能電池的光吸收,進而達到迄今為止利用低成本電鍍製程之氧化亞銅/ 氧化鋅太陽能電池的最高短路電流密度(Jsc)9.53 mA/cm2。其二在光檢測之應用是以PVK薄膜作為電子阻擋與電洞傳輸層並鑲入具低成本的氧化亞銅薄膜與氧化鋅奈米柱之間,作為具高性能紫外光探測器。氧化亞銅/PVK/氧化鋅奈米柱光探測器在波長360 nm其光響應度為13.28 A/W,在-0.1V的低偏壓低紫外光強度24.9 μW/cm2下具有高偵測率1.03×1013 Jones。紫外光探測器有無 PVK 中間層在-0.5 V偏壓下光暗電流比分別為1.34 × 102和3.99,而可見光拒斥比(R360 nm / R450 nm) 則分別為350 和1.735。在上述的結果中,展示幾個新穎的特徵:(a) 紫外光在氧化鋅奈米柱上所產生的電洞載子能夠穿越PVK層傳輸至氧化亞銅層;(b) PVK緩衝層具有顯著地抑制逆偏漏電流,致使有較大的光電流放大效果;(c) 利用PVK層大幅改善紫外光對可見光拒斥比並在極低的光強度下達到高靈敏度的紫外光偵測能力。
英文摘要 In solar cell, this study reports the achievement of a high short-circuit current density (Jsc) of 9.53 mA/cm2 for low cost electrodeposited (ED) semi-transparent Cu2O/ZnO nanorod (NR) solar cells. High-quality chemicalbath-deposited ZnO NRs that align with the carrier collection path were used to replace the traditionalsputtered ZnO film. An almost four-fold increase (from 1.63 to 6.41 mA/cm2) in Jsc was obtained with the NRs compared to the level obtained with a sputtered ZnO thin film cell. Decreased the ED Cu2O absorber film thickness is able to compensate for the recombination loss that results from Cu2O's short minority carrier drift and diffusion length (both on the order of 100 nm), further boosting Jsc to 7.77 mA/cm2. Additional photo-generated carriers were created for the semi-transparent solar cells when a silver mirror was deposited on the backside of the glass; this further enhanced absorption and improved Jsc to 9.53 mA/cm2. This is the highest Jsc value reported to date for a low-cost ED Cu2O/ZnO solar cell.
In photodetector, this study reports a high-performance hybrid ultraviolet (UV) photodetector with visible-blind sensitivity fabricated by inserting a poly-(N-vinylcarbazole) (PVK) intermediate layer between lowcost processed Cu2O film and ZnO nanorods (NRs). The PVK layer acts as an electron-blocking/ hole-transporting layer between the n-ZnO and p-Cu2O films. The Cu2O/PVK/ZnO NR photodetecto exhibited a responsivity of 13.28 A/W at 360 nm, a high detectivity of 1.03×1013 Jones at a low bias of -0.1V under a low UV light intensity of 24.9 μW/cm2. The photo-to-dark current ratios of the photodetector with and without the PVK intermediate layer at a bias of -0.5V are 1.34×102 and 3.99, respectively. The UV-to-visible rejection ratios (R360 nm/R450 nm) are 350 and 1.735, respectively. Several features are demonstrated: (a) UV photo-generated holes at the ZnO NRs can effectively be transported through the PVK layer to the p-Cu2O layer; (b) the insertion of a PVK buffer layer significantly minimizes the reverse-bias leakage current, which leads to a larger amplification of the photocurrent; and (c) the PVK buffer layer greatly improves the UV-to-visible responsivity ratio, allowing the device to achieve high UV detection sensitivity at a low bias voltage using a very low light intensity.
論文目次 Contents
中文摘要 I
Abstract III

ACKNOWLEDGEMENTS V
Contents VI

TABLE CATIONS IX

FIGURE CATIONS X
Chapter 1 Introduction 1
§1.1 Introduction of Solar Cell 1
§ 1.2 Review of relevant ZnO and Cu2O properties 1
1.2.1 Cu2O thin film and its properties 1
1.2.2 ZnO thin film and its properties 5
§1.3 Introduction of Photodector 8
§ 1.4 Review of relevant PVK and ZnO nanorod properties 9
1.4.1 Material properties of PVK thin film 9
1.4.2 ZnO nanorod array thin films as an absorber in solar-blind UV photodetectors 10
Chapter 2 12
Theory and Literature Reviews 12
§2.1 Solar Energy Spectrum 12
§2.2 PN Junction 13
§2.3 Principle of Solar Cell 14
§2.4 PN Junction Photovoltaic I-V Characteristics 16
§2.5 Metal-semiconductor contact 20
§2.6 p-n junction principles 21
2.6.1 p-n junction under equilibrium and various bias conditions 21
2.6.2 The series resistance (Rseries) 24
§2.7 Semiconductor photodector 25
2.7.1 Principle of operation 25
2.7.2 P-n junction photodiodes 25
2.7.3 Photoconductive detectors 26
2.7.4 Responsivity and Detectivity 28
§ 2.8 Motivation of the studies 29
2.8.1 Motivation of solor cell 29
2.8.2 Motivation of photodector 33
Chapter 3 Solar Cell Experimental Scheme 35
§ 3.1 Experimental materials 35
3.1.1 Substrate 35
3.1.2 Chemicals 35
3.1.3 Target 35
3.1.4 Gas 36
§ 3.2 Process Equipments 36
3.2.1 Sputter system 36
3.2.2 Electrochemical Plating System 39
§ 3.3 Analytical Instruments 42
3.3.1 SEM and Energy Dispersive X-ray Spectroscope (EDX) 42
3.3.2 X-ray Diffraction (XRD) 46
3.3.3 Alpha-step 49
3.3.4 Solar simulator 50
§ 3.4 Process Flow 51
3.4.1 Cleaning of substrate of Indium Tin Oxide (ITO) glass 52
3.4.2 Cuprous oxide electrodeposition 52
3.4.3 ZnO seed sputtering 53
3.4.4 ZnO nanorods chemical bath deposition 55
3.4.5 Transparent electrode of indium tin oxide (ITO) sputtering 55
3.4.6 Metal electrode of silver sputtering 55
Chapter 4 Photo Detector Experimental Scheme 57
§4.1 Experimental materials 57
§4.2 Process equipment 57
4.2.1 Electrochemical deposition system 57
4.2.2 Spin coater 62
4.2.3 Square furnace 63
4.2.4 RF/DC sputtering system 64
§4.3 Analytical instruments 66
4.3.1 Scanning Electron Microscope (SEM) 66
4.3.2 X-ray Diffraction (XRD) 69
4.3.3 Electrical measurement system 70
§4.4 Experimental Flow 72
4.4.1 Indium-tin-oxide (ITO) coated glass substrate 73
4.4.2 Electrodeposition of p-Cu2O thin films 73
4.4.3 Spin-coated PVK layers 74
4.4.4 Sputtered i-ZnO thin films 74
4.4.5 ZnO nanorod arrays (NRAs) grown by chemical bath deposition 75
4.4.6 Sputtered transparent ITO top electrodes 75
Chapter 5 Results and Discussion 76
§5.1 Cu2O/ZnO heterojunction solar cells 76
5.1.1 Analysis of SEM image and XRD pattern 77
5.1.2 Effect of seed thickness for solar cells 80
5.1.3 Effect of zinc oxide thin film and nanorods for solar cells 82
5.1.4 Effect of sparse nanorods 85
5.1.5 Effect of Cu2O thickness for solar cells 87
5.1.6 Silver mirror 91
5.1.7 Summary 92
§5.2 Photodetector based on Cu2O/ZnO nanorods with PVK intermediate layer 97
5.2.1 X-ray diffraction patterns of stacked films 98
5.2.2 Surface morphology and cross-sectional view of Cu2O and ZnO 101
5.2.3 Electrical measurement 105
5.2.4 Photoresponse and detectivity 114
5.2.5 Summary 119
Chapter 6 Conclusions 125
§6.1 Cu2O/ZnO heterojunction solar cells 125
§6.2 Photodetector based on Cu2O/ZnO nanorods with PVK intermediate layer 125
Bibliography 127
參考文獻 Bibliography
[1] S. Rühle, A. Y. Anderson, H. N. Barad, B. Kupfer, Y. Bouhadana, E. Rosh-Hodesh, and A. Zaban, “All-oxide photovoltaics,” J. Phys. Chem. Lett., vol. 3, no. 24, (2012), pp. 3755–3764.
[2] W. Y. Ching, Y. N. Xu, and K. W. Wong, “Ground-state and optical properties of Cu2O and CuO crystals,” Phys. Rev. B, vol. 40, no. 11, (1989), pp. 7684–7695.
[3] T. Ito, H. Yamaguchi, K. Okabe, and T. Masumi, “Single-crystal growth and characterization of Cu2O and CuO,” J. Mater. Sci., vol. 33, (1998) pp. 3555–3566.
[4] H. Raebiger, S. Lany, and A. Zunger, “Origins of the p-type nature and cation deficiency in Cu2O and related materials,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 76, (2007) pp. 045209.
[5] A. . Musa, T. Akomolafe, and M. . Carter, “Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties,” Sol. Energy Mater. Sol. Cells, vol. 51, (1998), pp. 305–316.
[6] S. Ishizuka, S. Kato, Y. Okamoto, and K. Akimoto, “Control of hole carrier density of polycrystalline Cu2O thin films by Si doping,” Appl. Phys. Lett., vol. 80, no. 6, (2002), pp. 950–952.
[7] Y. Nakano, S. Saeki, and T. Morikawa, “Optical bandgap widening of p -type Cu2O films by nitrogen doping,” Appl. Phys. Lett., vol. 94, (2009), pp. 022111.
[8] L. O. Grondahl and P. H. Geiger, “A New Electronic Rectifier,” Trans. Am. Inst. Electr. Eng., vol. 46, (1927), pp. 216–239.
[9] L. O. Grondahl, “The copper-cuprous-oxide rectifier and photoelectric cell,” Rev. Mod. Phys., vol. 5, no. 2, (1933), pp. 141–168.
[10] T. Minami, Y. Nishi, and T. Miyata, “High-Efficiency Cu2O-Based Heterojunction Solar Cells Fabricated Using a Ga2O3 Thin Film as N-Type Layer,” Appl. Phys. Express, vol. 6, (2013), pp. 044101.
[11] C. Wadia, a. P. Alivisatos, and D. M. Kammen, “Materials availability expands the opportunity for large-scale photovoltaics deployment,” Environ. Sci. Technol., vol. 43, no. 6, (2009), pp. 2072–2077.
[12] S. A. T.Minami, Y.Nishi, T.Miyata, “Photovoltaic properties in Al-doped ZnO non-doped Zn1-xMgxO/Cu2O heterojunction solar cells,” ECS Trans., vol. 50, no. 51, (2013), pp. 59–68.
[13] Y. Nishi, T. Miyata, and T. Minami, “The impact of heterojunction formation temperature on obtainable conversion efficiency in n-ZnO/p-Cu2O solar cells,” Thin Solid Films, vol. 528, (2013), pp. 72–76.
[14] T. Minami, Y. Nishi, T. Miyata, and J. I. Nomoto, “High-efficiency oxide solar cells with ZnO/Cu2O heterojunction fabricated on thermally oxidized Cu2O sheets,” Appl. Phys. Express, vol. 4, (2011), pp. 062301.
[15] T. Minami, H. Tanaka, T. Shimakawa, T. Miyata, and H. Sato, “High-efficiency oxide heterojunction solar cells using Cu2O sheets,” Japanese J. Appl. Physics, Part 2 Lett., vol. 43, no. 7 A, (2004), pp. 917–919.
[16] Y. S. Lee, D. Chua, R. E. Brandt, S. C. Siah, J. V. Li, J. P. Mailoa, S. W. Lee, R. G. Gordon, and T. Buonassisi, “Atomic layer deposited gallium oxide buffer layer enables 1.2 v open-circuit voltage in cuprous oxide solar cells,” Adv. Mater., vol. 26, (2014), pp. 4704–4710.
[17] S. W. Lee, Y. S. Lee, J. Heo, S. C. Siah, D. Chua, R. E. Brandt, S. B. Kim, J. P. Mailoa, T. Buonassisi, and R. G. Gordon, “Improved Cu2O-based solar cells using atomic layer deposition to control the Cu oxidation state at the p-n junction,” Adv. Energy Mater., vol. 4, (2014), pp. 1301916.
[18] Y. S. Lee, J. Heo, S. C. Siah, J. P. Mailoa, R. E. Brandt, S. B. Kim, R. G. Gordon, and T. Buonassisi, “Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells,” Energy Environ. Sci., vol. 6, (2013), pp. 2112.
[19] A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett., vol. 88, (2006), pp. 163502.
[20] T. Minami, T. Miyata, K. Ihara, Y. Minamino, and S. Tsukada, “Effect of ZnO film deposition methods on the photovoltaic properties of ZnO-Cu2O heterojunction devices,” Thin Solid Films, vol. 494, (2006), pp. 47–52.
[21] K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, “Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells,” Adv. Mater., vol. 22, (2010), pp. 254–258.
[22] K. Fujimoto, T. Oku, and T. Akiyama, “Fabrication and characterization of copper oxides/fullerene solar cells prepared by an electrodeposition method,” J. Ceram. Soc. Japan, vol. 6, (2013), pp. 086503.
[23] M. Izaki, T. Shinagawa, K.-T. Mizuno, Y. Ida, M. Inaba, and A. Tasaka, “Electroche-mically constructedp-Cu2O/n-ZnO heterojunction diodefor photovoltaic device,” J. Phys. D. Appl. Phys., vol. 40, (2007), pp. 3326–3329.
[24] A. T. Marin, D. Muñoz-Rojas, D. C. Iza, T. Gershon, K. P. Musselman, and J. L. MacManus-Driscoll, “Novel atmospheric growth technique to improve both light absorption and charge collection in ZnO/Cu2O thin film solar cells,” Adv. Funct. Mater., vol. 23, (2013), pp. 3413–3419.
[25] S. S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, “Electrodeposited ZnO/Cu2O heterojunction solar cells,” Electrochim. Acta, vol. 53, (2008), pp. 2226–2231.
[26] D. Look, J. Hemsky, and J. Sizelove, “Residual Native Shallow Donor in ZnO,” Phys. Rev. Lett., vol. 82, no. 12, (1999), pp. 2552–2555.
[27] C. G. Van De Walle, “Hydrogen as a cause of doping in zinc oxide,” Phys. Rev. Lett., vol. 85, no. 5, (2000), pp. 1012–1015.
[28] C. a. Wolden, T. M. Barnes, J. B. Baxter, and E. S. Aydil, “Infrared detection of hydrogen-generated free carriers in polycrystalline ZnO thin films,” J. Appl. Phys., vol. 97, (2005), pp. 043522.
[29] B. Claflin, D. C. Look, S. J. Park, and G. Cantwell, “Persistent n-type photoconductivity in p-type ZnO,” J. Cryst. Growth, vol. 287, no. 1, (2006), pp. 16–22.
[30] Y. W. Heo, S. J. Park, K. Ip, S. J. Pearton, and D. P. Norton, “Transport properties of phosphorus-doped ZnO thin films,” Appl. Phys. Lett., vol. 83, no. 6, (2003), pp. 1128–1130.
[31] Masako Sasaki, Shu Takeshita, Masahisa Sugiura, Noriko Sudo, Yukiharu Miyake, Yoshiya Furusawa, and Toshibumi Sakata."Ground-Based Observation of Biologically Active Solar Ultraviolet-B Irradiance at 35. DEG. N Latitude in Japan." Journal of geomagnetism and geoelectricity, 45.6, (1993), pp.473-485.
[32] Franck Omnès, Eva Monroyb, Elias Muñozc, and Jean-Luc Reverchond. "Wide bandgap UV photodetectors: A short review of devices and applications." Integrated Optoelectronic Devices 2007. SPIE, (2007).

[33] Do Young Kim, Jiho Ryu, Jesse Manders, Jaewoong Lee, and Franky So. "Air-stable, solution-processed oxide p–n heterojunction ultraviolet photodetector." ACS applied materials & interfaces, 6.3 (2014), pp.1370-1374.

[34] Oleg Lupan, Lee Chow, Guangyu Chai, Leonid Chernyak, Olena Lopatiuk-Tirpak, and Helge Heinrich. " Focused-ion-beam fabrication of ZnO nanorod-based UV photodetector using the in-situ lift-out technique." Physica status solidi. A, Applied research, 205.11 (2008), pp.2673.

[35] Liao Meiyong, Yasuo Koide, and Jose Alvarez. "Thermally stable visible-blind diamond photodiode using tungsten carbide Schottky contact." Appl. Phys. Lett., 87.2 (2005), pp. 022105-022105.

[36] Östlund Ludwig, Qin Wang, Romain Esteve, Susanne Almqvist, David Rihtnesberg, Sergey Reshanov, Andy Z. Z. Zhang, Jang-Kwon Lim, Mietek Bakowski, Adolf Schöner, and Wlodek Kaplan. "4H‐and 6H‐SiC UV photodetectors." Physica status solidi (c) ,9.7 (2012), pp.1680-1682.

[37] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz , and M. Razeghi. "High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors based on GaN." Appl. Phys. Lett., 74.5 (1999), pp.762-764.

[38] Fawen Guo, Bin Yang, Yongbo Yuan, Zhengguo Xiao, Qingfeng Dong, Yu Bi, and Jinsong Huang. "A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection." Nature nanotechnology, 7.12 (2012), pp.798-802.
[39] Yun-Yue Lin, Chun-Wei Chen, Wei-Che Yen, Wei-Fang Su, Chen-Hao Kuand, and Jih-Jen Wu. "Near-ultraviolet photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature solution processes." Appl. Phys. Lett., 92.23 (2008), pp. 233301-233301.

[40] Hatch, Sabina M, Joe Briscoe, and Steve Dunn. "A Self‐Powered ZnO‐Nanorod/CuSCN UV Photodetector Exhibiting Rapid Response." Advanced Materials, 25.6 (2013), pp.867-871.

[41] Yannan Xie, Huolin Huang, Weifeng Yang, and Zhengyun Wu. "Low dark current metal-semiconductor-metal ultraviolet photodetectors based on sol-gel-derived TiO2 films." Journal of Applied Physics, 109.2 (2011), pp.023114-023114.

[42] Yoshihiro Kokubun, Kasumi Miura, Fumie Endo, and Shinji Nakagomi. "Sol-gel prepared β-Ga 2O3 thin films for ultraviolet photodetectors." Appl. Phys. Lett., 90.3 (2007), pp. 031912-031912.

[43] Hao Chen, Linfeng Hu, Xiaosheng Fang, and Limin Wu. "General Fabrication of Monolayer SnO2 Nanonets for High‐Performance Ultraviolet Photodetectors." Advanced Functional Materials, 22.6 (2012),pp. 1229-1235.

[44] J. C Bernede, H. Derouiche, and V. Djara. "Organic photovoltaic devices: influence of the cell configuration on its performences." Solar energy materials and solar cells, 87.1 (2005), pp.261-270.

[45] Lei Wang, Bo Liang, Fei Huang, Junbiao Peng, and Yong Cao. "Utilization of water/alcohol-soluble polyelectrolyte as an electron injection layer for fabrication of high-efficiency multilayer saturated red-phosphorescence polymer light-emitting diodes by solution processing." Appl. Phys. Lett., 89.15 (2006), pp.151115.

[46] Wenge Yua, Zheng Xua, Feng Tenga, Shengyi Yanga, Yanbing Houa, Lei Qiana, Chong Qua, Sanyu Quana, and Xurong Xua. "Blue electroluminescence of ZnSe thin film in an organic–inorganic heterostructures device." Physics Letters A, 338.3 (2005), pp.402-406.

[47] YS Lai, CH Tu, DL Kwong, and JS Chen. "Charge-transport characteristics in bistable resistive poly (N-vinylcarbazole) films." Electron Device Letters, IEEE, 27.6 (2006), pp.451-453.

[48] S. Ben Dkhila, J. Davenasb, R. Bourguigaa, and D. Cornuc. "Effect of thermal treatments on the properties of PVK/silicon nanowires films for hybrid solar cells." Synthetic Metals, 161.17 (2011), pp.1928-1933.

[49] Xiong Gong, Minghong Tong, Yangjun Xia, Wanzhu Cai, Ji Sun Moon, Yong Cao, Gang Yu, Chan-Long Shieh, Boo Nilsson, and Alan J. Heeger. "High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm." Science, 325.5948 (2009), pp.1665-1667.

[50] Jia Gao, Han You, Zhi-Pei Qin, Junfeng Fang, Dongge M, Xuhui Zhu, and Wei Huang. "High efficiency polymer electrophosphorescent light-emitting diodes." Semiconductor science and technology, 20.8 (2005), pp.805.

[51] Wei Wua, Junxin Lia, Luqi Liua, Liangming Yanga, Zhi-Xin Guoa, Liming Daia, and Daoben Zhua. "The photoconductivity of PVK-carbon nanotube blends." Chemical physics letters, 364.1 (2002), pp.196-199.

[52] Zhao, Xinhong, Peng Wang, and Baojun Li. "CuO/ZnO core/shell heterostructure nanowire arrays: synthesis, optical property, and energy application." Chemical Communications, 46.36 (2010), pp.6768-6770.

[53] Henk J. Bolink, Eugenio Coronado, Diego Repetto, and Michele Sessolo. "Air stable hybrid organic-inorganic light emitting diodes using ZnO as the cathode." Appl. Phys. Lett., 91.22 (2007), pp.223501.

[54] Changzeng Fan, Qiang Wang, Lixiang Li, Suhong Zhang, Yan Zhu, Xinyu Zhang, Mingzhen Mak,Riping Liu, and Wenkui Wang . "Bulk moduli of wurtzite, zinc-blende, and rocksalt phases of ZnO from chemical bond method and density functional theory." Appl. Phys. Lett., 92.10 (2008), pp.101917.

[55] S.J. Peartona, D.P. Nortona, K. Ipa, Y.W. Heoa, and T. Steinerb. "Recent progress in processing and properties of ZnO." Progress in materials science, 50.3 (2005), pp.293-340.

[56] Lin, Bixia, Zhuxi Fu, and Yunbo Jia. "Green luminescent center in undoped zinc oxide films deposited on silicon substrates." Appl. Phys. Lett., 79.7 (2001), pp.943-945.

[57] B. J Coppa, R. F. Davis, and R. J. Nemanich. "Gold Schottky contacts on oxygen plasma-treated, n-type ZnO (0001)." Appl. Phys. Lett., 82.3 (2003), pp.400-402.

[58] Atsushi Tsukazaki, Akira Ohtomo, Takeyoshi Onuma, Makoto Ohtani, Takayuki Makino, Masatomo Sumiya, Keita Ohtani, Shigefusa F. Chichibu, Syunrou Fuke, Yusaburou Segawa, Hideo Ohno, Hideomi Koinuma, and Masashi Kawasak. "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO." Nature materials, 4.1 (2005), pp.42-46.

[59] M. Wei, R. C. Boutwell, J. W. Mares, A. Scheurer, and W. V. Schoenfeld. "Bandgap engineering of sol-gel synthesized amorphous Zn1-xMgxO films." Appl. Phys. Lett., 98.26 (2011), pp.261913.

[60] Bingqiang Cao and Weiping Cai. "From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions." The Journal of Physical Chemistry C, 112.3 (2008), pp.680-685.

[61] C. Soci , A. Zhang , B. Xiang , S. A. Dayeh , D. P. R. Aplin , J. Park , X. Y. Bao , Y. H. Lo , and D. Wang . "ZnO nanowire UV photodetectors with high internal gain." Nano letters, 7.4 (2007), pp.1003-1009.

[62] F.C. Akkari, M. Kanzari, Optical, structural, and electrical properties of Cu2O thin films, Phys. Status Solidi A 207 (2010) 1647-1651.

[63] S. Rühle, A.Y. Anderson, H.N. Barad, B. Kupfer, Y. Bouhadana, E. Rosh-Hodesh, A. Zaban, All-oxide photovoltaics, J. Phys. Chem. Lett. 3 (2012) 3755e3764.

[64] O. Porat, I. Riess, Defect chemistry of Cu2-yO at elevated temperatures. Part II:electrical conductivity, thermoelectric power and charged point defects, Solid State Ionics 81 (1995) 29-41.

[65] Y. Tsur, I. Riess, Self-compensation in semiconductors, Phys. Rev. B 60 (1999) 8138-8146.

[66] Y. Tsur, I. Riess, Impurity solubility limits in ionic crystals, with application to Cu2O, Z. Phys. Chem. 207 (1998) 181-213.

[67] Y. Nishi, T. Miyata, T. Minami, The impact of heterojunction formation temperature on obtainable conversion efficiency in n-ZnO/p-Cu2O solar cells, Thin Solid Films 528 (2013) 72-76.

[68] K. Fujimoto, T. Oku, T. Akiyama, Fabrication and characterization of ZnO/Cu2O solar cells prepared by electrodeposition, Appl. Phys. Express 6 (2013) 086503.

[69] A.T. Marin, D. Mu~noz-Rojas, D.C. Iza, T. Gershon, K.P. Musselman, J.L. MacManus-Driscoll, Novel atmospheric growth technique to improve both light absorption and charge collection in ZnO/Cu2O thin film solar cells, Adv. Functional Mater 23 (2013) 3413-3419.

[70] T. Minami, Y. Nishi, T. Miyata, Heterojunction solar cell with 6% efficiency based on an n-type aluminumegalliumeoxide thin film and p-type sodiumdoped Cu2O sheet, Appl. Phys. Express Appl. Phys. Express 8 (2015) 022301.

[71] T. Minami, Y. Nishi, T. Miyata, High-efficiency Cu2O-Based heterojunction solar cells fabricated using a Ga2O3 thin film as N-Type layer, Appl. Phys. Express 6 (2013) 044101.

[72] S.A.T. Minami, Y. Nishi, T. Miyata, Photovoltaic properties in Al-doped ZnO non-doped Zn1-xMgxO/Cu2O heterojunction solar cells, ECS Trans. 50 (51) (2013) 59-68.

[73] S.W. Lee, Y.S. Lee, J. Heo, S.C. Siah, D. Chua, R.E. Brandt, S.B. Kim, J.P. Mailoa, T. Buonassisi, R.G. Gordon, Improved Cu2O-based solar cells using atomic layer deposition to control the Cu oxidation state at the p-n junction, Adv. Energy Mater. 4 (2014) 1301916.

[74] Y.S. Lee, D. Chua, R.E. Brandt, S.C. Siah, J.V. Li, J.P. Mailoa, S.W. Lee, R.G. Gordon, T. Buonassisi, Atomic layer deposited gallium oxide buffer layer enables 1.2 v open-circuit voltage in cuprous oxide solar cells, Adv. Mater 26 (2014) 4704-4710.

[75] Y. Ievskaya, R.L.Z. Hoye, a. Sadhanala, K.P. Musselman, J.L. MacManus-Driscoll, Fabrication of ZnO/Cu2O heterojunctions in atmospheric conditions: improved interface quality and solar cell performance, Sol. Energy Mater. Sol. Cells 135 (2014) 43-48.

[76] M. Saad, A. Kassis, Effect of interface recombination on solar cell parameters, Sol. Energy Mater. Sol. Cells 79 (2003) 507-517.

[77] A. Mittiga, E. Salza, F. Sarto, M. Tucci, R. Vasanthi, Heterojunction solar cell with 2% efficiency based on a Cu2O substrate, Appl. Phys. Lett. 88 (2006) 163502.

[78] K.P. Musselman, A. Marin, A. Wisnet, C. Scheu, J.L. MacManus-Driscoll, L. Schmidt-Mende, A novel buffering technique for aqueous processing of zinc oxide nanostructures and interfaces, and corresponding improvement of electrodeposited ZnO- Cu2O solar cells, Adv. Funct. Mater 21 (2011) 573.

[79] C. Xiang, G.M. Kimball, R.L. Grimm, B.S. Brunschwig, H.A. Atwater, N.S. Lewis, 820 mV open-circuit voltages from Cu2O/CH3CN junctions, Energy Environ Sci. 4 (2011) 1311.

[80] Y.S. Lee, J. Heo, S.C. Siah, J.P. Mailoa, R.E. Brandt, S.B. Kim, R.G. Gordon, T. Buonassisi, Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells, Energy Environ. Sci 6 (2013) 2112.

[81] T. Minami, Y. Nishi, T. Miyata, J. Nomoto, High-efficiency oxide solar cells with ZnO/Cu2O heterojunction fabricated on thermally oxidized Cu2O sheets, Appl. Phys. Express 4 (2011) 062301.

[82] M. Izaki, T. Shinagawa, K.-T. Mizuno, Y. Ida, M. Inaba, A. Tasaka, Electrochemicall constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device, J. Phys. D. Appl. Phys. 40 (2007) 3326-3329.

[83] J.W. Chen, D.C. Perng, J.F. Fang, Nano-structured Cu2O solar cells fabricated on sparse ZnO nanorods, Sol. Eng. Mat. Sol. Cells 95 (2011) 2471-2477.

[84] K.P. Musselman, A. Wisnet, D.C. Iza, H.C. Hesse, C. Scheu, J.L. MacManus- Driscoll, L. Schmidt-Mende, Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells, Adv. Eng. Mater 22 (2010) E254-E258.

[85] S.S. Jeong, A. Mittiga, E. Salza, A. Masci, S. Passerini, Electrodeposited ZnO/ Cu2Oheterojunction solar cells, Electrochimica Acta 53 (2008) 2226-2231.

[86] K.P. Musselman, Y. Ievskaya, J.L. MacManus-Driscoll, Modelling charge transport lengths in heterojunction solar cells, Appl. Phys. Lett. 101 (2012) 253503.

[87] K. Cheng, Q. Li, J. Meng, X. Han, Y. Wu, S. Wang, L. Qian, Z. Du, Interface engineering for efficient charge collection in Cu2O/ZnO heterojunction solar cells with ordered ZnO cavity-like nanopatterns, Sol. Energy Mater. Sol. Cells 116 (2013) 120-125.

[88] O. Torres, A. Tanskanen, B. Veihelmann, C. W. Ahn, R. Braak, P. K. Bhartia, P. Veefkind, and P. Levelt, J. Geophys. Res. 112, D24S47, doi:10.1029/2007JD008809 (2007).

[89] A. Hirano, C. Pernot, M. Iwaya, T. Detchprohm, H. Amano, and I. Akasaki, Phys. Status Solidi A 188, 293 (2001).

[90] H. John and M. M. Blum, Drug Test. Anal. 4, 179 (2012).

[91] S. Jeong, J. W. Nam, K. B. Ahn, I. H. Park, S. W. Kim, J. Lee, H. Lim, S. Brandt, C. Budtz-Jørgensen, A. J. Castro-Tirado et al., Opt. Express 21, 2263 (2013).

[92] P. Sandvik, K. Mi, F. Shahedipour, R. McClintock, A. Yasan, P. Kung, and M. Razeghi, J. Cryst. Growth 231, 366 (2001).

[93] B. Butun, T. Tut, E. Ulker, T. Yelboga, and E. Ozbay, Appl. Phys. Lett. 92, 033507 (2008).

[94] G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, U. K. Mishra, and E. J. Tarsa, Appl. Phys. Lett. 75, 247 (1999).

[95] Y. Zhou, C. Ahyi, C. Tin, J. Williams, M. Park, D. Kim, A. Cheng, D. Wang, A. Hanser, E. A. Preble, N. M. Williams, and K. Evans, Appl. Phys. Lett. 90, 121118 (2007).

[96] Z. Jiang, W. Zhang, A. Luo, M. R. M. Atalla, G. You, X. Li, L. Wang, J. Liu, A. M. Elahi, L. Wei, Y. Zhang, and J. Xu, IEEE Photonics Technol. Lett. 27, 994 (2015).

[97] J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, Appl. Phys. Lett. 94, 191103 (2009).

[98] Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, Nano Lett. 8, 1649 (2008).

[99] F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, Nat. Nanotechnol. 7, 798 (2012).

[100] L. Wang, D. Zhao, Z. Su, F. Fang, B. Li, Z. Zhang, D. Shen, and X. Wang, Org. Electron. 11, 1318 (2010).
.,
[101] H. Yang, D. Son, T. Kim, J. Lee, and W. Park, Org. Electron. 11, 1313 (2010).

[102] N. Nasiri, R. Bo, F. Wang, L. Fu, and A. Tricoli, Adv. Mater. 27, 4336 (2015).

[103] J. L. Pau, J. Waters, E. Rivera, S. M. Kim, and P. Kung, IEEE Electron Device Lett. 36, 814 (2015).

[104] G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, and Z. Du, Appl. Phys. Lett. 99, 203105 (2011).

[105] M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, Appl. Phys. Lett. 93, 123309 (2008).

[106] S. M. Hatch, J. Briscoe, and S. Dunn, Adv. Mater. 25, 867 (2013).

[107] T. Minami, T. Miyata, K. Ihara, Y. Minamino, S. Tsukada, Effect of ZnO film deposition methods on thephotovoltaic properties of ZnOeCu2O heterojunction devices, Thin Solid Films 494 (2006) 47-52.

[108] T. Minami, H. Tanaka, T. Shimakawa, T. Miyata, H. Sato, High-efficiency oxide heterojunction solar cells using Cu2O sheets, Jpn. J. Appl.Phys. 43 (2004) L917-L919.

[109] A. Soudi, P. Dhakal, Y. Gu, Diameter dependence of the minority carrier diffusion length in individual ZnO nanowires, Appl. Phys. Lett. 96 (2010) 253115.

[110] C.A. Dimitriadis, L. Papadimitriou, N.A. Economou, Resistivity dependence of minority carrier diffusion length in single crystals of Cu2O, J. Mater. Sci. Lett. (1983) 691-693.

[111] E. Terzini, A. Rubino, R. De Rosa, M.L. Addonizio, Effect of ZnO sputtering deposition parameters on the performances of back reflector enhanced amorphous silicon solar cells, Mater. Res. Soc. Symposium - Proc. 377 (1995) 681-686.

[112] Y. Yang, H. Mehrvarz, S. Pillai, M. Green, H. Kampwerth, A. Ho-Baillie, The effect of rear surface passivation layer thickness on high efficiency solar cells with planar and scattering metal reflectors, in: The 38th IEEE Photovoltaic Specialists Conference, 2012, pp. 1172-1176.

[113] R. Ren, Y.X. Guo, R.H. Zhu, Enhanced absorption in elliptical silicon nanowire arrays for solar energy harvesting, Opt. Eng. 53 (2014) 2.

[114] D. H. Zhang, Mater. Chem. Phys. 45, 248 (1996).

[115] D. Shao, M. Yu, J. Lian, and S. Sawyer, Appl. Phys. Lett. 101, 211103 (2012).

[116] X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L Shieh, B. Nilssom, and A. J. Heeger, Science 325, 1665 (2009).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-07-19起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-07-19起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw