進階搜尋


下載電子全文  
系統識別號 U0026-0207201222084300
論文名稱(中文) 氮化鎵系列光電解水產氫元件之製作與特性分析
論文名稱(英文) Fabrication and Characterization of Gallium Nitride Based Working Electrodes for Hydrogen Generation by Water Photoelectrolysis
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 100
學期 2
出版年 101
研究生(中文) 劉書巖
研究生(英文) Shu-Yen Liu
學號 L78971186
學位類別 博士
語文別 英文
論文頁數 172頁
口試委員 指導教授-許進恭
召集委員-張守進
口試委員-王永和
口試委員-賴韋志
口試委員-紀國鐘
口試委員-林佳鋒
口試委員-郭政煌
口試委員-許世昌
中文關鍵字 光電解水  製備氫氣  氮化鎵  氮化銦鎵 
英文關鍵字 photoelectrolysis  hydrogen generation  GaN  InGaN 
學科別分類
中文摘要 由半導體光電解水製備氫氣是一項具有潛力來產生潔淨能源的方式,因為氫氣可被儲存且它是燃料電池的主要燃料。若能有效利用太陽光將水分解成氫氣與氧氣,能降低人類對於化石燃料的依賴。本研究使用氮化鎵系列(GaN-based)半導體作為光電解水產氫的工作電極,探討不同磊晶材料組成、變化半導體表面結構以及在氮化鎵工作電極上研製浸入式歐姆電極對於光電解水產氫特性的影響。
由於氮化鎵與藍寶石基板(sapphire)之間存在較高程度的晶格不匹配,導致成長於藍寶石基板上之氮化鎵具有大量且不利於光生成載子傳輸的晶體缺陷。為了降低光生成載子在半導體內的傳輸過程中被缺陷復合,能順利形成光電流而產氫,並讓外加偏壓更有效散佈在浸入電解液的半導體反應區中,我們製作浸入式歐姆電極於工作電極的反應區上。在此歐姆電極上方鍍有二氧化矽,可避免歐姆電極直接接觸電解液而被腐蝕,另一方面也可避免漏電流產生,如此便能將歐姆電極的接觸面延伸至電解液中,因此稱之為「浸入式歐姆電極」。而為了提高光的吸收與增加反應面積,我們成長了具有粗化表面的氮化鎵,將其與平坦表面氮化鎵做材料分析與光電化學特性比較。
氮化鎵具有良好的抗酸鹼腐蝕能力,其能帶結構也適於光電解水產氫。然而氮化鎵材料只吸收太陽光譜中含量不多的紫外光。幸而若將氮化鎵與氮化銦(InN)形成氮化銦鎵(InGaN)材料,此材料便能吸收太陽光譜中含量較豐的可見光。因此我們使用氮化銦鎵材料作為光電解水產氫之工作電極,搭配砷化鎵太陽能電池(GaAs solar cell)提供輔助偏壓來加速光電解水反應的進行。此外,為了將入射光做最有效的利用,我們使用一些方法來調整產氫系統的等效阻抗,使系統的操作點能趨近於砷化鎵太陽能電池的最大功率輸出點。最後,摻雜錳於氮化鎵中可形成中間能帶(Intermediate band)於氮化鎵能隙之間,進而讓材料吸收可見光。我們透過實驗證實使用摻雜錳的氮化鎵工作電極,能在可見光照射下光電解水產氫。
關鍵詞:光電解水、製備氫氣、氮化鎵、氮化銦鎵
英文摘要 Hydrogen generated by water photoelectrolysis with semiconductors is a promising method for producing a clean energy source, since hydrogen can be stored and used as the most common fuel for a fuel cell. If water can be decomposed into hydrogen and oxygen with solar power efficiently, it can reduce the dependence of fossil fuel for humans. The present work is using GaN-based semiconductors as the working electrodes for photoelectrochemical (PEC) water splitting. The objective of this study is to develop and characterize GaN-based working electrodes with varied epitaxial layers, different surface structures, and to fabricate the immersed ohmic contacts for efficient hydrogen generation.
A large number of charged defects exist in GaN materials due to the lattice mismatch between GaN and sapphire substrates. These charged defects may act as the recombination centers that trap the photo-generated carriers when the carriers transport in GaN. To reduce the recombination probability of photo-generated carriers with the charged defects during the transport within the semiconductor for hydrogen generation and to make the applied electric field spread in the whole working area effectively we fabricated the immersed ohmic contacts on the working electrodes. The SiO2 protection layers were deposited on these immersed ohmic contacts for preventing the immersed ohmic contacts directly contacting the electrolyte and generating leakage currents. In this condition the ohmic contacts can be extended to the electrolyte, so it is called the immersed ohmic contacts. Furthermore, to increase the light absorption and enlarge the effective reaction surface area at the GaN/electrolyte interface, GaN epitaxial layers with naturally textured surface was grown and utilized. For comparison, the material and photoelectrochemical analysis were demonstrated for the GaN with naturally textured surface and the GaN with flat surface.
Although GaN is potentially resistant to aqueous solutions and its energy band structure is suitable for water photoelectrolysis, GaN only absorbs UV light. It means that only little light of the solar spectrum can be absorbed. Fortunately, InxGa1-xN semiconductors made of GaN and InN can absorb the visible light which is more in the solar spectrum. Therefore, InGaN working electrodes with assisted bias generated from GaAs solar cells for water splitting were also demonstrated. Besides, in order to use the incident light effectively, the resistances of the water-splitting system were tuned by several methods to push the operating points to approach the maximum power point (Pmax) of the GaAs solar cell. Finally, the Mn-doped GaN can absorb visible light owing to the Mn-related intermediate band formed in the band gap of the GaN crystal. We also demonstrated that hydrogen can be produced when Mn-doped GaN was used as the working electrode for water splitting under visible light.

Key words: photoelectrolysis, hydrogen generation, GaN, InGaN
論文目次 摘要 I
Abstract II
誌謝 IV
Contents V
Table Captions VIII
Figure Captions IX
Chapter 1 1
Introduction 1
1.1 Potentials of Hydrogen Energy 1
1.2 Background-Hydrogen Generation 2
1.2.1 Hydrogen Generation by Steam Reforming 3
1.2.2 Direct Thermal Decomposition of Water 4
1.2.3 Thermochemical Hydrogen Production 4
1.2.4 Electrolysis of Water 5
1.2.5 Photoelectrochemical Hydrogen Generation 8
1.3 GaN-Based Semiconductors and Devices 10
1.3.1 GaN-Based Semiconductors for Optoelectronic Devices 10
1.3.2 GaN-Based Semiconductors for Photoelectrochemical Cells 10
1.4 Motivation and Objective of the Present Work 13
References in Chapter 1 15
Chapter 2 21
Semicondusctor Photoelectrochemistry 21
2.1 Semiconductor Material and the Solution 21
2.1.1 The Band Model of Semiconductor Materials 21
2.1.2 Fermi Level and Carrier Density 25
2.1.3 Defects and Surface States 28
2.1.4 The Reference Electrodes and Electrochemical Potential 31
2.2 Semiconductor-Liquid Junction 36
2.2.1 The Semiconductor-Electrolyte Interface in Dark 36
2.2.2 Semiconductor-Electrolyte Interface in Dark with an Applying Bias Potential 41
2.2.3 The Semiconductor-Electrolyte Interface under Illumination 45
2.2.4 Photocorrosion 48
2.3 Photoelectrochemical Water Splitting with Semiconductor Electrode 53
2.3.1 Photoelectrolysis 53
2.3.2 Types of Photoelectrochemical Devices 56
2.3.3 Conversion Efficiency of Water Splitting in a Photoelectrochemical Cell 58
References in Chapter 2 59
Chapter 3 64
Immersed Finger-Type Ohmic Contacts on Photoelectrodes for Photoelectrochemical Hydrogen Generation 64
3.1 Introduction- Creating Highways for Photogenerated-Carriers to Transport in Highly Defective GaN Semiconductors 64
3.2 Improved Hydrogen Gas Generation Rate of n-GaN Photoelectrode with Immersed Finger-Type Ohmic Contacts 68
3.2.1 Improved Hydrogen Generation Rate of n-GaN Photoanode with SiO2 Protection Layer on the Immersed Finger-Type Cr/Au Ohmic Contacts from the Electrolyte 68
3.2.2 Hydrogen Gas Generation Using n-GaN Photoelectrodes with Immersed Indium Tin Oxide Ohmic Contacts 78
3.2.3 The Advantages of ITO Ohmic Contacts for PEC Hydrogen Generation 83
3.3 Immersed Finger-Type Indium Tin Oxide Ohmic Contacts on p-GaN Photoelectrodes for Photoelectrochemical Hydrogen Generation 90
3.3.1 Typical Photocurrent Density-Bias Curves of the Experimental PEC Cells 90
3.3.2 Critical Bias for Hydrogen Generation of the Experimental PEC Cells 96
3.3.3 Photocurrent and Dark Current Densities as a Function of Applied Bias of p-GaN Photoelectrodes with Different Thicknesses 98
3.3.4 SEM and AFM Images of the Surface of p-GaN Surface Before and After Photoelectrochemical Measurements 101
References in Chapter 3 104
Chapter 4 109
Characterization of n-GaN with Naturally Textured Surface for Photoelectrochemical Hydrogen Generation 109
4.1 Introduction- Reducing Light Reflection and Enlarging the Effective Reaction Surface Area at n-GaN 109
4.2 Typical SEM Images and the Reflection Spectra Taken from the Surfaces of Naturally Textured and Flat n-GaN Layers 110
4.3 Photoelectrochemical Characteristics of n-GaN Photoelectrodes with Naturally Textured and Flat Surfaces 114
4.3.1 Typical Current–Potential Curves Measurements 114
4.3.2 Photoluminescence Properties of n-GaN Photoelectrodes with Naturally Textured and Flat Surfaces 116
4.4 The Mott–Schottky plots Measurements in the Dark 118
References in Chapter 4 122
Chapter 5 124
InGaN-based Working Electrodes with Assisted Bias Generated from GaAs Solar Cells for Efficient Water Splitting 124
5.1 Introduction- Increasing the Driving Force of Charge Separation and Transfer by GaAs Solar Cells for Water Splitting 124
5.2 n-InGaN Photoanodes with Assisted Bias Generated from GaAs Solar Cells for Water Splitting 127
5.2.1 Characteristics of the n-InGaN Semiconductors and GaAs Solar Cells 127
5.2.2 Experimental Setup for the Measurements 134
5.2.3 Tuning the Operating Point by Varying the Effective Resistance of the Photoelectrochemical Cell 135
5.2.4 GaAs Solar Cells in Series and Parallel Connections for Water Photoelectrolysis by n-InGaN Photoanodes 140
5.3 p-InGaN Photocathodes with Assisted Bias Generated from GaAs Solar Cells for Water Splitting 142
5.3.1 Characteristics of the p-InGaN Semiconductors 142
5.3.2 Experimental Setup for the Measurements 145
5.3.3 Water Splitting with p-InGaN Photocathodes in Different Electrolytes 146
References in Chapter 5 149
Chapter 6 151
Mn-doped GaN as Photoelectrodes for Photocatalytic Water Splitting under Visible Light 151
6.1 Introduction- Visible-Light-Driven Photoelectrochemical Hydrogen Generation with Mn-doped GaN Photoelectrodes 151
6.2 Typical Current–Potential Curves Measurements 153
6.3 Typical Spectral Responses of the Mn-doped GaN Photoelectrodes 157
6.4 Transmittance Spectra of the Mn-doped GaN 159
References in Chapter 6 164
Chapter 7 167
Conclusions and Future Works 167
7.1 Conclusions 167
7.2 Future Works 169
Publication List 171
參考文獻 References in Chapter 1
[1] T. N. Veziroglu, “Dawn of the Hydrogen Age,” Int. J. Hydrogen Energy, vol. 23, no. 12, pp. 1077–1078, 1998.
[2] C. E. Thomas, B. D. James, and F. D. Lomax, Jr., “Market Penetration Scenarios for Fuel Cell Vehicles,” Int. J. Hydrogen Energy, vol. 23, no. 10, pp. 949–966,1998.
[3] C. Mitsugi, A. Harumi, F. Kenzo, “We-net: Japanese Hydrogen Program,” Int. J. Hydrogen Energy, vol. 23, no. 3, pp. 159–165, 1998.
[4] T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” Int. J. Hydrogen Energy, vol. 27, no. 10, pp. 991–1022, 2002.
[5] Y. S. Oh, H. S. Roh, K. W. Jun, Y. S. Beak, “A highly active catalyst, Ni/Ce-ZrO2/θ-Al2O3, for on-site H2 generation by steam methane reforming: pretreatment effect,” Int. J. Hydrogen Energy, vol. 28, no. 12, pp. 1387–1392, 2003.
[6] C. Marchetti, “Hydrogen and Energy,” Chem. Econ. & Eng. Rew., vol. 5, no.1, pp. 7–24, 1973.
[7] C. Huang, A. Raissi, “Analysis of New Solar Thermochemical Water Splitting Cycle for Hydrogen Production,” 15th Hydrogen Energy Conference, Yokohama, Japan, 2004.
[8] P. Zhang, and B. Yu, J. Chen, “Study on the hydrogen production by thermochemical water splitting,” Progress in Chemistry, vol. 17, no. 4, pp. 643–650, 2005.
[9] A. J. Appleby, “Efficiencies of electrolytic and thermochemical hydrogen production,” Nature, vol. 253, pp. 257–258, 1975.
[10] T. Kodama, Y. Kondoh, R. Yamamoto, H. Andou, and N. Satou, “Thermochemical hydrogen production by a redox system of ZrO2-supported Co(II)-ferrite,” Solar Energy, vol. 78, no. 5, pp. 623–631, 2005.
[11] B. Sorensen, Hydrogen and Fuel Cell, Elsevier Academic Press, Burlington, pp. 13, 2005.
[12] H. Chang, K. Scott, C. Ramshaw, “Intensification of water electrolysis in a centrifugal field,” J. Electrochem. Soc., vol. 149, no. 11, pp. D172–D177, 2002.
[13] The Economist Technology, Quarterly, March 25, 2001. p. 29.
[14] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class highbrightness InGaN/AlGaN double-heterostructure blue-light-emitting Diodes,” Appl. Phys. Lett., vol. 64, no. 3, pp. 1687–1689, 1994.
[15] H. Morkoç and S. N. Mohammad, “High Luminosity Gallium Nitride Blue and Blue-Green Light Emitting Diodes,” Science, vol. 267, no. 5194, pp. 51–55, 1995.
[16] H. Morkoç and S. N. Mohammad, Light Emitting Diodes, in Wiley Encyclopedia of Electrical Engineering and Electronics Engineering, J. Webster, ed., John Wiley and Sons, New York, 1999.
[17] M. Razeghi and A. Rogalski, “Semiconductor Ultraviolet Detectors,” J. Appl. Phys. vol. 79, no. 10, pp. 7433–7473, 1996.
[18] G.Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoç, G. Smith, M. Estes, B. Goldenberg, W. Yang, and S. Krishnankutty, “Ultraviolet Photodetectors Based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n) Structures,” Appl. Phys. Lett. vol. 71, no. 15, pp. 2154–2156, 1997.
[19] S. Nakamura, “The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes,” Science, vol. 281, no. 5379, pp. 956–961, 1998.
[20] M. A. Khan, J. N. Kuznia, J. M. Van Hove, N. Pan, and J. Carter, “Observation of a two-dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN-AlxGa1−xN heterojunctions,” Appl. Phys. Lett., vol. 60, no. 24, pp. 3027–3029, 1992.
[21] M. A. Khan, J. N. Kuznia, A. R. Bhattarai and D. T. Olson, “Metal semiconductor field effect transistor based on single crystal GaN,” Appl. Phys. Lett., vol. 62, no. 15, pp. 1786–1787, 1993.
[22] J. B. Limb, H. Xing, B. Moran, L. McCarthy, S. P. DenBaars, and U. K. Mishra, “High voltage operation (>80 V) of GaN bipolar junction transistors with low leakage,” Appl. Phys. Lett., vol. 76, no. 17, pp. 2457–2459, 2000.
[23] L. S. McCarthy, P. Kozodoy, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “AlGaN/GaN heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 20, no. 6, pp. 277–279, 1999.
[24] V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap,” Phys. Status Solidi B, vol. 229, no. 3, pp. R1–R3, 2002.
[25] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu, William J. Schaff, Yoshiki Saito, and Yasushi Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett., vol. 80, no. 21, pp. 3967–3969, 2002.
[26] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, Hai Lu, W. J. Schaff, W. K. Metzger and Sarah Kurtz, “Superior radiation resistance of InGaN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys., vol. 94, no. 10, pp. 6477–6482, 2003.
[27] J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett., vol. 93, no. 16, pp. 162107, 2008.
[28] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett., vol. 80, no. 25, pp. 4741–4743, 2002.
[29] O. Jani, I. Ferguson, C. Honsberg and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett., vol. 91, no. 13, 132117, 2007.
[30] J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W. C. Lai and L. C. Peng, “Demonstration of GaN-Based Solar Cells With GaN/InGaN Superlattice Absorption Layers,” IEEE Electron Device Lett., vol. 30, no. 3, pp. 225–227, 2009.
[31] R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin and Y. C. Lu, “Improved conversion efficiency of GaN/InGaN thin-film solar cells,” IEEE Electron Device Lett., vol. 30, no. 7, pp. 724–726, 2009.
[32] C. C. Yang, J. K. Sheu, X. W. Liang, M. S. Huang, M. L. Lee, K. H. Chang, S. J. Tu, F. W. Huang, and W. C. Lai, “Enhancement of The Conversion Efficiency of GaN-Based Photovoltaic Devices with AlGaN/InGaN Absorption Layers,” Appl. Phys. Lett., vol. 97, no. 2, pp. 021113, 2010.
[33] R. Dahal, J. Li, J. Y. Lin and H. X. Jiang, “InGaN/GaN multiple quantum well concentrator solar cells,” Appl. Phys. Lett., vol. 97, no. 7, pp. 073115, 2010.
[34] K. Honda and A. Fujishima, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, pp. 37–38, 1972.
[35] S. U. M. Khan, M. A. Shahry, and W. B. Ingler Jr., “Efficient photochemical water splitting by a chemically modified n-TiO2,” Science, vol. 297, no. 5590, pp. 2243–2245, 2002.
[36] G. K. Mor, K. Shankar, M Paulose, O. K. Varghese, and C. A. Grimes, “Enhanced photocleavage of water using titania nanotube arrays,” Nano Lett., vol. 5, no. 1, pp. 191–195, 2005.
[37] J. H. Park, S. Kim, and A. J. Brad, “Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting,” Nano Lett., vol. 6, no. 1, pp. 24–28, 2006.
[38] A. J. Nozik and R. Memming, “Physical Chemistry of Semiconductor-Liquid Interfaces,” J. Phys. Chem., vol. 100, no. 31, pp. 13061–13078, 1996.
[39] A. J. Nozik, “Electrode materials for photolectrochemical devices,” J. Cryst. Growth, vol. 39, no. 1, pp. 200–209, 1977.
[40] R. C. Kainthla, B. Zelenay, and J. O’M. Bockris, “Significant Efficiency Increase in Self-Driven Photoelectrochemical Cell for Water Photoelectrolysis,” J. Electrochem. Soc., vol. 134, no. 4, pp. 841–845, 1987.
[41] J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett., vol. 93, no. 16, pp. 162107, 2008.
[42] J. F. Muth J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, Jr., B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett., vol. 71, no. 18, pp. 2572, 1997.
[43] I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett., vol. 91, no. 9, pp. 093519, 2007.
[44] W. Luo, B. Liu, Z. Li, Z. Xie, D. Chen, Z. Zou, and R. Zhang, “Stable response to visible light of InGaN photoelectrodes,” Appl. Phys. Lett., vol. 92, no. 26, pp. 262110, 2008.
[45] K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-Edge Energies and Photoelectrochemical Properties of n-Type AlxGa1−xN and InyGa1−yN Alloys,” J. Electrochem. Soc., vol. 154, no. 2, pp. B175–B179, 2007.
[46] K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett., Vol. 96, no. 5, pp. 052110, 2010.
[47] A. Luque and A. Marti, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels,” Phys. Rev. Lett., vol. 78, no. 26, pp. 5014–5017, 1997.
[48] A. Marti, C. Tablero, E. Antolin, A. Luque, R. P. Campion, S. V. Novikov, C. T. Foxon, “Potential of Mn doped In1-xGaxN for implementing intermediate band solar cells,” Solar Energy Materials & Solar Cells, vol. 93, no. 5, pp. 641–644, 2009.
[49] A. Luque and A. Marti, “The Intermediate Band Solar Cell: Progress Toward the Realization of an Attractive Concept,” Adv. Mater., vol. 22, no. 2, pp. 160–174, 2010.


References in Chapter 2
[1] R. V. D. Krol, and M. Grätzel, Photoelectrochemical Hydrogen Production, Springer Press, New York, pp. 14–15, 2012.
[2] S. M. Sze, Semiconductor Devices Physics and Technology 2nd Edition, John Wiley & Sons, Danvers, MA, pp. 28–37, 2002.
[3] H. P. Maruska and A. K. Ghosh, “Transition-metal dopants for extending the response of titanate photoelectrolysis anodes,” Solar Energy Mater., vol. 1, no. 3–4, pp. 237–247, 1979.
[4] P. Salvador, “Analysis of the physical properties of TiO2-Be electrodes in the photoassisted oxidation of water,” Solar Energy Mater., vol. 6, no. 2, pp. 241–250, 1982.
[5] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, no. 5528, pp. 269–271, 2001.
[6] H. Kato, A. Kudo, “Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium,” J. Phys. Chem. B, vol. 106, no. 19, pp. 5029–5034, 2002.
[7] A. T. Howe, R. T. Hawkins II, T. H. Fleisch, “Photoelectrochemical cells of the electrolyte–metal–insulator–semiconductor (EMIS) configuration: I, Metal thickness and coverage effects in the Pt/silicon oxide/n-Si system,” J. Electrochem. Soc., vol. 133, no. 7, pp. 1369–1375, 1986.
[8] R. V. D. Krol, and M. Grätzel, Photoelectrochemical Hydrogen Production, Springer Press, New York, pp. 21, 2012.
[9] S. M. Sze, Semiconductor Devices Physics and Technology 2nd Edition, John Wiley & Sons, Danvers, MA, pp. 65, 2002.
[10] A. J. Bard, L. R. Faulkner, Eelectrochemical Methods Fundamentals and Applications Second Edition, John Wiley & Sons, Danvers, MA, pp. 2–3, 2001.
[11] R. V. D. Krol, and M. Grätzel, Photoelectrochemical Hydrogen Production, Springer Press, New York, pp. 75–76, 2012.
[12] D. T. Sawyer, A. Sobkowiak, and J. L. Roberts, Electrochemistry for Chemists, Wiley-Interscience, New York, 2010.
[13] R. G. Compton, G. H. W. Sanders, Electrode Potentials, Oxford University Press, Oxford, 1996.
[14] R. G. Compton, C. E. Banks, Understanding Voltammetry, World Scientific Publishing, Oxford, 2007.
[15] C. H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry, Wiley-VCH, Weinheim, 2007.
[16] R. Memming, Comprehensive treaties electrochemistry V. 7, Plenum press, New York, 1983.
[17] H. Gerischer, “Electrochemical photo and solar cell principles and some experiments,” J. Electroanalytical Chem. and interfacial Electrochem., vol. 58, no. 1, pp. 263–274, 1975.
[18] R. Gomer, G. Tryson, “An experimental determination of absolute half-cell emf’s and single ion free energies of solvation,” J. Chem. Phys., vol. 66, no. 10, pp. 4413–4424, 1977.
[19] C. A. Grimes, O. K. Varghese, S. Ranjan, Light, Water, Hydrogen The Solar Generation of Hydrogen by Water Photoelectrolysis, Springer Press, New York, pp. 128–131, 2008.
[20] J. A. V. Butler, “The equilibrium of heterogeneous systems including electrolyte,” Proc. Roy. Soc., London, vol. 112A, pp. 129, 1926.
[21] E. A. Guggenheim, “Studies of cells with liquid-liquid junctions,” J. Phys. Chem., vol. 34, no. 8, pp.1758–1766, 1930.
[22] A. J. Bard, L. R. Faulkner, Eelectrochemical Methods Fundamentals and Applications Second Edition, John Wiley & Sons, Danvers, MA, pp. 60–61, 2001.
[23] A. J. Bard, M. Stratmann, S. Licht, Encyclopedia of Electrochemistry Volume 6 Semiconductor Electrodes and Photoelectrochemistry, Wiley-VCH, Weinheim, pp. 8–12, 2002.
[24] S. R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum Press, New York, pp. 56, 1980.
[25] F. Mollers, H. J. Tolle, R. Memming, “Origin of the photocatalytic deposition of noble metals on TiO2,” J. Electrochem. Soc., vol. 121, no. 9, pp. 1160–1167, 1974.
[26] R. Thapar, K. Rajeshwar, “Mott-Schottky analyses on n- and p-GaAs/room temperature chloroaluminate moltensalt interfaces,” Electrochim. Acta, vol. 28, no. 2, pp. 195–198, 1983.
[27] A.W. Bott, “Electrochemistry of Semiconductors,” Current Separations, vol. 17, no. 3, pp. 87–91, 1998.
[28] A. J. Bard, M. Stratmann, S. Licht, Encyclopedia of Electrochemistry Volume 6 Semiconductor Electrodes and Photoelectrochemistry, Wiley-VCH, Weinheim, pp. 23, 2002.
[29] C. A. Grimes, O. K. Varghese, S. Ranjan, Light, Water, Hydrogen The Solar Generation of Hydrogen by Water Photoelectrolysis, Springer Press, New York, pp. 150–151, 2008.
[30] R. V. D. Krol, and M. Grätzel, Photoelectrochemical Hydrogen Production, Springer Press, New York, pp. 48, 2012.
[31] K. Rajeshwar, R. McConnell, S. Licht, Solar hydrogen generation – toward a renewable energy future, Springer, New York, 2008.
[32] R. V. D. Krol, and M. Grätzel, Photoelectrochemical Hydrogen Production, Springer Press, New York, pp. 51–53, 2012.
[33] S. R. Morrison, Electrochemistry of semiconductor and oxidized metal electrodes, Plenum, New York, 1980.
[34] H. Gerischer, “On the stability of semiconductor electrodes against photodecomposition,” J. Electroanalytical Chem. and interfacial Electrochem., vol. 82, no. 1–2, pp. 133–143, 1977.
[35] T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” Int. J. Hydrogen Energy, vol. 27, no. 10, pp. 991–1022, 2002.
[36] S. M. Park, M. E. Barber, “Thermodynamic stabilities of semiconductor electrodes,” J. Electroanal. Chem., vol. 99, no. 1, pp. 67–75, 1979.
[37] D. E. Scaife, “Oxide semiconductors in photoelectrochemical conversion of solar energy,” Solar Energy, vol. 25, no. 1, pp. 41–54, 1980.
[38] R. V. D. Krol, and M. Grätzel, Photoelectrochemical Hydrogen Production, Springer Press, New York, pp. 13, 2012.
[39] C. A. Grimes, O. K. Varghese, S. Ranjan, Light, Water, Hydrogen The Solar Generation of Hydrogen by Water Photoelectrolysis, Springer Press, New York, pp. 36, 2008.
[40] C. A. Grimes, O. K. Varghese, S. Ranjan, Light, Water, Hydrogen The Solar Generation of Hydrogen by Water Photoelectrolysis, Springer Press, New York, pp. 123, 2008.
[41] A. J, Nozik, “p-n photoelectrolysis cell,” Appl. Phys. Lett., vol. 29, no. 3, pp. 150–153, 1976.
[42] K. Ohashi, J. McCann, J. O’M. Bockris, “Stable photoelectrochemical cell for splitting of water,” Nature, vol. 266, no. 14, pp. 610–611, 1977.
[43] A. J. Nozik, “Photoelectrolysis of water using semiconducting TiO2 crystals,” Nature, vol. 257, pp. 383–386, 1975.
[44] N. Giordano, V. Antonucci, S. Cavallaro, R. Lembo, J. C. J. Bart, “Photoassisted decomposition of water over modified rutile electrodes,” Int. J. Hydrogen Energy, vol. 7, no. 11, pp. 867−872, 1982.
[45] T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell, “Photoelectrochemical properties of TiO2-Pt system in aqueous solutions,” Int, J, Hydrogen Energy, vol. 27, no. 1, pp. 19−26, 2002.
[46] M. Grätzel, “The photoelectrochemical Cells,” Nature, vol. 414, pp. 338−344, 2001.
[47] O. Khaselev and J. A. Turner, “A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting,” Science, vol. 280, no. 5362, pp. 425−427, 1998.
[48] O. J. Murphy, J. O’M. Bockris, “Photovoltaic electrolysis: Hydrogen and electricity from water and light,” Int. J. Hydrogen Energy, vol. 9, no. 7, pp. 557-561, 1984.
[49] A. Siegel, T. Schott, “Optimization of photovoltaic hydrogen production,” Int. J. Hydrogen Energy, vol. 13, no. 11, pp. 659−675, 1988.
[50] Z. B .Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols,” J. Mater. Res., vol. 25, no. , pp. 3–16, 2010.
[51] R. V. D. Krol, and M. Grätzel, Photoelectrochemical Hydrogen Production, Springer Press, New York, pp. 95–96, 2012.


References in Chapter 3
[1] A. J. Nozik and R. Memming, “Physical Chemistry of Semiconductor-Liquid Interfaces,” J. Phys. Chem., vol. 100, no. 31, pp. 13061–13078, 1996.
[2] J. A. Turner, “A Realizable Renewable Energy Future,” Science, vol. 285, no. 5428, pp. 687–689, 1999.
[3] A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, pp. 37–38, 1972.
[4] A. Heller and R. G. Vadimsky, “Efficient Solar to Chemical Conversion: 12% Efficient Photoassisted Electrolysis in the [p-type InP(Ru)]/HCl-KCl/Pt(Rh) Cell,” Phys. Rev. Lett., vol. 46, no. 17, pp. 1153–1156, 1981.
[5] S. U. M. Khan, M. A. Shahry, and W. B. I. Jr, “Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2,” Science, vol. 297, no. 5590, pp. 2243–2245, 2002.
[6] A. J. Nozik, “Electrode materials for photolectrochemical devices,” J. Cryst. Growth, vol. 39, no. 1, pp. 200–209, 1977.
[7] R. C. Kainthla, B. Zelenay, and J. O’M. Bockris, “Significant Efficiency Increase in Self-Driven Photoelectrochemical Cell for Water Photoelectrolysis,” J. Electrochem. Soc., vol. 134, no. 4, pp. 841–845, 1987.
[8] I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett., vol. 91, no. 9, pp. 093519, 2007.
[9] J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett., vol. 93, no. 16, pp. 162107 (2008).
[10] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, “Small band gap bowing in In1-xGaxN alloys,” Appl. Phys. Lett., vol. 80, no. 25, pp. 4741–4743, 2002.
[11] C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys., vol. 51, no. 8, pp. 4494–4500,1980.
[12] D. Holec, P. M. F. J. Costa, M. J. Kappers, and C. J. Humphreys, “Critical thickness calculations for InGaN/GaN,” J. Crystal Growth, vol. 303, no. 1, pp. 314–317, 2007.
[13] A. Bensaoula and C. Boney, Investigation of III-Nitride Materials for Space-Based Solar Cells, 50, ISSO-UH/UHCL/NASA, 2005.
[14] N. J. Ekins-Daukes, K. W. J. Barnham, J. P. Connolly, J. S. Roberts, J. C. Clark, G. Hill and M. Mazzer, “Strain-balanced GaAsP/InGaAs quantum well solar cells,” Appl. Phys. Lett., vol. 75, no. 26, pp. 4195–4197, 1999.
[15] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager III, E. E. Haller, H. Lu and W. J. Schaff, “Superior radiation resistance of In1–xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys., vol. 94, no. 10, pp. 6477–6482, 2003.
[16] N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas, “Scattering of electrons at threading dislocations in GaN,” J. Appl. Phys., vol. 83, no.7, pp. 3656–3659, 1998.
[17] S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, “High dislocation densities in high efficiency GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 66, no. 10, pp. 1249–1251, 1995.
[18] S. Nakamura, “The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes,” Science, vol. 281, no. 5379, pp. 956–961, 1998.
[19] J. K. Sheu, M. L. Lee, and W. C. Lai, “Effect of low-temperature-grown GaN cap layer on reduced leakage current of GaN Schottky diodes,” Appl. Phys. Lett., vol. 86, no. 5, pp. 052103, 2005.
[20] D. Cherns and C. G. Jiao, “Electron Holography Studies of the Charge on Dislocations in GaN,” Phys. Rev. Lett., vol. 87, no. 20, pp. 205504, 2001.
[21] W. Luo, B. Liu, Z. Li, Z. Xie, D. Chen, Z. Zou, and R. Zhang, “Stable response to visible light of InGaN photoelectrodes,” Appl. Phys. Lett., vol. 92, no. 26, pp. 262110, 2008.
[22] K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-Edge Energies and Photoelectrochemical Properties of n-Type AlxGa1−xN and InyGa1−yN Alloys,” J. Electrochem. Soc., vol. 154, no. 2, pp. B175–B179, 2007.
[23] R. Dimitrova, L. Catalan, D. Alexandrov, and A. Chen, “Evaluation of GaN and In0.2Ga0.8N Semiconductors as Potentiometric Anion Selective Electrodes,” Electroanalysis, vol. 19, no. 17, pp. 1799–1806, 2007.
[24] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar Water Splitting Cells,” Chem. Rev., vol. 110, no. 11, pp. 6446–6473, 2010.
[25] S. Y. Liu, J. K. Sheu, C. K. Tseng, J. C. Ye, K. H. Chang, M. L. Lee, and W. C. Lai, “Improved Hydrogen Gas Generation Rate of n-GaN Photoelectrode with SiO2 Protection Layer on the Ohmic Contacts from the Electrolyte,” J. Electrochem. Soc., vol. 157, no. 2, pp. B266–B268, 2010.
[26] J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, and C. C. Liu, “Indium tin oxide ohmic contact to highly doped n-GaN,” Solid-State Electron., vol. 43, no. 11, pp. 2081–2084, 1999.
[27] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices,” Appl. Phys. Lett., vol. 74, no. 26, 3930–3932, 1999.
[28] J. Stotter, Y. Show, S. Wang, and G. Swain, “Comparison of the Electrical, Optical, and Electrochemical Properties of Diamond and Indium Tin Oxide Thin-Film Electrodes,” Chem. Mater., vol. 17, no. 19, pp. 4880–4888, 2005.
[29] K. Fujii, T. Karasawa and K. Ohkawa, “Hydrogen Gas Generation by Splitting Aqueous Water Using n-Type GaN Photoelectrode with Anodic Oxidation,” Jpn. J. Appl. Phys., vol. 44, no. 18, pp. 543–545, 2005.
[30] J. E. A. M. van den Meerakker, E. A. Meulenkemp, and M. Scholten, “(Photo)electrochemical characterization of tin‐doped indium oxide,” J. Appl. Phys., vol. 74 , no. 5, pp. 3282–3288, 1993.
[31] C. G. Zosik, Handbook of Electrochemistry, 1st ed., Elsevier, pp. 342, 2007.
[32] C. A. Huang, K. C. Li, G. C. Tu, and W. S. Wang, “The electrochemical behavior of tin-doped indium oxide during reduction in 0.3 M hydrochloric acid,” Electrochim. Acta, vol. 48, no. 24, pp. 3599–3605, 2003.
[33] K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett., Vol. 96, no. 5, pp. 052110, 2010.
[34] K. Fujii, and K. Ohkawa, “Photoelectrochemical Properties of p-Type GaN in Comparison with n-Type GaN,” Jpn. J. Appl. Phys., vol. 44, no. 28, pp. L909–L911, 2005)
[35] S. Y. Liu, J. K. Sheu, J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C. Lai, “Characterization of n-GaN with Naturally Textured Surface for Photoelectrochemical Hydrogen Generation,” J. Electrochem. Soc., vol. 157, no. 12, pp. H1106–H1109, 2010.
[36] J. F. Muth J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, Jr., B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett., vol. 71, no. 18, pp. 2572–2574, 1997.


References in Chapter 4
[1] I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett., vol. 91, no. 9, pp. 093519, 2007.
[2] C. M. Tsai, J. K. Sheu, P. T. Wang, W. C. Lai, S. C. Shei, S. J. Chang, C. H. Kuo, C. W. Kuo, and Y. K. Su, “High Efficiency and Improved ESD Characteristics of GaN-Based LEDs With Naturally Textured Surface Grown by MOCVD,” IEEE Photon. Technol. Lett., vol. 18, no. 11, pp. 1213–1215, 2006.
[3] M. L. Lee, J. K. Sheu, and C. C. Hu, “Nonalloyed Cr/Au-based Ohmic contacts to n-GaN,” Appl. Phys. Lett., vol. 91, no. 18, pp. 182106, 2007.
[4] C. M. Tsai, J. K. Sheu, W. C. Lai, Y. P. Hsu, P. T. Wang, C. T. Kuo, C. W. Kuo, S. J. Chang, and Y. K. Su, “Enhanced Output Power in GaN-Based LEDs With Naturally Textured Surface Grown by MOCVD,” IEEE Electron Device Lett., vol. 26, no. 7, pp. 464–466, 2005.
[5] L.W. Wu, S. J. Chang, Y. K. Su, R. W. Chuang, Y. P. Hsu, C. H. Kuo, W. C. Lai, T. C. Wen, J. M. Tsai, and J. K. Sheu, “In0.23Ga0.77N/GaN MQW LEDs with a low temperature GaN cap layer,” Solid-State Electronics, vol. 47, no. 11, pp. 2027–2030, 2003.
[6] J. K. Sheu, M. L. Lee, and W. C. Lai, “Effect of low-temperature-grown GaN cap layer on reduced leakage current of GaN Schottky diodes,” Appl. Phys. Lett., vol. 86, no. 5, pp. 052103, 2005.
[7] F. A. Ponce, D. P. Bour, W. Gotz, and P. J. Wright, “Spatial distribution of the luminescence in GaN thin films,” Appl. Phys. Lett., vol. 68, no. 1, pp. 57–59, 1996.
[8] M. Radecka, M. Rekas, A. Trenczek-Zajac, and K. Zakrzewska, “Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis,” J. Power Sources, vol. 181, no. 1, pp. 46–55, 2008.
[9] M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys., vol. 126, no. 5, pp. 054708, 2007.
[10] D. Cherns and C. G. Jiao, “Electron Holography Studies of the Charge on Dislocations in GaN,” Phys. Rev. Lett., vol. 87, no. 20, pp. 205504, 2001.


References in Chapter 5
[1] http://www.nrel.gov/rredc
[2] W. J. Youngblood, S. H. A. Lee, Y. Kobayashi, E. A. Hernandez-Pagan, P. G. Hoertz, T. A. Moore, A. L. Moore, D. Gust, and T. E. Mallouk, “Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell”, J. AM. CHEM. SOC., vol. 131, no. 3, pp. 926–927, 2009.
[3] Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. S. Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, and R. L.W., “An orthophosphate semiconductor with photooxidation properties under visible-light irradiation,” nature materials, vol. 9, pp. 559–564, 2010.
[4] I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett., vol. 91, no. 9, pp. 093519, 2007.
[5] J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett., vol. 93, no. 16, pp. 162107, 2008.
[6] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, “Small band gap bowing in In1-xGaxN alloys,” Appl. Phys. Lett., vol. 80, no. 25, pp. 4741–4743, 2002.
[7] K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “ Band-Edge Energies and Photoelectrochemical Properties of n-Type AlxGa1−xN and InyGa1−yN Alloys", J. Electrochem. Soc. 154, pp. B175–B179, 2007.
[8] W. Luo, B. Liu, Z. Li, Z. Xie, D. Chen, Z. Zou, and R. Zhang, “Stable response to visible light of InGaN photoelectrodes,” Appl. Phys. Lett., vol. 92, no. 26, pp. 262110, 2008.
[9] K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett., vol. 96, no. 5, pp. 052110, 2010.
[10] M. Li, W. Luo, B. Liu, X. Zhao, Z. Li, D. Chen, T. Yu, Z. Xie, R. Zhang, and Z. Zou, “Remarkable enhancement in photocurrent of In0.20Ga0.80N photoanode by using an electrochemical surface treatment,” Appl. Phys. Lett., vol. 99, no. 11, pp. 112108, 2011.
[11] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev., vol. 110, no. 11, pp. 6446–6473, 2010.
[12] K. Fujii, and K. Ohkawa, “Photoelectrochemical properties of p-type GaN in comparison with n-type GaN,” Jpn. J. Appl. Phys., vol. 44, no. 28, pp. L909–L911, 2005.
[13] O. Khaselev and J. A. Turner, “A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting,” Science, vol. 280, no. 5362, pp. 425–427, 1998.
[14] A. Currao, “Photoelectrochemical water splitting,” Chimia, vol. 61, no. 12, pp. 815–819, 2007.
[15] A. Siegel and T. Schott, “Optimization of photovoltaic hydrogen production,” Int. J. Hydrogen Energy, vol. 13, no. 11, pp. 659−675, 1988.


References in Chapter 6
[1] K. Honda and A. Fujishima, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, pp. 37–38, 1972.
[2] A. J. Nozik, “Electrode materials for photoelectrochemical devices,” J. Cryst. Growth, vol. 39, no. 1, pp. 200–209, 1977.
[3] R. C. Kainthla, B. Zelenay, and J. O’M. Bockris, “Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis,” J. Electrochem. Soc., vol. 134, no. 4, pp. 841–845, 1987.
[4] A. J. Nozik and R. Memming, “Physical Chemistry of Semiconductor-Liquid Interfaces,” J. Phys. Chem., vol. 100, no. 31, pp. 13061–13078, 1996.
[5] I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett., vol. 91, no. 9, pp. 093519, 2007.
[6] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, “Small band gap bowing in In1-xGaxN alloys,” Appl. Phys. Lett., vol. 80, no. 25, pp. 4741–4743, 2002.
[7] K. Fujii, T. Karasawa and K. Ohkawa, “Hydrogen Gas Generation by Splitting Aqueous Water Using n-Type GaN Photoelectrode with Anodic Oxidation,” Jpn. J. Appl. Phys., vol. 44, no. 18, pp. 543–545, 2005.
[8] W. Luo, B. Liu, Z. Li, Z. Xie, D. Chen, Z. Zou, and R. Zhang, “Stable response to visible light of InGaN photoelectrodes,” Appl. Phys. Lett., vol. 92, no. 26, pp. 262110, 2008.
[9] J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett., vol. 93, no. 16, pp. 162107 (2008).
[10] K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-Edge Energies and Photoelectrochemical Properties of n-Type AlxGa1−xN and InyGa1−yN Alloys,” J. Electrochem. Soc., vol. 154, no. 2, pp. B175–B179, 2007.
[11] K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett., Vol. 96, no. 5, pp. 052110, 2010.
[12] O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett., vol. 91, no. 13, pp. 132117, 2007.
[13] J. K. Sheu and G. C. Chi, “The doping process and dopant characteristics of GaN,” J. Phys.: Condens. Matter., vol. 14, no. 22, pp. R657–702, 2002.
[14] I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, “Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films,” Appl. Phys. Lett., vol. 73, no. 12, pp. 1634–1636, 1998.
[15] S. Y. Liu, J. K. Sheu, J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C. Lai, “Characterization of n-GaN with Naturally Textured Surface for Photoelectrochemical Hydrogen Generation,” J. Electrochem. Soc., vol. 157, no. 12, pp. H1106–H1109, 2010.
[16] A. Luque and A. Marti, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels,” Phys. Rev. Lett., vol. 78, no. 26, pp. 5014–5017, 1997.
[17] A. Marti, C. Tablero, E. Antolin, A. Luque, R. P. Campion, S. V. Novikov, C. T. Foxon, “Potential of Mn doped In1-xGaxN for implementing intermediate band solar cells,” Solar Energy Materials & Solar Cells, vol. 93, no. 5, pp. 641–644, 2009.
[18] A. Luque and A. Marti, “The Intermediate Band Solar Cell: Progress Toward the Realization of an Attractive Concept,” Adv. Mater., vol. 22, no. 2, pp. 160–174, 2010.
[19] F. W. Huang, J. K. Sheu, S. J. Tu, P. C. Chen, Y. H. Yeh, M. L. Lee, W. C. Lai, W. C. Tsai, and W. H. Chang, “Optical properties of Mn in regrown GaN-based epitaxial layers,” Optical Materials Express, vol. 2, no. 4, pp. 469–477, 2012.
[20] J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “Inductively Coupled Plasma Etching of GaN using Cl2/Ar and Cl2/N2 gases,” J. App. Phys., vol. 85, pp. 1970–1974, 1999.
[21] S. Y. Liu, Y. C. Lin, J. C. Ye, S. J. Tu, F. W. Huang, M. L. Lee, W. C. Lai, and J. K. Sheu, “Hydrogen gas generation using n-GaN photoelectrodes with immersed indium tin oxide ohmic contacts,” Optics Express, vol. 19, no. S6, pp. A1196–A1201, 2011.
[22] M. L. Lee and J. K. Sheu, “GaN-based ultraviolet p-i-n photodiodes with buried p-layer structure grown by MOVPE,” J. Electrochem. Soc., vol. 154, no. 3, pp. H182–H184, 2007.
[23] F. W. Huang, J. K. Sheu, M. L. Lee, S. J. Tu, W. C. Lai, W. C. Tsai, and W. H. Chang, “Linear photon up-conversion of 450 meV in InGaN/GaN multiple quantum wells via Mn-doped GaN intermediate band photodetection,” Optics Express, vol. 19, no. S6, pp. A1211–A1218, 2011.
[24] M. L. Lee, J. K. Sheu, and Y. R. Shu, “Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransitors with high optical gain and high rejection ratio,” Appl. Phys. Lett., vol. 92, no. 5, pp. 053506, 2008.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-07-19起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-07-19起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw