進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0207201413363400
論文名稱(中文) 半導體微共振腔光激子凝聚的理論研究
論文名稱(英文) Theoretical Study of Exciton-Polariton Condensates in Semiconductor Microcavities
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 102
學期 2
出版年 103
研究生(中文) 陳挺煒
研究生(英文) Ting-Wei Chen
電子信箱 L78981050@mail.ncku.edu.tw
學號 L78981050
學位類別 博士
語文別 英文
論文頁數 134頁
口試委員 指導教授-魏明達
共同指導教授-謝文峰
口試委員-程思誠
口試委員-傅永貴
口試委員-蔡錦俊
口試委員-盧廷昌
口試委員-黃勝廣
中文關鍵字 光激子  凝聚態  量子化渦旋 
英文關鍵字 exciton-poalriton  condensates  quantized vortices 
學科別分類
中文摘要 光激子是一種半光、半物質的準粒子,在激子和光子的強交互作用下,可以在半導體二維度的量子井微共振腔內產生。因為光子的輕質量搭配激子的交互作用力,半導體共振腔內的光激子在臨界激發條件以上可以透過受激發累積效應佔據到一個較低的量子凝聚態。這個現象可以經由觀察空間或時間同調性、量子化渦旋、激發能譜或是超流特性等等加以印證。因此研究光激子的動力學行為, 探討其物理特性以供實驗佐證是不可或缺的一環。本篇論文使用複數形式的Gross-Pitaevskii方程式來理論研究利用有限大小光束激發的光激子凝聚態。我們使用兩種計算模型,一種是利用單一微分方程式來描述凝聚態的動態行為,其中激發光束所帶來的增益及凝聚態的損耗被整合在傳統冷原子系統所使用的傳統Gross-Pitaevskii方程式當中;另外一種是考慮凝聚態的增益來自於周遭環境的熱庫,此熱庫本身有鬆弛行為,而且能持續提供凝聚態增益的粒子數。我們先計算凝聚態在諧和式函數位能侷限狀態下的動態穩定解;隨之透過Bogoliubov動態穩定性分析探討其穩定性,得到一個對應激發參數,也就是激發光束大小及激發強度的相圖。在這個架構下,我們可以進行一些像是拉力、臨界流速等超流特性研究,量子化渦旋,BKT 相位轉變以及凝聚態流速等研究。接著,我們將位能侷限擴展到成為一個一維度的周期性位能,探討其非線性能帶;嘗試了解多能階凝聚態間的可能競爭情形。最後,我們探討自旋凝聚態的同步效應,當激發光束是一個可調極化光的話,如何調控自旋凝聚態的非均勻極化分佈,以及外加的高斯位能對自旋凝聚態的影響。
英文摘要 Exciton-polaritons are half-light and half-matter quasi-bosons, arising in a two-dimensional semiconductor microcavity from the strong-coupling between an exciton and a photon. Exciton-polariton condensate in the microcavities are formed through the stimulated accumulation of low-energy polaritons above a threshold pumping because of the intrinsic light mass from the phtonic component and the interaction from the excitonic component. The features indicating the condensation include the temporal or spatial coherence that extends over th entire condensate, the appearance of quantized vortices, the modified excitation spectrum, as well as the robustness of the condensate profile againist the disorders (superfluidity), and so on. Therefore it is essential to study the dynamics of polariton condensates in order to search for the rich or promising physical effects that could provide further experimental demonstration. This thesis uses the complex Gross-Pitaevskii equation to study the condensate states of the exciton-polaritons with a finite-size pumping spot. Two methods are used to deal with the dynamics of the condensates. One is using a single partial differential equation, incorporating the pumping gain and dissipative terms directly into the conventional Gross-Pitaevskii equation; and the other considers the relaxation mechanism from the reservoir and the polariton is consistently replenished from the reservoir. After the polariton condensate states under a harmonic confinement have been numerically calculated, we studied the dynamic instabilities for a given pumping scheme by using the Bogoliubov perturbation theory. A phase diagram was therefore obtained with respect to the pump power and pump spot. Under this framework, the superfluid properties such as drag force and critical velocities, quantized vortices, BKT transition, and super-currents can be separately discussed. Next, the system is expanded in an one-dimensional periodic potential. We obtain the nonlinear band structures, from which we understand how the transition between 0-state and -state occurs. We also gave the evidences of the synchronization conditions of a two-component spinor condensate with self-interaction and inter-component hopping. Finally, we studied the half-quantum vortices in a pumping scheme with tunable degree of polarization. The inhomogeneous polarization texture and the effects of a Gaussian pinning were studied.
論文目次 中文摘要 I
Abstract II
Table of Contents IV
Acknowledgments VI
List of Figures VIII
CHAPTER 1 Introduction 1
1.1 Bose-Einstein condensates and ultra-low threshold light emitters 1
1.2 Polariton condensation and its way toward room temperature 3
1.3 Movitation of thesis 5
1.4 Organization of thesis 6
Bibliography 8
CHAPTER 2 Exciton polaritons 14
2.1 Excitons in semiconductors 14
2.1.1 Bulk excitons 14
2.1.2 Excitons in quantum wells 15
2.1.3 Coupling with light 16
2.2 Semiconductor microcavities 16
2.2.1 Distributed Bragg reflectors 16
2.2.2 Microcavities 17
2.2.3 Photonic mode dispersion 18
2.3 Strong light-matter coupling in microcavities 19
2.3.1 Exciton-photon coupling 19
2.3.2 Strong and weak coupling 21
2.4 Polaritonic nonlinearities 22
2.5 Generalized Gross-Pitaevskii equations 23
2.6 Superfluidity 25
2.7 Quantized vortices 27
2.8 Spatial confinement of polariton condensates 28
Bibliography 29
CHAPTER 3 Polariton condensates in a harmonic potential trap 32
3.1 Introduction 32
3.2 Steady states of polariton condensates in a harmonic trap 34
3.3 The supercurrent flow and supersonic regime 38
3.4 Bogoliubov excitation of polariton condensates in a trap 41
3.5 Phase diagram in terms of angular momentum excitation 44
3.6 BKT transition and quasi-condensation 47
3.6.1 Introduction 47
3.6.2 Condensate wave functions and elementary excitations 49
3.6.3 Phase diagram in terms of the linear momentum excitation 52
3.6.4 The characteristics of the rigid and soft modes 58
3.6.5 Physical interpretation of the localized BEC and BKT phase order 62
3.7 The drag force of condensates and superfluid properties 63
3.7.1 Introduction 63
3.7.2 The implementation of a rotating defect on the polariton condensate 64
3.7.3 The effects of rotating position and defect size 72
Bibliography 74
CHAPTER 4 Stability and excitations of spontaneous vortices in polariton condensates 78
4.1 Introduction 78
4.2 Dynamics of spontaneously formed vortices 81
4.3 The stability and excitations of singly quantized vortices 89
4.4 The stability and excitations of multi-flux vortices 93
Bibliography 98
CHAPTER 5 Exciton-polariton Condensates in a Periodic Potential 100
5.1 Introduction 100
5.2 Bloch wave function formalism 102
5.3 Nonlinear Band structure 103
5.4 Gap Bloch State 107
Bibliography 113
CHAPTER 6 Conclusions and Perspectives 116
6.1 Conclusions 116
6.2 Perspectives 119
6.3 Polarization Manipulation of Half-vortex polariton condensates 120
6.4 Synchronization of spinor polariton condensates 125
Bibliography 131
Curriculum vitae 132
參考文獻 [1] K. B. Davis, M. O.Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D.M. Kurn, W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett. 75, 3969 (1995).
[2] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science 269, 198 (1995).
[3] A. Imamoğlu, R. J. Ram, S. Pau, Y. Yamamoto, Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers, Phys. Rev. A 53, 4250 (1996).
[4] E. Rosencher, B. Vinter, Optoélectronique (Dunod, Paris, 2002).
[5] A. Castiglia, Design and development of GaN-based electrically pumped vertical cavity surface emitting lasers, PhD Thesis, Universita degli studi di Palermo (2007).
[6] S. Nakamura, N. Iwasa, T. Yamada, T.Matsushita, H. Kiyoku,M. Senoh, S.-I. Nagahama, Y. Sugimoto, InGaN-based multi-quantum-well-structure laser diodes, Jpn. J. Appl. Phys. 35, L74 (1996).
[7] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, K. Chocho, InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices, Jpn. J. Appl. Phys. 36, L1568 (1997).
[8] S. Nagahama, T. Yanamoto, M. Sano, T. Mukai, Wavelength dependence of InGaN laser diode characteristics, Jpn. J. Appl. Phys. 40, 3075 (2001).
[9] H. Y. Ryu, K. H. Ha, J. K. Son, S. N. Lee, H. S. Paek, T. Jang, Y. J. Sung, K. S. Kim, H. K. Kim, Y. Park, O. H. Nam, Determination of internal parameters in blue InGaN laser diodes by the measurement of cavity-length dependent characteristics, Appl. Phys. Lett. 93, 011105 (2008).
[10] D. Kasahara, D.Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, T.Mukai, Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature, Appl. Phys. Express 4, 072103 (2011).
[11] R. Butté, N. Grandjean, A novel class of coherent light emitters: polariton lasers, Semicond. Sci.Technol. 26, 014030 (2011).
[12] T.-C. Lu, C.-C.Kao, H.-C.Kuo, G.-S.Huang, S.-C. Wang, CW lasing of current injection blue GaN-based vertical cavity surface emitting laser, Appl. Phys. Lett. 82, 141102 (2008).
[13] Y. Higuchi K. Omae, H. Matsumura, T. Mukai, Room-temperature cw lasing of a GaN-based vertical-cavity surface-emitting laser by current injection, Appl. Phys. Express 1, 121102 (2008).
[14] I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, A. V. Kavokin, Generic picture of the emission properties of III-nitride polariton laser diodes: steady-state and current modulation response, Phys. Rev. B 86, 125308 (2012).
[15] C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett. 69, 3314 (1992).
[16] J. Kasprzak et al., Bose-Einstein condensation of exciton polaritons, Nature (London) 443, 409 (2006).
[17] K. G. Lagoudakis, M.Wouters, M. Richard, A. Baas, I. Carusotto, R. André, Le Si Dang, B. Deveaud-Plédran, Quantized vortices in an exciton-polariton condensate, Nature Phys. 4, 706 (2008).
[18] K.G. Lagoudakis, T. Ostatnický, A. V. Kavokin, Y. G. Rubo, R. André, B. Deveaud-Plédran, Observation of half-quantum vortices in an exciton-polariton condensate, Science 326, 5955 (2009).
[19] A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch,D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, L. Vi ˜na, Collective fluid dynamics of a polariton condensate in a semiconductor microcavity, Nature (London) 457, 291 (2008).
[20] A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, R. Houdré I. Carusotto, E. Giacobino, A. Bramati, Superfluidity of polaritons in semiconductor microcavities, Nature Phys. 5, 805 (2009).
[21] S.Utsunomiya, L. Tian, G. Roumpos, C.W. Lai, N. Kumada, T. Fujisawa,M. Kuwata-Gonokami, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Observation of Bogoliubov excitations in exciton polariton condensates, Nature Phys. 4, 700 (2008).
[22] A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Leménager, R. Houdré, E Giacobino, C. Ciuti, A. Bramati, Polariton superfluids reveal quantum hydrodynamic solitons, Science 332, 1167 (2011).
[23] S. Savasta, O. Di Stefano, V. Savona, W. Langbein, Quantum complementarity of microcavity polaritons, Phys. Rev. Lett. 94, 246401 (2005).
[24] H. Oka, H. Ishihara, Highly efficient generation of entangled photons by controlling cavity bipolariton states, Phys. Rev. Lett. 100, 170505 (2008).
[25] R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D.M. Whittaker, E. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, J. S. Roberts, Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities, Phys. Rev. Lett. 85, 3680(2000).
[26] P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, J. S. Roberts, Angle-resonant stimulated polariton amplifier, Phys. Rev. Lett. 84, 1547 (2000).
[27] M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. André, Le Si Dang, S. Kundermann, A.Mura, G. Bongiovanni,J. L. Staehli, B. Deveaud-Plédran, High-temperature ultrafast polariton parametric amplification In semiconductor microcavities, Nature (London) 414, 731 (2001).
[28] T. K. Paraïso, M.Wouters, Y. Léger, F. Morier-Genoud, B. Deveaud-Plédran, Multistability of a coherent spin ensemble in a semiconductor microcavity, Nature Mat. 9, 655 (2010).
[29] C. Leyder, M. Romanelli, J.-Ph. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, A. Bramati, Observation of the optical spin Hall effect, Nature Phys. 3, 628 (2007).
[30] L. S. Dang, D. Heger, R. André, F. Boeuf, R. Romestain, Stimulation of polariton photoluminescence in semiconductor microcavity, Phys. Rev. Lett. 81, 3920 (1998).
[31] S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, N. Grandjean, Room temperature polariton lasing in semiconductor microcavities, Phys. Rev. Lett. 98, 126405 (2007).
[32] G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, Room temperature polariton lasingin a GaN/AlGaN multiple quantum well microcavity, Appl. Phys. Lett. 93, 051102 (2008).
[33] S. Kéna-Cohen, S. R. Forrest, Room-temperature polariton lasing in an organic single-crystal microcavity, Nature Phot. 4, 371 (2010).
[34] I. A. Shelykh, G. Pavlovic, D. D. Solnyshkov, G. Malpuech, Proposal for a mesoscopic optical Berry-phase interferometer, Phys. Rev. Lett. 102, 046407 (2009)
[35] L. Gu, H. Huanga, Z. Gan, Sagnac effect of excitonic polaritons, Phys. Rev. B 84, 075402 (2011).
[36] F. P. Laussy, A. V. Kavokin, I. A. Shelykh, Exciton-polariton mediated superconductivity, Phys. Rev.Lett. 104, 106402 (2010).
[37] C. Leyder, T. C. H Liew, A. V. Kavokin, I. A. Shelykh, M. Romanelli, J.-Ph. Karr, E. Giacobino, A. Bramati, Interference of coherent polariton beams in microcavities: Polarization-controlled optical Gates, Phys. Rev. Lett. 99, 196402 (2007).
[38] I. A. Shelykh, A. V. Kavokin, Y. G. Rubo, T. C. H Liew, G.Malpuech, Polariton polarization-sensitive phenomena in planar semiconductor microcavities, Semicond. Sci. Technol. 25, 013001 (2009).
[39] I. Shelykh, K. V. Kavokin, A. V. Kavokin, G. Malpuech, P. Bigenwald, H. Deng, G. Weihs, Y. Yamamoto, Semiconductor microcavity as a spin-dependent optoelectronic device, Phys. Rev. B 70, 035320 (2004).
[40] A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, A. Bramati, Exciton polariton spin switches, Nature Phot. 4, 361 (2010).
[41] T. C. H. Liew, A. V. Kavokin, I. A. Shelykh, Optical circuits based on polariton neurons in semiconductor microcavities, Phys. Rev. Lett. 101, 016402 (2008).
[42] K. V. Kavokin, M. A. Kaliteevski, R. A. Abram, A. V. Kavokin, S. Sharkova, I. A. Shelykh, Stimulated emission of terahertz radiation by exciton-polariton lasers, Appl. Phys. Lett. 97, 201111 (2010).
[43] A.V. Kavokin, I. A. Shelykh, T. Taylor, M.M. Glazov, Vertical cavity surface emitting terahertz laser, Phys. Rev. Lett. 108, 197401 (2012).
[44] D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, J. Bloch, Optical bistability in a GaAs-based polariton diode, Phys. Rev. Lett. 101, 266402 (2008).
[45] J. Robertson, High dielectric constant oxides, Eur. Phys. J. Appl. Phys 28, 265 (2004).
[46] G. Bastard, E. E. Mendez, L. L. Chang, L. Esaki, Exciton binding energy in quantum wells, Phys. Rev. B 26, 1974 (1982).
[47] Pallab Bhattacharya, Bo Xiao, Ayan Das, Sishir Bhowmick, Junseok Heo, Solid state electrically injected exciton-polariton laser, Phys. Rev. Lett. 110, 206403 (2013).
[48] Christian Schneider et al., An electrically pumped polariton laser, Nature 497, 348 (2013).
[49] Md Zunaid Baten, Pallab Bhattacharya, Thomas Frost, Saniya Deshpande, Ayan Das, Dimitri Lubyshev, Joel M. Fastenau, Amy W. K. Liu, GaAs-based high temperature electrically pumped polariton laser, Appl. Phys. Lett. 104, 231119 (2014).
[50] Pallab Bhattacharya, Thomas Frost, Saniya Deshpande, Md Zunaid Baten, Arnab Hazari, Ayan Das, Room temperature electrically injected polariton laser, Phys. Rev. Lett. 112, 236802 (2014).
[51] Georgios Roumpos et al., Power-law decay of the spatial correlation function in exciton-polariton condensates, PNAS 109, 6467 (2012).
[1] A. V. Kavokin, J. J. Baumberg, G. Malpuech and F. P. Laussy, Microcavities (Oxford University Press, Oxford, 2007).
[2] Benoit Deveaud, “The physics of semiconductor microcavities,” (Wiley-VCH Verlag GmbH & Co. KGaA, 2007).
[3] W. W. Chow, S. W. Koch and M. Sargent, Semiconductor-laser physics (Springer-Verlag, Berlin, New York, 1994).
[4] G. Bastard, E. E. Mendez, L. L. Chang and L. Esaki, “Exciton binding energyin quantum wells, ” Physical Review B 26, 1974 (1982).
[5] H. Mathieu, P. Lefebvre and P. Christol, “Simple analytical method for calculating exciton binding energies in semiconductor quantum wells, ”Physical Review B 46, 4092 (1992).
[6] Stanley, R. P., Houdré,R., Oesterle, U., Ilegems, M. & Weisbuch, C. Impurity modes in one-dimensional periodic systems: The transition from photonic band gaps to microcavities. Physical Review A 48, 2246 (1993).
[7] Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcav ity. Physical Review Letters 69, 3314 (1992).
[8] Houdré, R. et al. Measurement of Cavity-Polariton dispersion curve from Angle-Resolved photoluminescence experiments. Physical Review Letters 73, 2043 (1994).
[9] Hopfield, J.J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Physical Review 112, 1555 (1958).
[10] Yamamoto, Y., Tassone, F. & Cao, H. Semiconductor cavity quantum electro- dynamics (Springer, Berlin, New York, 2000).
[11] Ciuti, C., Savona, V., Piermarocchi, C., Quattropani, A. & Schwendimann, P. Role of the exchange of carriers in elastic exciton-exciton scattering in quantum wells. Physical Review B 58, 7926 (1998).
[12] Ciuti,C. Nonlinear dynamics of excitons and photons in semiconductor planar structures. Ph.D. thesis, EPFL, Lausanne (2001).
[13] Houdré, R. et al. Saturation of the strong-coupling regime in a semiconductor microcavity: Free-carrier bleaching of cavity polaritons. Physical Review B 52, 7810 (1995).
[14] Rochat, G. et al. Excitonic bloch equations for a two-dimensional system of interacting excitons. Physical Review B 61, 13856 (2000).
[15] Ciuti, C., Schwendimann, P. & Quattropani, A. Theory of polariton parametric interactions in semiconductor microcavities. Semiconductor Science and Technology 18, S279 (2003).
[16] Ciuti, C., Schwendimann, P., Deveaud, B. & Quattropani, A. Theory of the angle-resonant polariton amplifier. Physical Review B 62, R4825 (2000).
[17] Ciuti, C. & Carusotto, I. Quantum fluid effects and parametric instabilities in microcavities. Physica status solidi (b) 242, 2224–2245 (2005).
[18] Carusotto, I. & Ciuti, C. Probing microcavity polariton superfluidity through resonant rayleigh scattering. Physical Review Letters 93, 166401 (2004).
[19] L.D. Landau, J. Phys. USSR 5, 71 (1941)
[20] A. J. Leggett, Superfluidity. Rev. Mod. Phys.71(2), S318–S323 (1999)
[21] A. L. Fetter and A. A. Svidzinsky, J. Phys. Condens. Matter 13, R135-194 (2001).
[22] K. Kasamatsu, M. Tsubota, and M. Ueda, Int. J. Mod.Phys. B 19, 1835 (2005).
[23] N. Y. Kim et al., physica status solidi(b) 245, 1076 (2008).
[24] C. W. Lai et al., Nature 450, 529 (2007).
[25] O. E. Daif et al., Applied Physics Letter 88, 061105 (2006).
[26] R. Idrissi Kaitouni et al., Phys. Rev. B 74, 155311 (2006).
[27] D. Bajoni et al., Physical Review Letter100, 047401 (2006).
[28] E. Wertz et al., Nature Physics 6, 860 (2010).
[29] E. A. Cerda-Mendez et al., Physical Review Letter 105, 116402 (2010).
[30] G. Roumpos et al., Physical Review Letter 104, 126403 (2010).
[31] R. Balili et al., Science 316, 1007 (2007).
[1] H. Deng et al., Scince 298, 199 (2002).
[2] J. Kasprzaket al., Nature (London)443, 409 (2006).
[3] H. Deng, H. Haug and Y. Yamamoto, Rev. Mod. Phys. 82, 1489 (2010).
[4] R. Baliliet al., Science316, 1007 (2007).
[5] M. Wouters and V. Savona, Phys. Rev. B 81, 054508 (2010).
[6] A. Amo et al., Nature (London) 457, 291 (2009).
[7] D. Sanvitto et al., Nature Phys. 6, 527 (2010).
[8] K. G. Lagoudakis et al., Nature Phys. 4, 706 (2008).
[9] J. Keeling and N. G. Berloff, Phys. Rev. Lett. 100, 250401 (2008).
[10] M. O. Borgh, J. Keeling and N. G. Berloff, Phys. Rev. B 81, 235302 (2010).
[11] F. M. Marchetti, M. H. Szymańska, C. Tejedor and D. M. Whittaker, Phys. Rev. Lett. 105, 063902 (2010).
[12] M. Wouters and I. Carusotto, Phys. Rev. Lett. 99, 140402 (2007).
[13] M. H. Szymanska, J. Keeling and P. B. Littlewood, Phys. Rev. Lett. 96, 230602 (2006).
[14] S. Utsunomiya et al., Nature Phys. 4, 700 (2008).
[15] Marc Aβmann et al., PNAS108, 1804-1809 (2011)
[16] M. A. Porras et al.,Phys. Rev. Lett. 93, 153902 (2004).
[17] A. Alexandrescu and V. M. Pérez-García, Phys. Rev. A 73, 053610 (2006).
[18] Carlos Barcel´o, S Liberatiand Matt Visser Class, Quantum Grav.18,1137–1156 (2001)
[19] Adriaan M. J. Schakel, Boulevard of Broken Symmetries: Effective Field Theories of Condensed Matter (World Scientific Publishing, Singapore, 2008).
[20] C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, (Cambridge University Press, New York, 2002).
[21] N. N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947)
[22] L.D. Landau, J. Phys. USSR, 5, 71 (1940).
[23] L.D. Landau, J. Phys. USSR, 11, 91 (1947).
[24] R.P. Feynman, in Progress in Low Temperature Physics Vol. I,edited by C.J. Gorter (Amsterdam: North-Holland, 1955).
[25] J. Keeling and N. G. Berloff, Nature. 457, 273 (2009).
[26] T. W. Chen, M. D. Wei, S. C. Cheng and W. F. Hsieh, Solid State Commun.178,23(2014).
[27] D. D. Solnyshkov, H. Flayac, and G. Malpuech, Phys. Rev. B 84, 233405 (2011).
[28] D. Gerace and I. Carusotto, Phys. Rev. B 86, 144505 (2012).
[29] O. Lahav, A. Itah, A. Blumkin, C. Gordon, S. Rinott, A. Zayats, and J. Steinhauer, Phys. Rev. Lett.105, 240401 (2010).
[30]V. L. Berezinskii, Sov. Phys. JETP32, 493 (1971); Sov. Phys. JETP 34, 610(1972).
[31]J. M. Kosterlitz, and D. J. Thouless, J. Phys. C6, 1181 (1973).
[32]P. Minnhagen, Rev. Mod. Phys.59, 1001 (1987).
[33] D. R. Nelson, and J. M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977).
[34] Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, and J. Dalibard ,Nature441, 1118 (2006).
[35] H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, PNAS100, 15318 (2003).
[36]T. W. Chen, Y.L. Chiang, S. C. Chengand W. F. Hsieh, Solid State Commun.165, 6(2013).
[37]G. Malpuech, Y. G. Rubo, F. P. Laussy, P. Bigenwald and A. V. Kavokin, Semicond. Sci.Technol.18, S395 (2003).
[38] G. Malpuech et al., Phys Rev Lett98, 206402 (2007).
[39] G. Roumpos et al., PNAS109, 6467 (2012).
[40] L. P. Pitaevskii, and S. Stringari, Bose-Einstein Condensation (Clarendon Press, Oxford) (2003).
[41]N. Nagaosa, Quantum Field Theory in Condensed Matter Physics (Springer-Verlag, Berlin Heidelberg) (1999).
[42] Z. Hadzibabic and J. Dalibard,Rivista del Nuovo Cimento34, 389 (2011)
[43] A. Amo et. al.,Nature Phys.5, 805 (2009).
[44] A. Amo et. al.,Science332, 1167 (2011).
[45] G. E. Astrakharchik and L. P. Pitaevskii, Phys. Rev. A70 013608 (2004).
[46] I. Carusotto, S. X. Hu, L. A. Collins, and A. Smerzi, Phys. Rev. Lett.97, 260403 (2006).
[47] M. Wouters and I.Carusotto, Phys. Rev. Lett.105, 020602 (2010).
[48] M. Wouters, and I. Carusotto, Superlattices Microstruct. 43, 524 (2008).
[49] E. Cancellieri et al., Phys. Rev. B82, 224512 (2010).
[50] I. Carusotto et al., Phys. Rev. Lett.93, 166401 (2010).
[51] A. C. Berceanu, E. Cancellieri and F. M. Marchetti, J. Phys.: Condens. Matter24,235802 (2012)
[52] P. G. Savvidis et al., Phys. Rev. Lett.84, 1547 (2000).
[53]C. Ciut and I. Carusotto, Phys. Stat. Sol. (b)242, 2224 (2005).
[54] J. V. Jelley, Cerenkov Radiation and Its Applications (London: Pergamon Press) (1958).
[55] Theodore A. Talay, Introduction to the Aerodynamics of flight (NASA, Washington, D. C.) (1975), page 106.
[56]M. V. Regemortel and M. Wouters, Phys. Rev. B89, 085303 (2014).
[57] T. Frisch, Y. Pomeau and S. Rica, Phys. Rev. Lett.69, 1644 (1992).
[58] Gaël Nardin et al., Nature Phys.7, 635 (2011).
[59] D. Sanvitto et al., Nature Photonics5, 610 (2011).
[60] S. Pigeon, I. Carusotto and C. Ciuti, Phys. Rev. B83, 144513 (2011).
[1] Deng H, Weihs G, Santori C, Bloch J and Yamamoto Y 2002 Scince 298, 199
[2] Kasprzak J, Richard M, Kundermann S, Baas A, Jeanbrun P,Keeling J M J, Marchetti F M, Szymánska M H, André R,Staehli J L, Savona V, Littlewood P B, B. Devaudand Dang L S, 2006 Nature (London) 443, 409
[3] Deng H, Haug H and Yamamoto Y 2010 Rev. Mod. Phys. 82, 1489
[4] Christopoulos S , Baldassarri Höger von Högersthal G, Grundy A J D,Lagoudakis P G, Kavokin A V, Baumberg J J, Christmann G, Butte´ R, Feltin E, Carlin J F and Grandjean N 2007 Phys.Rev. Lett. 98, 126405
[5] Wouters M and Carusotto I 2007 Phys. Rev. Lett. 99, 140402
[6] Keeling J and Berloff N G 2008 Phys. Rev. Lett. 100, 250401
[7] Borgh M O, Keeling J and Berloff N G 2010 Phys. Rev. B 81, 235302
[8] Balili R, Hartwell V, Snoke D, Pfeiffer L and West K 2007 Science 316 1007-1010
[9] Lagoudakis K G, Wouters M, Richard M, Baas A, Carusotto I,André R, Dang L Sand Deveaud-Plédran B 2008 Nature Phys.4, 706
[10] Marchetti F M, Szymańska M H, Tejedor C and Whittaker D M 2010 Phys. Rev. Lett. 105, 063902
[11] Krizhanovskii D N, Whittaker D M, Bradley R A, Guda K, Sarkar D, Sanvitto D, Vina L, Cerda E, Santos P, Biermann K, Hey R and Skolnick M S 2010 Phys. Rev. Lett. 104, 126402
[12] Sanvitto D, Marchetti F M, Szymanska M H, Tosi G, Baudisch M, Laussy F P, Krizhanovskii D N, Skolnick M S, Marrucci L, Lemaitre A, Bloch J, Tejedor C, Vina L, 2010 Nature Phys.6, 527
[13] Utsunomiya S, Tian L, Roumpos G, Lai C W, Kumada N, Fujisawa T, Kuwata-Gonokami M, Löffler A, Höfling S, Forchel A and Yamamoto Y 2008 Nature. Phys. 4, 700
[14] Lagoudakis K G, Manni F, Pietka B, Wouters M, Liew T C H, Savona V, Kavokin A V, André R, and Deveaud-Plédran B 2011Phys. Rev. Lett.106, 115301
[15] Weiler C N, Neely T W, Scherer D R, Bradley A S, Davis M J and Anderson B P 2008 Nature 455, 07334
[16] Zurek W H 1996 Phys. Rep.276, 177-221
[17] Szymanska M H, Keeling J and Littlewood P B 2006 Phys. Rev. Lett.96, 230602
[18] Porras M A, Parola A, Faccio D, Dubietis A, and Trapani P D 2004 Phys. Rev. Lett.93, 153902
[19] Alexandrescu A and Pérez-García V M 2006 Phys. Rev. A73, 053610
[20] Bogoliubov N N 1947 J. Phys. (USSR) 11, 23
[21] Wouters M and Savona V 2010 Phys. Rev. B81, 054508
[1] H. Deng et al., Science 298, 199 (2002).
[2] J. Kasprzaket al.,Nature (London)443, 409 (2006).
[3] H. Deng, H. Haug and Y. Yamamoto, Rev. Mod. Phys. 82, 1489 (2010).
[4] D. N. Krizhanovskiiet al., Phys. Rev. Lett. 104, 126402 (2010).
[5] K. G. Lagoudakis et al., Phys. Rev. Lett.106, 115301 (2011).
[6] D. Sanvitto et al., Nature Phys. 6, 527 (2010).
[7] K. G. Lagoudakis et al., Nature Phys. 4, 706 (2008).
[8] J. Keeling and N. G. Berloff, Phys. Rev. Lett. 100, 250401 (2008).
[9] R. Baliliet al.,Science 316, 1007 (2007).
[10] A. P. D. Loveet al., Phys. Rev. Lett. 101, 067404 (2008).
[11] A. Amo et al., Nature (London) 457, 291 (2009).
[12] D. N. Krizhanovskiiet al., Phys. Rev. B. 80, 045317 (2009).
[13] C. W. Lai et al., Nature (London) 450, 529 (2007).
[14] N. Y. Kim et al., Nature Phys. 7, 681 (2011).
[15] E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, Phys. Rev. Lett. 105, 116402 (2010).
[16] D. N. Krizhanovskii, E. A. Cerda-Méndez and S. Gavrilov, Phys. Rev. B87, 155423 (2013).
[17]D. Taneseat al., NatureCommunications 4, 1749 (2013).
[18] W. Chen and D. L. Mills, Phys. Rev. Lett. 58, 160 (1987).
[19] B. J. Eggleton, R. E. Slusher, C. M. De Sterke, P. A. Krug and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[20] B. Eiermann et al.,Phys. Rev. Lett 92, 230401 (2004).
[21] J. W. Fleischer, C. Tal & S. Mordechai, Phys. Rev. Lett. 90, 023902 (2003)
[22] T. Anker et al.,Phys. Rev. Lett. 94, 020403 (2005).
[23] T. J. Alexander, E. A. Ostrovskaya and Y. S. Kivshar, Phys. Rev. Lett. 96, 040401 (2006).
[24] J. Wang, J. Yang, T. J. Alexander and Y. S. Kivshar, Phys. Rev. A 79, 043610 (2009).
[25] F. Bennet, T. J. Alexander, F. Haslinger, A. Mitchell, D. N. Neshev and Y. S. Kivshar,Phys. Rev. Lett. 106, 093901 (2011).
[26] B. Wuand Q. Niu, Phys. Rev. A 61, 023402 (2000).
[27] D. Diakonov, L. M. Jensen, C. J. Pethick, and H. Smith,Phys. Rev. A 66, 013604 (2002).
[28] E. A. Ostrovskaya, J. Abdullaev,M. D. Fraser,A. S. Desyatnikovand Yu. S. Kivshar, Phys. Rev. Lett. 110, 170407 (2013).
[29] V. V. Konotop and M. Salerno, Phys. Rev. A 65, 021602 (2002).
[1] Y. G. Rubo, Phys. Rev. Lett. 99, 106401 (2007).
[2] K. G. Lagoudakis, T. Ostatnický, A. V. Kavokin, Y. G. Rubo, R. André, and B. Deveaud-Plédran, Science 326, 974 (2009).
[3] M. Wouters, Phys. Rev. B 77, 121302(R) (2008).
[4] M. Wouters and I. Carusotto, Phys. Rev. Lett. 99, 140402 (2007).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-07-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw