進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0202201815044700
論文名稱(中文) 多氯戴奧辛污染土壤缺氧生物復育技術:氧化還原電位控制之效應
論文名稱(英文) Bioremediation of Soil Contaminated with Polychlorinated Dioxins under Hypoxic Conditions:Effects of Redox Potential Controls
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 106
學期 1
出版年 107
研究生(中文) 郭紘志
研究生(英文) Hung-Chih Kuo
學號 P56041023
學位類別 碩士
語文別 中文
論文頁數 136頁
口試委員 指導教授-吳哲宏
口試委員-張祖恩
口試委員-曾怡禎
口試委員-周佩欣
中文關鍵字 八氯戴奧辛/呋喃  氧化還原電位  缺氧環境  生物分解反應動力 
英文關鍵字 Oxidation-Redox Potential  Hypoxic  Biodegradation  OCDD/F 
學科別分類
中文摘要 多氯戴奧辛物質是持久性環境毒物,由自然或人為的燃燒程序所產生,也是許多工業製程產生的不純物,累積在土壤環境造成污染,嚴重影響生態與健康。多氯戴奧辛化合物的生物分解通常需要厭氧菌先進行還原脫氯反應,再接續好氧菌的羥基化反應後進入中心代謝路徑。然而,多氯戴奧辛化合物厭氧還原脫氯反應非常緩慢,而限制兩階段生物復育戴奧辛污染的實際應用。最近發展出缺氧條件的單槽式生物處理系統,使八氯戴奧辛 (OCDD/F)快速分解,但是關於缺氧條件下降解OCDD/F的微生物種類、數量、動態以及其分解戴奧辛的生化代謝機制的了解仍然相當有限。因此,本研究運轉兩套缺氧生物處理系統,控制在不同變動方式的氧化還原電位條件,分別是「穩定型缺氧條件」 (-100 mV)的反應槽 A以及「變動型缺氧條件」 (-250 mV to +30 mV)的反應槽 B。「穩定型缺氧條件」的 A槽控制在14天即有顯著的 OCDD/F降解,而在127天的批次試程中,OCDD/F的去除率分別約有 68%以及62%,顯示若控制在穩定缺氧條件下,反應槽會有較佳的生物分解功能表現。不同批次的重覆測試與代謝產物分析可以驗證 OCDD/F的消失為生物分解貢獻,且添加堆肥可促進OCDD/F的分解速率。根據氣相層析高解析質譜鑑定代謝產物的結果,多氯二苯醚 (Polychlorinated Diphenyl Ethers)與烴基多氯聯苯 (Octachlorinated Hydroxylated biphenyls)可能是八氯戴奧辛在缺氧反應槽中相當重要的中間產物。兩個反應槽在堆肥添加期間,菌群結構在門階層變化趨勢相似,主要以Proteobacteria與Bacteroidetes為主,功能預測分析顯示這些菌群具有脫鹵、破環以及共代謝的潛力。最後,以A槽作為植種源的缺氧OCDD/F降解的批次實驗中,添加堆肥組約有55%的OCDD/F去除率,再次支持OCDD/F的缺氧生物分解。這些研究成果有助於未來發展類戴奧辛汙染物生物復育技術。
英文摘要 SUMMARY
In this study, the effects of two oxidation-redox potential (ORP) control strategies were evaluated for the biodegradation of octachlorinated dibenzodioxin and dibenzofuran (OCDD/F) in a hypoxic reactor. Two sets of bioprocessing systems were successfully operated to control the ORP under various hypoxic conditions—CSTR-A for “stable hypoxic conditions” (−100 mV) and CSTR-B for “fluctuating hypoxic conditions” (−250 to +30 mV). After conducting treatment on multiple batches, the results demonstrate that CSTR-A (single-point hypoxic conditions) degrades significantly (~33%, p < 0.05) within 14 days, and the OCDD degradation efficiency was nearly 70% after a 127-day batch test. The degradation kinetic constant of OCDD/F in CSTR-A was approximately 0.011, which was 1.3 times that of CSTR-B. The GC/ECD profile indicated that CSTR-A and CSTR-B were not the same. Therefore, different conditions of hypoxic control may result in different metabolic paths, leading to different product compositions. The main reaction involved is hydrolysis and cometabolism, and PCDEs and OH-PCBs may be among the most crucial metabolites in the hypoxic biodegradation of OCDD/F. Microbiome analysis demonstrated that the community structures of various bacteria were similar at the phylum level. However, the structure of the contaminated soil added to the reactor in this study varied. Overall, this study provides further information for the biodegradation of PCDD/F-contaminated soils under hypoxic conditions.
INTRODUCTION
During the 1980s, the production of pentachlorophenol (PCP) was as high as 50,000 to 60,000 metric tons per year globally (Borysiewicz et al. 2002). Taiwan was one of the major manufacturers of PCP in Southeast Asia at that time, with an annual output of up to 1,500 metric tons. PCP can result in production of approximately 1% highly toxic impurities such as polychlorinated-p-dibenzodioxin or polychlorinated dibenzofuran (PCDD/Fs) during normal manufacturing processes (Organization 1987).
According to related research, the use of reductive dichlorination of anaerobic microorganisms is preferable for the biological remediation of highly chlorined DD/Fs such as octachlorinated dibenzodioxin and dibenzofuran (OCDD/F). Anaerobic microorganisms convert highly chlorined DD/Fs into lower-chlorine-content homologues, after which aerobic microorganisms are applied. Due to the different redox environments, two-stage biological procedures are required to detoxify highly chlorined DD/Fs (Long et al. 2015). A recent study specified that OCDD/F can be rapidly decomposed and detoxified in a single-tank system that controls hypoxic conditions, with redox levels constantly fluctuating between −400 and +80 mV (Chen et al. 2016). Moreover, biodegradation of highly toxic chlorine dioxins was found to be more effective under hypoxic conditions.
However, controlling hypoxic conditions is not as easy as controlling aerobic or anaerobic conditions. Moreover, the mechanism of biodegrading OCDD/F under hypoxic conditions has still not been comprehensively researched because the type, amount, and dynamics of microorganisms differ. Therefore, the purpose of this study was to control the conditions in a hypoxic environment. The hypoxic conditions were further explored by determining whether the environment should be controlled at a stable point or changes in the gray area should be allowed.
A novel bioremediation method was developed for reducing PCDD/Fs in contaminated soil under hypoxic conditions. Because oxidation–reduction potential (ORP) is considerably sensitive to the presence of oxygen in solution, ORP controllers are used to regulate the reactor in a hypoxic environment. ORP has frequently been employed to control hypoxic environments (Duangmanee 2009; Nghiem et al. 2014a; Takahashi et al. 2011). In this study, two sets of bioprocessing systems were successfully operated to control the ORP conditions under two hypoxic conditions: “stable hypoxic conditions” (−100 mV) and “fluctuating hypoxic conditions” (−250 to +30 mV). Nutrients such as compost and basal medium were added to the reactor to vary the ORP conditions (single-point vs. two-point control). Steady and long-term operation of the hypoxic reactor was established to optimize the OCDD/F biodegradation. In addition, next-generation sequencing technology was employed to determine, whether it is different from the traditional anaerobic and aerobic flora, as well as special microbiome to participate for an absence of oxygen in the environment.
MATERIALS AND METHODS
Contaminated soil
The soil used in this study was from the site of a PCP plant in An-Shun, northwestern Tainan, Taiwan. The soil in this area contains high concentrations of PCDD/Fs, of which OCDDs and OCDF congeners contribute approximately 90% of the total amount of toxic substances. Moisture content, total organic carbon, total nitrogen, and available phosphorus were approximately 9.8%, 1.2%, 0.1%, and 2.23 mg/kg, respectively.
Slurry bioreactor setup and operation
The reactor was constructed using a steel drum of approximately 40 cm in length and 21 cm in inner diameter. Figure 1 displays the setup of the mixing equipment and aeration device. The working volume of the reactor was approximately 9 L, and the soil to water ratio was 1:2. At the beginning of each batch operation, contaminated soil (600 g), cow dung compost (150 g), and basal medium (1.5 L) was added. Moreover, 20% (w:w) slurry was drained after the batch operations. ORP control was conducted using an ORP sensor system (WTW, Germany) and aerator to control changes in the hypoxic conditions. CSTR-A was controlled at −100 mV for single-point control, and CSTR-B was controlled in the range of −250 to +30 mV for two-point control.
Chemical analysis (OCDD/F and metabolite analysis TOC)
OCDD/F was extracted through ultrasonic extraction (NIEA M167.01C, (Taiwan 2013). Dioxin analysis was performed using the standards of the American Society for Testing and Materials (ASTM STP1075) (Draper et al. 1991) hrough gas chromatography (GC; HP 6890N Series) with an electron capture detector (ECD) employing a DB-17 GC column (0.32 mm × 30 m i.d., 0.25-µm-thick film, Agilent J&W, USA). The metabolites analysis used in this study were obtained from National Chiao Tung University. High-resolution (HR) GC (Agilent 7890 CB) and HR mass spectrometry (MS) (AccuTOF GCX, JEOL) were utilized.
16S rRNA gene miseq sequencing and data processing
In this study, soil DNA extraction was performed using a commercial DNA extraction kit (MO BIO Laboratories, USA) by referring to the standard procedures specified by the manufacturer. This extraction was followed by using a rapid tissue homogenizer (FastPrep-24 5G, MP Biomedicals, USA). The extracted DNA was dissolved in polymerase chain reaction (PCR)-grade sterile water and stored at −20 °C for later use. In this study, Welgene Biotech Co., Ltd. was entrusted to conduct the next-generation sequencing. The extracted DNA was amplified by using the Illumina MiSeq high-throughput sequencing platform, and the sequence of 16S rRNA V3-V4 was analyzed. The resulting OTUs (Operational Taxonomic Units) were annotated using QIIME, and their biodiversity indices were estimated to analyze the distribution of microbial flora at different levels.
OCDD/F degradation batch experiment
In the OCDD/F degradation batch experiments, three control groups, a compost group, and substrate groups were designed by using various substrates to promote rapid biodegradation of OCDD/F. Slurry was obtained from CSTR-A and centrifuged in a 250-mL polypropylene vial at 8000 g for 20 min using a high-capacity centrifuge to remove the supernatant. Moreover, 10 g of wet soil (moisture content of approximately 40%) was added to a 160-mL serum bottle. According to the group required, pretreatment prepared material was added. Subsequently, 1 mL of OCDD/F stock solution (200 mg/L in Toluene) and 30 mL of medium were added. The mixture was aerated with 3 L/min of nitrogen for 1 min by capping with a stopper and aluminum cap. All groups were established in triplicate and incubated at room temperature and sampled over a 14-days period (Dat 0 sample were taken after 12 hours from onset) for both total dissolved organic carbon (DOC) and OCDD /F concentrations analysis.
RESULTS AND DISCUSSION
ORP variation
Figure 2 displays the real-time ORP state and frequency distribution at different stages of operation. The ORP was maintained at −111 ± 56 mV for CSTR-A, and the frequency distribution of CSTR-A in the second and third phases was approximately −100 mV. CSTR-B controlled the ORP in a fluctuating environment of 1 ± 114 mV. Moreover, the figure shows that the ORP demonstrated a bimodal trend with time.
Reactor performance
Table 1 lists the degradation efficiencies and reaction kinetic constants of the two reactors for different batches. CSTR-A had a 25% to 34% OCDD/F degradation efficiency (p < 0.05) for a 14-day batch test; however, no significant degradation was observed in CSTR-B. For the 28-day batch test, CSTR-A and CSTR-B had a significant degradation efficiency of approximately 33% and 37%, respectively, at this stage. In batches 8 and 9, a continuous analysis of length up to 127 days indicated that CSTR-A had an OCDD/F degradation efficiency of 68%. However, CSTR-B had an OCDD/F degradation efficiency of less than half that of CSTR-A, as shown in Figure 3. The total DOC results displayed in Figure 4 for batch 8 suggested that the DOC accumulated to approximately 4667 mg/L in CSTR-A. However, the accumulation was not as considerable in CSTR-B (2900 mg/L).
Metabolite analysis
The GC/ECD profile was analyzed using nonmetric multidimensional scaling analysis, as shown in Figure 5. The results for CSTR-A and CSTR-B are not the same. Therefore, different conditions of hypoxic control may result in different metabolic paths, leading to different product compositions. The metabolite results obtained using HRGC-MS are provided in Table 2. Octachlorinated diphenyl ethers or octachlorinated hydroxylated biphenyls were present in the hypoxic reactor.
Microbiome analysis
The diversity index results obtained from next-generation sequencing analysis are shown in Table 3. The contaminated soil (Soil-G) had higher diversity than other samples. The quantitative PCR data indicated that the total amount of bacteria was approximately 105 copies/g- dry slurry less than that in the reactor (109 copies/g dry slurry). Figure 6 presents a Venn diagram of the OTU level. The microbiome of the bacteria in the contaminated soil was different from that in the reactor. The metagenomics function prediction heat map (Figure 7) shows that the function of CSTR-A was more stable than that of CSTR-B. This implies that by exerting single-point control on the hypoxic conditions, the microbiome gradually adapts to the environmental pressure and then displays stable performance.
OCDD/F degradation batch experiment
Finally, an OCDD/F biodegradation batch experiment was conducted to compare the cometabolism substrates provided to the microbiome under hypoxic conditions. Figure 8, shows that positive control has a degradation efficiency of approximately 55%. Moreover, the water-washed group (Ws, Wis) has a similary degradation efficiency.
CONCLUSION
In this study, the effects of two ORP control strategies on the biodegradation of OCDD/F were evaluated in a hypoxic reactor. After treating multiple batches, the results obtained indicated that under the single-point hypoxic conditions, CSTR-A was considerably degraded after 14 days and its function was stable, compared to CSTR-B. The primary reactions were hydrolysis and dichlorination. PCDEs and OH-PCBs may be among the most crucial metabolites in the reaction tank. This fact provides information for conducting further studies on the biodegradation of PCDD/Fs under hypoxic conditions. In the OCDD/F degradation batch experiment, compost could be added through a rapid provision of DOC as a substrate for microbial cometabolism, and the hydrolysis of the compost by microorganisms could also contribute to the biodegradation of OCDD/F.
論文目次 摘要 I
誌謝 XVII
目錄 XVIII
表目錄 XXII
圖目錄 XXIV
第一章 前言 1
第二章 文獻回顧 3
2.1. 五氯酚 3
2.1.1. 五氯酚全球過去產量 3
2.1.2. 五氯酚工業製程之不純物 4
2.1.3. 五氯酚於環境中自發形成高氯數戴奧辛 5
2.2. 戴奧辛污染 6
2.2.1. 戴奧辛 6
2.2.2. 戴奧辛污染事件 7
2.3. 戴奧辛生物降解機制 8
2.3.1. 戴奧辛同源物好氧降解 8
2.3.2. 戴奧辛同源物厭氧分解 9
2.3.3. 真菌酵素分解戴奧辛 10
2.3.4. 兼性好氧/厭氧類戴奧辛生物分解 11
2.3.5. 高氯戴奧辛缺氧分解假說 12
2.4. 微生物脫氯反應機制 13
2.4.1. 氧化脫鹵作用(Oxidative Dehalogenation) 14
2.4.2. 脫氫氯反應 (Dehydrohalogenation) 15
2.4.3. 取代脫氯反應 (Substitutive Dehalogenation) 15
2.4.4. 經甲基轉換的脫氯作用 (Dechlorination via Methyl Transfer) 16
2.4.5. 還原脫氯作用 (Reductive dehalogenation) 17
2.5. 微生物共代謝作用 18
2.5.1. 共代謝定義 18
2.5.2. 含氯化合物共代謝作用 18
2.5.2.1. 含氯脂肪烴 19
2.5.2.2. 含氯單環化合物 19
2.5.2.3. 含氯多環化合物 20
2.6. 戴奧辛生物復育技術 23
2.6.1. 泥漿相生物反應器 23
2.6.1.1. 泥漿相生物反應器於生物復育之原理及應用 23
2.6.1.2. 影響泥漿相生物反應器之操作因子 24
2.6.2. 掩埋處理程序 25
2.6.2.1. 堆肥處理技術 26
2.6.2.2. 堆肥添加於生物復育之原理及應用 26
2.7. 氧化還原電位 28
2.7.1. 氧化還原電位定義 28
2.7.2. 氧化還原電位監測與控制應用 29
第三章 實驗材料與方法 31
3.1. 研究架構 31
3.2. 研究策略 32
3.3. 系統設計及操作條件 33
3.4. 氧化還原電位控制 34
3.5. 土壤樣本來源 35
3.6. 泥漿採樣與保存 35
3.7. 總溶解性有機碳分析 36
3.8. OCDD/F缺氧共代謝脫氯批次實驗 36
3.8.1. 堆肥組前處理製備流程 36
3.8.2. 定義基質組前處理製備流程 37
3.8.3. 植種流程 37
3.9. 土壤戴奧辛萃取與分析 37
3.9.1. 超音波震盪萃取 37
3.9.2. OCDD/F分析 38
3.10. 代謝產物分析 38
3.10.1. 高解析氣相層析儀分離條件 38
3.10.2. 高解析質譜儀分析條件 39
3.11. 土壤DNA萃取 39
3.12. 分子生物分析方法 39
3.12.1. 聚合酶鏈鎖反應(Polymerase chain reaction, PCR) 39
3.12.2. 瓊酯膠電泳 40
3.12.3. 即時定量聚合酶鏈鎖反應(Quantitative real-time Polymerase Chain Reactions, qPCR) 40
3.12.4. 次世代定序 (Next Generation Seguencing, NGS) 41
第四章 結果與討論 42
4.1. 反應槽不同控制之氧化還原電位變化 42
4.2. 反應槽功能表現 46
4.2.1. 反應槽 OCDD/F濃度變化結果 46
4.2.2. 反應槽OCDD/F降解反應動力探討 53
4.2.3. 總溶解性有機碳變化結果 58
4.2.4. OCDD與總溶解性有機碳(DOC)變化相關性分析 60
4.3. 反應槽不同操作時期代謝產物分析 66
4.3.1. GC/ECD圖譜分析結果 66
4.3.2. HRGC-HRMS分析未知代謝產物探討 69
4.4. 反應槽不同時期微生物體分析 78
4.4.1. 總細菌16S qPCR分析結果 78
4.4.2. 次世代高通量定序結果 79
4.4.3. 菌群結構分析 80
4.4.4. 宏基因體功能預測分析 85
4.5. 堆肥水解缺氧降解OCDD/F批次實驗 92
4.5.1. 溶解有機碳變化分析 94
4.5.2. OCDD/F分解效率探討 96
4.5.3. OCDD/F與溶解性有機碳(DOC)變化相關性分析 99
第五章 結論與建議 101
5.1. 結論 101
5.2. 建議 104
參考文獻 105
附錄 126
參考文獻 Abraham, W.-R., B. Nogales, P. N. Golyshin, D. H. Pieper & K. N. Timmis, 2002. Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Current Opinion in Microbiology 5(3):246-253.
Adebusoye, S. A., F. W. Picardal, M. O. Ilori, O. O. Amund, C. Fuqua & N. Grindle, 2007. Aerobic degradation of di-and trichlorobenzenes by two bacteria isolated from polluted tropical soils. Chemosphere 66(10):1939-1946.
Ahn, Y.-B., F. Liu, D. E. Fennell & M. M. Häggblom, 2008a. Biostimulation and bioaugmentation to enhance dechlorination of polychlorinated dibenzo-p-dioxins in contaminated sediments. FEMS Microbiology Ecology 66(2):271-281.
Ahn, Y. B., F. Liu, D. E. Fennell & M. M. Haggblom, 2008b. Biostimulation and bioaugmentation to enhance dechlorination of polychlorinated dibenzo-p-dioxins in contaminated sediments. FEMS Microbiology Ecology 66(2):271-81 doi:10.1111/j.1574-6941.2008.00557.x.
Aktaş, Ö. & F. Çeçen, 2009. Cometabolic bioregeneration of activated carbons loaded with 2-chlorophenol. Bioresource Technology 100(20):4604-4610.
Alexander, M., 1999. Biodegradation and Bioremediation. Academic Press San Diego CA. USA.
Baggi, G., 2002. Microbial degradation of chlorobenzoates (CBAs): biochemical aspects and ecological implications. Progress in Industrial Microbiology 36:149-173.
Baggi, G., S. Bernasconi & M. Zangrossi, 2005. 3-Chloro-, 2, 3-and 3, 5-dichlorobenzoate co-metabolism in a 2-chlorobenzoate-degrading consortium: role of 3, 5-dichlorobenzoate as antagonist of 2-chlorobenzoate degradation. Biodegradation 16(3):275-282.
Ballerstedt, H., A. Kraus & U. Lechner, 1997. Reductive dechlorination of 1,2,3,4-tetrachlorodibenzo-p-dioxin and its products by anaerobic mixed cultures from Saale river sediment. Environmental Science & Technology 31(6):1749-1753.
Balzer, W., H.-M. Gaus, C. Gaus, R. Weber, B. Schmitt-Biegel & U. Urban, Remediation measures in a residential area highly contaminated with PCDD/PCDF, Arsenic and heavy metals as a result of industrial production in the early 19th century. In: Organohalogen Compounds, 2007. vol 69. Eco-Informa Press, p 857-860.
Bartlett, R. J. & B. R. James, 1993. Redox chemistry of soils. Advances in Agronomy 50:151-208.
Bartlett, R. J. & B. R. James, 1995. System for categorizing soil redox status by chemical field testing. Geoderma 68(3):211-218.
Baxter, R., P. Gilbert, R. Lidgett, J. Mainprize & H. Vodden, 1975. The degradation of polychlorinated biphenyls by micro-organisms. Science of the Total Environment 4(1):53-61.
Bommer, M., C. Kunze, J. Fesseler, T. Schubert, G. Diekert & H. Dobbek, 2014. Structural basis for organohalide respiration. Science:1258118.
Boopathy, R., V. Larsen & E. Senior, 1988. Performance of anaerobic baffled reactor (ABR) in treating distillery waste water from a scotch whisky factory. Biomass 16(2):133-143.
Borja, J., D. M. Taleon, J. Auresenia & S. Gallardo, 2005. Polychlorinated biphenyls and their biodegradation. Process Biochemistry 40(6):1999-2013.
Borysiewicz, M., W. Kolsut & J. Zurek, 2002. Preliminary Risk Profile–Pentachlorophenol. Institute of Environmental Protection.—Warsaw, Poland (www. unece. org/env/popsxg/dossier_pcp_drf. doc).
Brenner, V., B. Hernandez & D. Focht, 1993. Variation in chlorobenzoate catabolism by Pseudomonas putida P111 as a consequence of genetic alterations. Applied and Environmental Microbiology 59(9):2790-2794.
Brunner, W., D. Staub & T. Leisinger, 1980. Bacterial degradation of dichloromethane. Applied and Environmental Microbiology 40(5):950-8.
Bunge, M., L. Adrian, A. Kraus, M. Opel, W. G. Lorenz, J. R. Andreesen, H. Görisch & U. Lechner, 2003. Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 421(6921):357-360.
Bunge, M., H. Ballerstedt & U. Lechner, 2001. Regiospecific dechlorination of spiked tetra- and trichlorodibenzo-p-dioxins by anaerobic bacteria from PCDD/F-contaminated Spittelwasser sediments. Chemosphere 43(4-7):675-81 doi:S0045-6535(00)00420-3 [pii].
Bunge, M. & U. Lechner, 2009. Anaerobic reductive dehalogenation of polychlorinated dioxins. Applied Microbiology and Biotechnology 84(3):429-44 doi:10.1007/s00253-009-2084-7.
Caporaso, J. G., K. Bittinger, F. D. Bushman, T. Z. DeSantis, G. L. Andersen & R. Knight, 2009. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26(2):266-267.
Center, U. A. E., 2012. Remediation Technologies Screening Matrix and Reference Guide, version 4.0. Federal Remediation Technology Roundtable (FRTR)[Online] Available: http://www frtr gov/matrix2/section4/4-19 html.
Chang, H.-J., Y.-J. Wu & T.-F. Lin, 2015. Human health risk management of a mercury, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, and pentachlorophenol contaminated site: Remediation action. Sustainable Environment Research 25(4).
Chen, S. & X. Dong, 2005. Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater. International Journal of Systematic and Evolutionary Microbiology 55(6):2257-2261.
Chen, W.-Y., J.-H. Wu, S.-C. Lin & J.-E. Chang, 2016. Bioremediation of polychlorinated-p-dioxins/dibenzofurans contaminated soil using simulated compost-amended landfill reactors under hypoxic conditions. Journal of Hazardous Materials 312:159-168.
Chen, W.-Y., J.-H. Wu, Y.-Y. Lin, H.-J. Huang & J.-E. Chang, 2013. Bioremediation potential of soil contaminated with highly substituted polychlorinated dibenzo-p-dioxins and dibenzofurans: Microcosm study and microbial community analysis. Journal of Hazardous Materials 261:351-361 doi:10.1016/j.jhazmat.2013.07.039.
Chen, W. Y., J. H. Wu & J. E. Chang, 2014. Pyrosequencing analysis reveals high population dynamics of the soil microcosm degrading octachlorodibenzofuran. Microbes and Environments 29(4):393-400 doi:10.1264/jsme2.ME14001.
Chiavola, A., R. Baciocchi, R. Irvine, R. Gavasci & P. Sirini, 2004. Aerobic biodegradation of 3-chlorophenol in a sequencing batch reactor: effect of cometabolism. Water Science and Technology 50(10):235-242.
Christodoulatos, C. & A. Koutsospyros, 1998. Bioslurry reactors. Biological Treatment of Hazardous Wastes:69-103.
Clark, R., E. Chian & R. Griffin, 1979. Degradation of polychlorinated biphenyls by mixed microbial cultures. Applied and Environmental Microbiology 37(4):680-685.
Colquhoun, D. R., E. M. Hartmann & R. U. Halden, 2012. Proteomic profiling of the dioxin-degrading bacterium Sphingomonas wittichii RW1. BioMed Research International 2012.
Cook, A. M. & R. Hütter, 1986. Ring dechlorination of deethylsimazine by hydrolases from Rhodococcus corallinus. FEMS Microbiology Letters 34(3):335-338.
Cooper, G. S. & S. Jones, 2008. Pentachlorophenol and cancer risk: focusing the lens on specific chlorophenols and contaminants. Environmental Health Perspectives 116(8):1001.
Coronado, E., C. Roggo, D. R. Johnson & J. R. van der Meer, 2012. Genome-wide analysis of salicylate and dibenzofuran metabolism in Sphingomonas wittichii RW1. Frontiers in Microbiology 3.
D'Angelo, E. M. & K. Reddy, 1999. Regulators of heterotrophic microbial potentials in wetland soils. Soil Biology and Biochemistry 31(6):815-830.
De Los Cobos-Vasconcelos, D., F. Santoyo-Tepole, C. Juarez-Ramirez, N. Ruiz-Ordaz & C. J. J. Galindez-Mayer, 2006. Cometabolic degradation of chlorophenols by a strain of Burkholderia in fed-batch culture. Enzyme and Microbial Technology 40(1):57-60.
DeWeerd, K. A., L. Mandelco, R. S. Tanner, C. R. Woese & J. M. Suflita, 1990. Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Archives of Microbiology 154(1):23-30.
Diaz, M., E. Madejon, J. Ariza, R. Lopez & F. Cabrera, 2002. Cocomposting of beet vinasse and grape marc in windrows and static pile systems. Compost Science & Utilization 10(3):258-269.
Draper, W. M., H. Park & R. D. Stephens, 1991. Determination of OCDD and OCDF in soils and biological samples by GC/ECD Waste Testing and Quality Assurance: Third Volume. ASTM International.
Duangmanee, T., 2009. Micro-aeration for hydrogen sulfide removal from biogas. Iowa State University.
Edgar, R. C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460-2461.
El Fantroussi, S., H. Naveau & S. N. Agathos, 1998. Anaerobic dechlorinating bacteria. Biotechnology Progress 14(2):167-188.
Eweis, J. B., S. J. Ergas, D. P. Chang & E. D. Schroeder, 1998. Bioremediation principles. McGraw-Hill Book Company Europe.
Fava, F. & L. Bertin, 1999. Use of exogenous specialised bacteria in the biological detoxification of a dump site‐polychlorobiphenyl‐contaminated soil in slurry phase conditions. Biotechnology and Bioengineering 64(2):240-249.
Fava, F. & D. Di Gioia, 1998. Effects of Triton X-100 and Quillaya Saponin on the ex situ bioremediation of a chronically polychlorobiphenyl-contaminated soil. Applied Microbiology and Biotechnology 50(5):623-630.
Fava, F., D. Di Gioia & L. Marchetti, 2000. Role of the reactor configuration in the biological detoxification of a dump site-polychlorobiphenyl-contaminated soil in lab-scale slurry phase conditions. Applied Microbiology and Biotechnology 53(2):243-248.
Fennell, D., S. Du, F. Liu, H. Liu & M. Häggblom, 2011. Dehalogenation of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans, Polychlorinated Biphenyls, and Brominated Flame Retardants, and Potential as a Bioremediation Strategy.
Fennell, D. E., I. Nijenhuis, S. F. Wilson, S. H. Zinder & M. M. Häggblom, 2004. Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environmental Science & Technology 38(7):2075-2081.
Fetzner, S., 1998. Bacterial dehalogenation. Applied Microbiology and Biotechnology 50(6):633-57.
Fetzner, S. & F. Lingens, 1994. Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiological Reviews 58(4):641-685.
Fiedler, H., 2007. National PCDD/PCDF release inventories under the Stockholm convention on persistent organic pollutants. Chemosphere 67(9):S96-S108.
Fiedler, S., M. J. Vepraskas & J. Richardson, 2007. Soil redox potential: importance, field measurements, and observations. Advances in Agronomy 94:1-54.
Field, J. A. & R. Sierra-Alvarez, 2008. Microbial degradation of chlorinated dioxins. Chemosphere 71(6):1005-18 doi:10.1016/j.
Fisher, B., 1991. Pentachlorophenol: toxicology and environmental fate. Journal of pesticide reform: a publication of the Northwest Coalition for Alternatives to Pesticides (USA).
Focht, D. & W. Brunner, 1985. Kinetics of biphenyl and polychlorinated biphenyl metabolism in soil. Applied and Environmental Microbiology 50(4):1058-1063.
Fogarty, A. M. & O. H. Tuovinen, 1991. Microbiological degradation of pesticides in yard waste composting. Microbiological Reviews 55(2):225-233.
Folsom, B. R., P. J. Chapman & P. H. Pritchard, 1990. Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Applied and Environmental Microbiology 56(5):1279-85.
Fox, B. G., J. G. Borneman, L. P. Wackett & J. D. Lipscomb, 1990. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 29(27):6419-6427.
Freedman, D., A. Danko & M. Verce, 2001. Substrate interactions during aerobic biodegradation of methane, ethene, vinyl chloride and 1, 2-dichloroethenes. Water Science and Technology 43(5):333-340.
Furukawa, K., 2000. Engineering dioxygenases for efficient degradation of environmental pollutants. Current Opinion in Biotechnology 11(3):244-249.
Furukawa, K. & H. Fujihara, 2008. Microbial degradation of polychlorinated biphenyls: biochemical and molecular features. Journal of Bioscience and Bioengineering 105(5):433-449.
Furukawa, K., K. Tonomura & A. Kamibayashi, 1978. Effect of chlorine substitution on the biodegradability of polychlorinated biphenyls. Applied and Environmental Microbiology 35(2):223-227.
Galli, R. & P. L. McCarty, 1989. Biotransformation of 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane by a Clostridium sp. Applied and Environmental Microbiology 55(4):837-44.
Gao, S., K. Tanji, S. Scardaci & A. Chow, 2002. Comparison of redox indicators in a paddy soil during rice-growing season. Soil Science Society of America Journal 66(3):805-817.
Gibson, D. T. & R. E. Parales, 2000. Aromatic hydrocarbon dioxygenases in environmental biotechnology. Current Opinion in Biotechnology 11(3):236-243.
Gu, C., H. Li, B. J. Teppen & S. A. Boyd, 2008. Octachlorodibenzodioxin formation on Fe (III)-montmorillonite clay. Environmental Science & Technology 42(13):4758-4763.
Guerin, T. F., 2008. Ex-situ bioremediation of chlorobenzenes in soil. Journal of Hazardous Materials 154(1):9-20.
Ha, D. T. C., M. A. Tuan, N. Q. Viet, T. K. Sau, O. Papke & N. T. Sanh, 2004. Biodegradation of 2, 3, 7, 8-TCDD by anaerobic and aerobic microcosms collected from bioremediation treatments for cleaning up dioxin contaminated soils. Organohalogen Compounds 66:3695-3701.
Hahnke, S., T. Langer, D. E. Koeck & M. Klocke, 2016. Description of Proteiniphilum saccharofermentans sp. nov., Petrimonas mucosa sp. nov. and Fermentimonas caenicola gen. nov., sp. nov., isolated from mesophilic laboratory-scale biogas reactors, and emended description of the genus Proteiniphilum. International Journal of Systematic and Evolutionary microbiology 66(3):1466-1475.
Haitzer, M., S. Höss, W. Traunspurger & C. Steinberg, 1998. Effects of dissolved organic matter (DOM) on the bioconcentration of organic chemicals in aquatic organisms—a review—. Chemosphere 37(7):1335-1362.
Hamburg, D.-B., 1995. Dioxin-Bilanz für Hamburg Hamburger Umweltberichte. vol 51. Freie und Hansestadt Hamburg, 95.
Han, Z., W. Wu, J. Zhu & Y. Chen, 2008. Oxidization–reduction potential and pH for optimization of nitrogen removal in a twice-fed sequencing batch reactor treating pig slurry. Biosystems Engineering 99(2):273-281.
Hanano, A., H. Ammouneh, I. Almousally, A. Alorr, M. Shaban, A. A. Alnaser & I. Ghanem, 2014. Traceability of polychlorinated dibenzo-dioxins/furans pollutants in soil and their ecotoxicological effects on genetics, functions and composition of bacterial community. Chemosphere 108:326-333.
Hardman, D. J., 1991. Biotransformation of halogenated compounds. Critical Reviews in Biotechnology 11(1):1-40 doi:10.3109/07388559109069182.
Harker, A. R. & Y. Kim, 1990. Trichloroethylene Degradation by 2 Independent Aromatic-Degrading Pathways in Alcaligenes-Eutrophus Jmp134. Applied and Environmental Microbiology 56(4):1179-1181.
Hazen, T. C., 2010. Cometabolic bioremediation Handbook of Hydrocarbon and Lipid Microbiology. Springer, 2505-2514.
Health, U. D. o. & H. Services, 2000. Toxicological profile for pentachlorophenol. Agency for Toxic Substance and Disease Registry Draft.
Hernandez, B., F. Higson, R. Kondrat & D. Focht, 1991. Metabolism of and inhibition by chlorobenzoates in Pseudomonas putida P111. Applied and Environmental Microbiology 57(11):3361-3366.
Holliger, C., G. Wohlfarth & G. Diekert, 1998. Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiology Reviews 22(5):383-398.
Hong, H.-B., I.-H. Nam, K. Murugesan, Y.-M. Kim & Y.-S. Chang, 2004. Biodegradation of dibenzo-p-dioxin, dibenzofuran, and chlorodibenzo-p-dioxins by Pseudomonas veronii PH-03. Biodegradation 15(5):303-313.
Huang, C. L., B. K. Harrison, J. Madura & J. Dolfing, 1996. Gibbs free energies of formation of PCDDs: Evaluation of estimation methods and application for predicting dehalogenation pathways. Environmental Toxicology and Chemistry 15(6):824-836.
Imai, R., Y. Nagata, M. Fukuda, M. Takagi & K. Yano, 1991. Molecular-Cloning of a Pseudomonas-Paucimobilis Gene Encoding a 17-Kilodalton Polypeptide That Eliminates Hcl Molecules from Gamma-Hexachlorocyclohexane. Journal of Bacteriology 173(21):6811-6819.
Janssen, D. B., F. Pries & J. R. Vanderploeg, 1994. Genetics and Biochemistry of Dehalogenating Enzymes. Annual Review of Microbiology 48:163-191.
Janssen, D. B., A. Scheper, L. Dijkhuizen & B. Witholt, 1985. Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10. Applied and Environmental Microbiology 49(3):673-7.
Jaspers, C., G. Ewbank, A. McCarthy & M. Penninckx, 2002. Successive rapid reductive dehalogenation and mineralization of pentachlorophenol by the indigenous microflora of farmyard manure compost. Journal of Applied Microbiology 92(1):127-133.
Kaiya, S., S. Utsunomiya, S. Suzuki, N. Yoshida, H. Futamata, T. Yamada & A. Hiraishi, 2012. Isolation and Functional Gene Analyses of Aromatic-Hydrocarbon-Degrading Bacteria from a Polychlorinated-Dioxin-Dechlorinating Process. Microbes and Environments 27(2):127-135 doi:10.1264/jsme2.ME11283.
Kimura, N. & Y. Kamagata, 2009. Impact of dibenzofuran/dibenzo-p-dioxin amendment on bacterial community from forest soil and ring-hydroxylating dioxygenase gene populations. Applied Microbiology and Biotechnology 84(2):365-373.
Knackmuss, H., 1981. Degradation of halogenated and sulfonated hydrocarbons. Academic Press, London, 189-212.
Kobayashi, H. & B. E. Rittmann, 1982. Microbial removal of hazardous organic compounds. Environmental Science & Technology 16(3):170A-183A.
Kobayashi, T., Y. Murai, K. Tatsumi & Y. Iimura, 2009. Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. enhanced by water-extractable organic matter from manure compost. Science of the Total Environment 407(22):5805-5810.
Kohlerstaub, D., S. Hartmans, R. Galli, F. Suter & T. Leisinger, 1986. Evidence for Identical Dichloromethane Dehalogenases in Different Methylotrophic Bacteria. Journal of General Microbiology 132:2837-2843.
Kohlerstaub, D. & T. Leisinger, 1985. Dichloromethane Dehalogenase of Hyphomicrobium Sp Strain Dm2. Journal of Bacteriology 162(2):676-681.
Koistinen, J., 2000. Polychlorinated diphenyl ethers (PCDE). Volume 3 Anthropogenic Compounds Part K:157-201.
Kästner, M. & B. Mahro, 1996. Microbial degradation of polycyclic aromatic hydrocarbons in soils affected by the organic matrix of compost. Applied Microbiology and Biotechnology 44(5):668-675.
Kozlovsky, S. & F. Kunc, 1995. Metabolism of 2-chlorobenzoic acid inPseudomonas stutzeri. Folia Microbiologica 40(5):454-456.
Krzmarzick, M. J., B. B. Crary, J. J. Harding, O. O. Oyerinde, A. C. Leri, S. C. Myneni & P. J. Novak, 2012. Natural niche for organohalide-respiring Chloroflexi. Applied and Environmental Microbiology 78(2):393-401.
Kulcu, R. & O. Yaldiz, 2004. Determination of aeration rate and kinetics of composting some agricultural wastes. Bioresource Technology 93(1):49-57.
Kuyukina, M. S., I. B. Ivshina, M. I. Ritchkova, J. C. Philp, C. J. Cunningham & N. Christofi, 2003. Bioremediation of crude oil-contaminated soil using slurry-phase biological treatment and land farming techniques. Soil and Sediment Contamination 12(1):85-99.
Lackner, S. & H. Horn, 2012. Evaluating operation strategies and process stability of a single stage nitritation–anammox SBR by use of the oxidation–reduction potential (ORP). Bioresource Technology 107:70-77.
Lackner, S., C. Lindenblatt & H. Horn, 2012. ‘Swinging ORP’as operation strategy for stable reject water treatment by nitritation–anammox in sequencing batch reactors. Chemical Engineering Journal 180:190-196.
Laine, M. M. & K. S. Jørgensen, 1997. Effective and safe composting of chlorophenol-contaminated soil in pilot scale. Environmental Science & Technology 31(2):371-378.
Laine, M. M. & K. S. Jorgensen, 1996. Straw compost and bioremediated soil as inocula for the bioremediation of chlorophenol-contaminated soil. Applied and Environmental Microbiology 62(5):1507-1513.
Langille, M. G., J. Zaneveld, J. G. Caporaso, D. McDonald, D. Knights, J. A. Reyes, J. C. Clemente, D. E. Burkepile, R. L. V. Thurber & R. Knight, 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology 31(9):814-821.
Leisinger, T. & R. Bader, 1993. Microbial Dehalogenation of Synthetic Organohalogen Compounds - Hydrolytic Dehalogenases. Chimia 47(4):116-121.
Li, S. & L. P. Wackett, 1992. Trichloroethylene oxidation by toluene dioxygenase. Biochem Biophys Res Commun 185(1):443-51.
Lin, J., W. Lin, J. Liu, R. Surampalli, T. Zhang & C. Kao, 2017. Aerobic Biodegradation of OCDD by P. Mendocina NSYSU: Effectiveness and Gene Inducement Studies. Water Environment Research 89(12):2113-2121.
Lin, W., G. Chang-Chien, C. Kao, L. Newman, T. Wong & J. Liu, 2014. Biodegradation of Polychlorinated Dibenzo--Dioxins by Strain NSYSU. Journal of Environmental Quality 43(1):349-357.
Liu, F. & D. E. Fennell, 2008. Dechlorination and Detoxification of 1,2,3,4,7,8-Hexachlorodibenzofuran by a Mixed Culture Containing Dehalococcoides ethenogenes Strain 195. Environmental Science & Technology 42(2):602-607 doi:10.1021/es071380s.
Loffler, F. & R. Muller, 1991. Identification of 4-chlorobenzoyl-coenzyme A as intermediate in the dehalogenation catalyzed by 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS3. FEBS Letters 290(1-2):224-6.
Loganathan, B. G. & S. Masunaga, 2009. PCBs, dioxins, and furans: Human exposure and health effects. Handbook of Toxicology of Chemical Warfare Agents:245-253.
Long, Y.-Y., Y. Fang, C. Zhang, Y. Du, J. Shentu & D.-S. Shen, 2015. Degradation of Polychlorinated Biphenyls by Sequential Anaerobic–Aerobic Composting. Water, Air, & Soil Pollution 226(3) doi:10.1007/s11270-015-2333-6.
Lopez-Echartea, E., T. Macek, K. Demnerova & O. Uhlik, 2016. Bacterial Biotransformation of Pentachlorophenol and Micropollutants Formed during Its Production Process. International Journal of Environmental Research and Public Health 13(11):1146.
Lu, P.-Y., R. L. Metcalf & L. K. Cole, 1978. The environmental fate of 14C-pentachlorophenol in laboratory model ecosystems Pentachlorophenol. Springer, 53-63.
Machín-Ramírez, C., A. Okoh, D. Morales, K. Mayolo-Deloisa, R. Quintero & M. Trejo-Hernandez, 2008. Slurry-phase biodegradation of weathered oily sludge waste. Chemosphere 70(4):737-744.
Magoč, T. & S. L. Salzberg, 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957-2963.
Maphosa, F., M. W. Passel, W. M. Vos & H. Smidt, 2012. Metagenome analysis reveals yet unexplored reductive dechlorinating potential of Dehalobacter sp. E1 growing in co‐culture with Sedimentibacter sp. Environmental Microbiology Reports 4(6):604-616.
Masunaga, S., T. Takasuga & J. Nakanishi, 2001a. Dioxin and dioxin-like PCB impurities in some Japanese agrochemical formulations. Chemosphere 44(4):873-885.
Masunaga, S., Y. Yao, I. Ogura, S. Nakai, Y. Kanai, M. Yamamuro & J. Nakanishi, 2001b. Identifying Sources and Mass Balance of Dioxin Pollution in Lake Shinji Basin, Japan. Environmental Science & Technology 35(10):1967-1973 doi:10.1021/es001729a.
Mattes, T. E., A. K. Alexander & N. V. Coleman, 2010. Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiology Reviews 34(4):445-475.
Meerts, I. A., Y. Assink, P. H. Cenijn, J. H. Van den Berg, B. M. Weijers, Å. Bergman, J. H. Koeman & A. Brouwer, 2002. Placental transfer of a hydroxylated polychlorinated biphenyl and effects on fetal and maternal thyroid hormone homeostasis in the rat. Toxicological Sciences 68(2):361-371.
Meßmer, M., S. Reinhardt, G. Wohlfarth & G. Diekert, 1996. Studies on methyl chloride dehalogenase and O-demethylase in cell extracts of the homoacetogen strain MC based on a newly developed coupled enzyme assay. Archives of Microbiology 165(1):18-25.
Meßmer, M., G. Wohlfarth & G. Diekert, 1993. Methyl chloride metabolism of the strictly anaerobic, methyl chloride-utilizing homoacetogen strain MC. Archives of Microbiology 160(5):383-387.
Michel, F. C., J. Quensen & C. Reddy, 2001. Bioremediation of a PCB-contaminated soil via composting. Compost Science & Utilization 9(4):274-284.
Middeldorp, P. J., M. L. Luijten, B. A. v. d. Pas, M. H. v. Eekert, S. W. Kengen, G. Schraa & A. J. Stams, 1999. Anaerobic microbial reductive dehalogenation of chlorinated ethenes. Bioremediation Journal 3(3):151-169.
Miguez, C. B., C. W. Greer & J. M. Ingram, 1990. Degradation of mono-and dichlorobenzoic acid isomers by two natural isolates of Alcaligenes denitrificans. Archives of Microbiology 154(2):139-143.
Mihial, D. J., T. Viraraghavan & Y.-C. Jin, 2006. Bioremediation of petroleum-contaminated soil using composting. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 10(2):108-115.
Mohan, S. V., D. Prasanna, B. P. Reddy & P. Sarma, 2008. Ex situ bioremediation of pyrene contaminated soil in bio-slurry phase reactor operated in periodic discontinuous batch mode: Influence of bioaugmentation. International Biodeterioration & Biodegradation 62(2):162-169.
Mohee, R., M.-F. B. Driver & N. Sobratee, 2008. Transformation of spent broiler litter from exogenous matter to compost in a sub-tropical context. Bioresource Technology 99(1):128-136.
Monferrán, M. V., J. R. Echenique & D. A. Wunderlin, 2005. Degradation of chlorobenzenes by a strain of Acidovorax avenae isolated from a polluted aquifer. Chemosphere 61(1):98-106.
Moreira, I. S., C. L. Amorim, M. F. Carvalho & P. M. Castro, 2012. Co-metabolic degradation of chlorobenzene by the fluorobenzene degrading wild strain Labrys portucalensis. International Biodeterioration & Biodegradation 72:76-81.
Morse, D. C., E. K. Wehler, M. van de Pas, A. T. H. de Bie, P. J. van Bladeren & A. Brouwer, 1995. Metabolism and biochemical effects of 3, 3′, 4, 4′-tetrachlorobiphenyl in pregnant and fetal rats. Chemico-Biological Interactions 95(1-2):41-56.
Mueller, J. G., S. E. Lantz, B. O. Blattmann & P. J. Chapman, 1991. Bench-scale evaluation of alternative biological treatment processes for the remediation of pentachlorophenol-and creosote-contaminated materials. Solid-phase bioremediation. Environmental Science & Technology 25(6):1045-1055.
Muller, F. & L. Caillard, 1986. Chlorophenols. Ullmann's encyclopedia of industrial chemistry.
Nagata, Y., T. Hatta, R. Imai, K. Kimbara, M. Fukuda, K. Yano & M. Takagi, 1993a. Purification and Characterization of Gamma-Hexachlorocyclohexane (Gamma-Hch) Dehydrochlorinase (Lina) from Pseudomonas-Paucimobilis. Bioscience Biotechnology and Biochemistry 57(9):1582-1583.
Nagata, Y., T. Hatta, R. Imai, K. Kimbara, M. Fukuda, K. Yano & M. Takagi, 1993b. Purification and characterization of γ-hexachlorocyclohexane (γ-HCH) dehydrochlorinase (LinA) from Pseudomonas paucimobilis. Bioscience, Biotechnology, and Biochemistry 57(9):1582-1583.
Nam, I. H., Y. M. Kim, S. Schmidt & Y. S. Chang, 2006. Biotransformation of 1,2,3-tri- and 1,2,3,4,7,8-hexachlorodibenzo-p- dioxin by Sphingomonas wittichii strain RW1. Applied and Environmental Microbiology 72(1):112-6 doi:10.1128/AEM.72.1.112-116.2006.
Nano, G., A. Borroni & R. Rota, 2003. Combined slurry and solid-phase bioremediation of diesel contaminated soils. Journal of Hazardous Materials 100(1):79-94.
Narihiro, T., S. Kaiya, H. Futamata & A. Hiraishi, 2010. Removal of polychlorinated dioxins by semi-aerobic fed-batch composting with biostimulation of "Dehalococcoides". Journal of Bioscience and Bioengineering 109(3):249-56 doi:10.1016/j.jbiosc.2009.08.498.
Nelson, M. J., S. O. Montgomery, W. R. Mahaffey & P. H. Pritchard, 1987. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Applied and Environmental Microbiology 53(5):949-54.
Nghiem, L. D., P. Manassa, M. Dawson & S. K. Fitzgerald, 2014a. Oxidation reduction potential as a parameter to regulate micro-oxygen injection into anaerobic digester for reducing hydrogen sulphide concentration in biogas. Bioresource Technology 173:443-7 doi:10.1016/j.biortech.2014.09.052.
Nghiem, L. D., P. Manassa, M. Dawson & S. K. Fitzgerald, 2014b. Oxidation reduction potential as a parameter to regulate micro-oxygen injection into anaerobic digester for reducing hydrogen sulphide concentration in biogas. Bioresource Technology 173:443-447.
Nzila, A., 2013. Update on the cometabolism of organic pollutants by bacteria. Environmental Pollution 178:474-82 doi:10.1016/j.envpol.2013.03.042.
Organization, W. H., 1987. Environmental health criteria 71: Pentachlorophenol. Geneva: World Health Organization.
Pacey, J., D. Augenstein, R. Morck, D. Reinhart & R. Yazdani, 1999. The bioreactor landfill-an innovation in solid waste management. MSW Management:53-60.
Pentachlorophenol, W., 1987. Environmental Health Criteria 71. Geneva: World Health Organization.
Persson, Y., S. Lundstedt, L. Öberg & M. Tysklind, 2007. Levels of chlorinated compounds (CPs, PCPPs, PCDEs, PCDFs and PCDDs) in soils at contaminated sawmill sites in Sweden. Chemosphere 66(2):234-242.
Pukay‐Martin, N. D., K. E. Pontoski, M. A. Maxwell, P. S. Calhoun, C. E. Dutton, C. P. Clancy, M. A. Hertzberg, C. F. Collie & J. C. Beckham, 2012. The Influence of Depressive Symptoms on Suicidal Ideation Among US Vietnam‐Era and Afghanistan/Iraq‐Era Veterans With Posttraumatic Stress Disorder. Journal of Traumatic Stress 25(5):578-582.
Quast, C., E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies & F. O. Glöckner, 2012. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41(D1):D590-D596.
Quijano, G., J. Rocha-Ríos, M. Hernández, S. Villaverde, S. Revah, R. Muñoz & F. Thalasso, 2010. Determining the effect of solid and liquid vectors on the gaseous interfacial area and oxygen transfer rates in two-phase partitioning bioreactors. Journal of Hazardous Materials 175(1):1085-1089.
Reinhart, D. R., P. T. McCreanor & T. Townsend, 2002. The bioreactor landfill: its status and future. Waste Management & Research 20(2):172-186.
Robles-González, I., E. Rios-Leal, R. Ferrera-Cerrato, F. Esparza-Garcia, N. Rinderkenecht-Seijas & H. M. Poggi-Varaldo, 2006. Bioremediation of a mineral soil with high contents of clay and organic matter contaminated with herbicide 2, 4-dichlorophenoxyacetic acid using slurry bioreactors: effect of electron acceptor and supplementation with an organic carbon source. Process Biochemistry 41(9):1951-1960.
Romanov, V., G. Grechkina, V. Adanin & I. Starovoĭtov, 1993. Oxidative dehalogenation of 2-chloro-and 2, 4-dichlorobenzoates by Pseudomonas aeruginosa. Mikrobiologiia 62(5):887-896.
Ryckeboer, J., J. Mergaert, J. Coosemans, K. Deprins & J. Swings, 2003. Microbiological aspects of biowaste during composting in a monitored compost bin. Journal of Applied Microbiology 94(1):127-137.
Rynk, R., 1992. On-farm Composting Handbook. Northeast Regional Agricultural Engineering Service, Ithaca, NY.
Sander, P., R.-M. Wittich, P. Fortnagel, H. Wilkes & W. Francke, 1991. Degradation of 1, 2, 4-trichloro-and 1, 2, 4, 5-tetrachlorobenzene by Pseudomonas strains. Applied and Environmental Microbiology 57(5):1430-1440.
Savorani, F., G. Tomasi & S. B. Engelsen, 2010. icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. Journal of Magnetic Resonance 202(2):190-202.
Schecter, A., L. Birnbaum, J. J. Ryan & J. D. Constable, 2006. Dioxins: an overview. Environmental Research 101(3):419-428.
Schink, B. & M. Friedrich, 1994. Energetics of syntrophic fatty acid oxidation. FEMS Microbiology Reviews 15(2-3):85-94.
Schloss, P. D., S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, R. A. Lesniewski, B. B. Oakley, D. H. Parks & C. J. Robinson, 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75(23):7537-7541.
Schumacher, W. & C. Holliger, 1996. The proton/electron ration of the menaquinone-dependent electron transport from dihydrogen to tetrachloroethene in" Dehalobacter restrictus". Journal of Bacteriology 178(8):2328-2333.
Seeger, M., M. Gonzalez, B. Camara, L. Munoz, E. Ponce, L. Mejias, C. Mascayano, Y. Vasquez & S. Sepulveda-Boza, 2003. Biotransformation of Natural and Synthetic Isoflavonoids by Two Recombinant Microbial Enzymes. Applied and Environmental Microbiology 69(9):5045-5050 doi:10.1128/aem.69.9.5045-5050.2003.
Seiler, J., 1991. Pentachlorophenol. Mutation Research/Reviews in Genetic Toxicology 257(1):27-47.
Shelton, D. R. & J. M. Tiedje, 1984. General method for determining anaerobic biodegradation potential. Applied and Environmental Microbiology 47(4):850-857.
Shields, M. S., S. O. Montgomery, P. J. Chapman, S. M. Cuskey & P. H. Pritchard, 1989. Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium g4. Applied and Environmental Microbiology 55(6):1624-9.
Shields, M. S., S. O. Montgomery, S. M. Cuskey, P. J. Chapman & P. H. Pritchard, 1991. Mutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene. Applied and Environmental Microbiology 57(7):1935-41.
Sierra, I., J. L. Valera, M. L. Marina & F. Laborda, 2003. Study of the biodegradation process of polychlorinated biphenyls in liquid medium and soil by a new isolated aerobic bacterium (Janibacter sp.). Chemosphere 53(6):609-618.
Sinkkonen, S. & J. Paasivirta, 2000. Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate modeling. Chemosphere 40(9-11):943-9.
Slater, J. H., A. T. Bull & D. J. Hardman, 1995. Microbial Dehalogenation. Biodegradation 6(3):181-189.
Slater, J. H., A. T. Bull & D. J. Hardman, 1997. Microbial dehalogenation of halogenated alkanoic acids, alcohols and alkanes. Advances in Microbial Physiology, Vol 38 38:133-176.
Smidt, H., A. D. Akkermans, J. van der Oost & W. M. de Vos, 2000. Halorespiring bacteria–molecular characterization and detection. Enzyme and Microbial Technology 27(10):812-820.
Steen, W., D. Paris & G. Baughman, 1978. Partitioning of selected polychlorinated biphenyls to natural sediments. Water Research 12(9):655-657.
Stellman, J. M., S. D. Stellman, R. Christian, T. Weber & C. Tomasallo, 2003. The extent and patterns of usage of Agent Orange and other herbicides in Vietnam. Nature 422(6933):681-687.
Sumino, H., M. Takahashi, T. Yamaguchi, K. Abe, N. Araki, S. Yamazaki, S. Shimozaki, A. Nagano & N. Nishio, 2007. Feasibility study of a pilot-scale sewage treatment system combining an up-flow anaerobic sludge blanket (UASB) and an aerated fixed bed (AFB) reactor at ambient temperature. Bioresource Technology 98(1):177-182.
Suslow, T., 2004. Oxidation-Reduction Potential (ORP) for Water Disinfection Monitoring. UCANR Publications.
Tachibana, S., Y. Kiyota & M. Koga, 2006. Bioremediation of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in soil by fungi screened from Nature. Pakistan Journal of Biological Sciences 9(2):217-22.
Taiwan, E. A. L., 2013. Ultrasonic extraction procedures for the preparation of SVOC samples. NIEA M167.00C.
Takahashi, M., T. Yamaguchi, Y. Kuramoto, A. Nagano, S. Shimozaki, H. Sumino, N. Araki, S. Yamazaki, S. Kawakami & H. Harada, 2011. Performance of a pilot-scale sewage treatment: an up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactors combined system by sulfur-redox reaction process under low-temperature conditions. Bioresource Technology 102(2):753-757.
Terzian, R., N. Serpone, R. B. Draper, M. A. Fox & E. Pelizzetti, 1991. Pulse radiolytic studies of the reaction of pentahalophenols with OH radicals: formation of pentahalophenoxyl, dihydroxypentahalocyclohexadienyl, and semiquinone radicals. Langmuir 7(12):3081-3089.
Tu, Y., J. Liu, W. Lin, J. Lin & C. Kao, 2014. Enhanced anaerobic biodegradation of OCDD-contaminated soils by Pseudomonas mendocina NSYSU: Microcosm, pilot-scale, and gene studies. Journal of Hazardous Materials 278:433-443.
Urbaniak, M., 2013. Biodegradation of PCDDs/PCDFs and PCBs. Biodegradation: Engineering and Technology InTech, Rijeka, Croatia:73-100.
Vallero, D., 2010. Applied microbial Ecology. Environmental Biotechnology. Academic Press, San Diego.
Van Aken, B. & R. Bhalla, 2011. 6.14-Microbial Degradation of Polychlorinated Biphenyls. Comprehensive Biotechnology, second ed Academic Press, Burlington:151-166.
Vandenwijngaard, A. J., D. B. Janssen & B. Witholt, 1989. Degradation of Epichlorohydrin and Halohydrins by Bacterial Cultures Isolated from Fresh-Water Sediment. Journal of General Microbiology 135:2199-2208.
Vargas, C., D. Fennell & M. Häggblom, 2001. Anaerobic reductive dechlorination of chlorinated dioxins in estuarine sediments. Applied Microbiology and Biotechnology 57(5):786-790.
Vepraskas, M. J., J. L. Richardson, J. P. Tandarich & S. J. Teets, 1999. Dynamics of hydric soil formation across the edge of a created deep marsh. Wetlands 19(1):78-89.
Wackett, L. P., G. A. Brusseau, S. R. Householder & R. S. Hanson, 1989. Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria. Applied and Environmental Microbiology 55(11):2960-4.
Wackett, L. P. & S. R. Householder, 1989. Toxicity of Trichloroethylene to Pseudomonas putida F1 Is Mediated by Toluene Dioxygenase. Applied and Environmental Microbiology 55(10):2723-5.
Wang, C., Y. Li, J. Liu, L. Xiang, J. Shi & Z. Yang, 2010. Characteristics of PAHs adsorbed on street dust and the correlation with specific surface area and TOC. Environmental Monitoring and Assessment 169(1-4):661-670.
Weber, R. & S. Masunaga, PCDD/PCDF contamination from historical pesticide use and production—A case study using data from Japan and Germany. In: International HCH and Pesticides Forum, 2005. p 26-28.
Weber, R., M. Tysklind & C. Gaus, 2008. Dioxin-contemporary and future challenges of historical legacies. Environmental Science and Pollution Research 15(2):96-100.
Winter, R. B., K. M. Yen & B. D. Ensley, 1989. Efficient Degradation of Trichloroethylene by a Recombinant Escherichia-Coli. Bio-Technology 7(3):282-285.
Woo, S. H. & J. M. Park, 1999. Evaluation of drum bioreactor performance used for decontamination of soil polluted with polycyclic aromatic hydrocarbons. Journal of Chemical Technology and Biotechnology 74(10):937-44.
Wright, A. L., T. L. Provin, F. M. Hons, D. A. Zuberer & R. H. White, 2005. Dissolved organic carbon in soil from compost-amended bermudagrass turf. HortScience 40(3):830-835.
Wright, A. L., T. L. Provin, F. M. Hons, D. A. Zuberer & R. H. White, 2008. Compost impacts on dissolved organic carbon and available nitrogen and phosphorus in turfgrass soil. Waste Management 28(6):1057-1063.
Xun, L. & C. Orser, 1991. Purification and properties of pentachlorophenol hydroxylase, a flavoprotein from Flavobacterium sp. strain ATCC 39723. Journal of Bacteriology 173(14):4447-4453.
Yoshida, N., N. Takahashi & A. Hiraishi, 2005. Phylogenetic characterization of a polychlorinated-dioxin- dechlorinating microbial community by use of microcosm studies. Applied and Environmental Microbiology 71(8):4325-34 doi:10.1128/AEM.71.8.4325-4334.2005.
Young, A. L., 2008. A conflict between science and social concerns: Agent Orange. Environmental Science and Pollution Research 15(1):1-2.
Young, A. L., W. J. Van Houten & W. B. Andrews, 2008. 2 nd Agent Orange and dioxin remediation workshop. Environmental Science and Pollution Research 15(2):113-118.
Yu, J., T. J. Nestrick, R. Allen & P. E. Savage, 2006. Microcontaminants in pentachlorophenol synthesis. 1. New bioassay for microcontaminant quantification. Industrial & Engineering Chemistry Research 45(15):5199-5204.
Zaiat, M., J. Rodrigues, S. Ratusznei, E. De Camargo & W. Borzani, 2001. Anaerobic sequencing batch reactors for wastewater treatment: a developing technology. Applied Microbiology and Biotechnology 55(1):29-35.
Zhang, C., J. B. Hughes, S. F. Nishino & J. C. Spain, 2000. Slurry-phase biological treatment of 2, 4-dinitrotoluene and 2, 6-dinitrotoluene: role of bioaugmentation and effects of high dinitrotoluene concentrations. Environmental Science & Technology 34(13):2810-2816.
Zhang, L., J. Li, X. Liu, Y. Zhao, X. Li, S. Wen & Y. Wu, 2013. Dietary intake of PCDD/Fs and dioxin-like PCBs from the Chinese total diet study in 2007. Chemosphere 90(5):1625-1630.
Zhang, L. L., S. Q. Leng, R. Y. Zhu & J. M. Chen, 2011. Degradation of chlorobenzene by strain Ralstonia pickettii L2 isolated from a biotrickling filter treating a chlorobenzene-contaminated gas stream. Applied Microbiology and Biotechnology 91(2):407-415.
Ziagova, M., G. Kyriakou & M. Liakopoulou-Kyriakides, 2009. Co-metabolism of 2, 4-dichlorophenol and 4-Cl-m-cresol in the presence of glucose as an easily assimilated carbon source by Staphylococcus xylosus. Journal of Hazardous Materials 163(1):383-390.
Ziagova, M. & M. Liakopoulou-Kyriakides, 2007a. Comparison of cometabolic degradation of 1, 2-dichlorobenzene by Pseudomonas sp. and Staphylococcus xylosus. Enzyme and Microbial Technology 40(5):1244-1250.
Ziagova, M. & M. Liakopoulou-Kyriakides, 2007b. Kinetics of 2, 4-dichlorophenol and 4-Cl-m-cresol degradation by Pseudomonas sp. cultures in the presence of glucose. Chemosphere 68(5):921-927.
Zylstra, G. J., L. P. Wackett & D. T. Gibson, 1989. Trichloroethylene degradation by Escherichia coli containing the cloned Pseudomonas putida F1 toluene dioxygenase genes. Applied and Environmental Microbiology 55(12):3162-6.
吳哲宏, 張祖恩, 林世強 & 陳薇羽, 2013. 降解戴奧辛同源物或類戴奧辛同源物之反應系統及方法.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-02-12起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-02-12起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw