進階搜尋


下載電子全文  
系統識別號 U0026-0202201712210900
論文名稱(中文) 線蟲轉錄因子HLH-30調控之自噬作用參與對抗細菌穿孔毒素蛋白之防禦
論文名稱(英文) HLH-30/TFEB-mediated autophagy is required for bacterial pore-forming toxin defense in Caenorhabditis elegans
校院名稱 成功大學
系所名稱(中) 基礎醫學研究所
系所名稱(英) Institute of Basic Medical Sciences
學年度 105
學期 1
出版年 106
研究生(中文) 陳奐達
研究生(英文) Huan-Da Chen
學號 s58004127
學位類別 博士
語文別 英文
論文頁數 118頁
口試委員 指導教授-陳昌熙
口試委員-劉校生
召集委員-鄧景浩
口試委員-何漣漪
口試委員-汪宏達
口試委員-高承源
中文關鍵字 自噬作用  秀麗隱桿線蟲  轉錄因子HLH-30  膜穿孔毒素蛋白(Pore-forming toxin, PFT) 
英文關鍵字 autophagy  Caenorhabditiselegans  transcription factor HLH-30/TFEB  pore-forming toxin (PFT) 
學科別分類
中文摘要 自噬作用(Autophagy)是一個在許多物種間具有高度保守性之細胞內降解路徑,它的功能主要是在維持細胞內物質間的穩定平衡,藉由自噬小體(autophagosome)包覆細胞內失能的蛋白、受損的胞器,再與溶體(lysosome)融合後成為自噬溶小體(autolysosome),利用溶體內多樣性的降解酵素進行物質降解以及回收再利用,並且現今的研究也指出自噬作用與胚胎的發育、細胞的分化、癌症、神經性退化疾病以及病原菌或病毒感染方面皆扮演重要的角色。秀麗隱桿線蟲 (Caenorhabditis elegans)內的轉錄因子HLH-30相對於人類的同源蛋白為TFEB,HLH-30於目前的研究指出參與許多生物體內的機能,例如調控溶體的生合成與代謝,或經由調控自噬作用進而影響壽命等,並且在最近也被報導能夠調控自噬作用而改變宿主對病原菌的感受性,但在細菌感染的研究方面卻鮮少有提到細菌的毒性因子是否能夠影響轉錄因子HLH-30的活化進而改變宿主體內自噬作用的反應。本研究中發現,餵食秀麗隱桿線蟲表現膜穿孔毒素蛋白(Pore-forming toxin)的細菌,會經由調控轉錄因子HLH-30而刺激自噬作用的大量活化。另外,在膜穿孔毒素蛋白主要作用的位置為秀麗隱桿線蟲的腸道細胞。在腸細胞內,被大量刺激的自噬作用能夠利用降解攝入的膜穿孔毒素蛋白的機制,以及影響由膜穿孔毒素蛋白造成的受損細胞膜修補的機制,來幫助宿主抵禦由膜穿孔毒素蛋白的傷害。本研究的結果證實,在受到膜穿孔毒素蛋白的攻擊時,轉錄因子HLH-30會在轉錄層面調控自噬作用的活化,並且在保護宿主抵禦膜穿孔毒素蛋白是必須的角色。總結來說,本研究提供了當宿主受到細菌的膜穿孔毒素蛋白刺激下,HLH-30與自噬作用密切的上下游調控關係以及自噬作用參與在宿主上皮細胞抵禦膜穿孔毒素蛋白的機制。
英文摘要 Autophagy is an evolutionarily conserved intracellular system that maintains cellular homeostasis by degrading and recycling damaged cellular components through the autophagosomal-lysosomal pathway. Nowadays research indicates autophagy plays important roles in various mechanisms such as embryogenesis and cell differentiation, cancer, degenerative neuron diseases, bacterial and viral infection. The transcription factor HLH-30/TFEB-mediated autophagy has been reported to regulate lysosomal biogenesis and aging through autophagy. Furthermore, HLH-30 is also involved in modulating the tolerance to bacterial infection through autophagy, but less is known about the bona fide bacterial virulent factor that activates HLH-30 and autophagy. Here, we unveil that bacterial membrane pore-forming toxin (PFT) induces autophagy in an HLH-30-dependent manner in Caenorhabditis elegans. Moreover, autophagy controls the susceptibility of animals to PFT toxicity through xenophagic degradation of PFT and contributes to the repair of membrane-pore autonomously in the PFT-targeted intestinal cells in C. elegans. These results demonstrate that autophagy is induced partly at the transcriptional level through HLH-30 activation and is required to protect metazoan upon PFT intoxication. Together, our data show a new insight between HLH-30-mediated autophagy and epithelium intrinsic cellular defense against the single most common mode of bacterialvirulent factor attack in vivo.
論文目次 致謝 I
中文摘要 II
ABSTRACT IV
INTRODUCTION
Pore-forming toxins 1
Autophagy 3
HLH-30 6
Caenorhabditis elegans 8
ABBREVIATIONS AND ACRONYMS 11
MATERIALS AND METHODS
C. elegans and bacteria strains 13
Media and chemicals 14
Quantitative Cry PFTs susceptibility 15
RNA interference (RNAi) 15
C. elegans autophagy analysis and microscopy 16
Real-time RT-PCR 18
In silico transcription factor prediction 18
Transcriptomic analysis of the hlh-30-dependent Cry5B response genes 19
Data analysis 20
RESULTS
Pore-forming toxin Cry5B activates autophagy in intestine of C. elegans 21
Autopahgy is required for the defense of C. elegans against Cry5B 25
Autophagy functions cell-autonomously in the intestine to protect against Cry5B
28
Autophagy is involved in xenophagic degradation of PFT and contributed to damaged membrane-pore repair 30
Transcription factor HLH-30 regulates the expression of Cry5B-activated atg genes 33
HLH-30-mediated autophagy is required for other PFT defense in C. elegans
35
HLH-30 regulates the transcription of other membrane-repair related genes in response to Cry5B intoxication 37
CONCLUSION 40
REFFERENCES 45
FIGURES
Fig. 1 Cry5B activates autophagy related genes at transcriptional level 57
Fig. 2 Cry5B induces LGG-1 activation at translational and post translational modification level 58
Fig. 3 Cry5B induces GFP::LGG-1 signal in intestine 59
Fig. 4 Cry5B activates autophagic flux 61
Fig. 5 The Cry5B-activated atg genes are required for autophagy induction 62
Fig. 6 The response of GFP::LGG-1 puncta in intestine is specific to Cry5B 63
Fig. 7 Cry5B induces intestine morphology disordered and autophagosomal vesicle formation in C. elegans 64
Fig. 8 Autophagy related mutants are hypersensitive to Cry5B 65
Fig. 9 C. elegans with RNAi knockdown Cry5B-activated atg genes are hypersensitive to Cry5B toxicity 66
Fig. 10 C. elegans overexpressing lgg-1 gene is resistant to Cry5B 67
Fig. 11 Spermidine induces autophagy against Cry5B intoxication 68
Fig. 12 Cry5B-activated atg genes are essential for survival and cellular autophagy activation 69
Fig. 13 C. elegans with RNAi knockdown Cry5B-activated atg genes in intestine are hypersensitive to Cry5B 70
Fig. 14 atg-18 intestinal complement animals are resistant to Cry5B compared to atg-18 mutant animal 71
Fig. 15 C. elegans overexpressing lgg-1 gene in intestine is resistant to Cry5B
73
Fig. 16 Rh-Cry5B and GFP::LGG-1 multiple cellular puncta in intestine depend on pore formation 74
Fig. 17 Autophagy plays a role in Cry5B degradation 75
Fig. 18 Autophagy contributes to membrane pore-repair 76
Fig. 19 Transcription factor HLH-26 and HLH-30 recognized promoter consensus motif of Cry5B-activated atg genes 77
Fig. 20 Cry5B-induced autophagy depends on HLH-30 78
Fig. 21 hlh-30 mutant is hypersensitive to Cry5B 80
Fig. 22 HLH-30 regulates Cry5B-activated atg genes expression 81
Fig. 23 Cry5B induces HLH-30 nuclear translocation 82
Fig. 24 HLH-30 mediates autophagy against Cry5B intoxication 83
Fig. 25 HLH-30 contributes to membrane pore-repair 84
Fig. 26 Cry21A induces GFP::LGG-1 signal in intestine 85
Fig. 27 Autophagy is required for Cry21A defense 86
Fig. 28 Cry21A regulates HLH-30 nuclear translocation 87
Fig. 29 hlh-30 is required for Cry21A defense 88
Fig. 30 Autophagy is required for streptolysin O (SLO) defense in C. elegans
89
Fig. 31 The Venn diagram of thehlh-30-dependent Cry5B response genes 90
Fig. 32 The DAVID analysis of the hlh-30-dependent Cry5B response genes
91
Fig. 33 hlh-30-dependent Cry5B response genes contribute to membrane pore-repair 92
Fig. 34 HLH-30 nuclear translocation is independent of Cry5B defense signal pathways 93
Fig. 35 Schematic illustrating relationship between HLH-30-mediated autophagy and epithelium intrinsic cellular defense (INCED) against PFT 94
TABLES
Table 1. The list of hlh-30-dependent Cry5B response genes. 95
Table 2. The DAVID GO categories which might be involved in intrinsic membrane-pore repair and defense response 111
Curriculum vitae 113
參考文獻 1. Aroian, R. and F.G. van der Goot, Pore-forming toxins and cellular non-immune defenses (CNIDs). Curr Opin Microbiol, 2007. 10(1): p. 57-61.
2. Los, F.C., et al., Role of pore-forming toxins in bacterial infectious diseases. Microbiol Mol Biol Rev, 2013. 77(2): p. 173-207.
3. Huffman, D.L., et al., Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proc Natl Acad Sci U S A, 2004. 101(30): p. 10995-1000.
4. Khilwani, B. and K. Chattopadhyay, Signaling beyond Punching Holes: Modulation of Cellular Responses by Vibrio cholerae Cytolysin. Toxins (Basel), 2015. 7(8): p. 3344-58.
5. Dal Peraro, M. and F.G. van der Goot, Pore-forming toxins: ancient, but never really out of fashion. Nat Rev Microbiol, 2016. 14(2): p. 77-92.
6. Chen, C.S., et al., WWP-1 is a novel modulator of the DAF-2 insulin-like signaling network involved in pore-forming toxin cellular defenses in Caenorhabditis elegans. PLoS One, 2010. 5(3): p. e9494.
7. Wei, J.Z., et al., Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci U S A, 2003. 100(5): p. 2760-5.
8. de Maagd, R.A., A. Bravo, and N. Crickmore, How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet, 2001. 17(4): p. 193-9.
9. Kao, C.Y., et al., Global functional analyses of cellular responses to pore-forming toxins. PLoS Pathog, 2011. 7(3): p. e1001314.
10. Bischof, L.J., et al., Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo. PLoS Pathog, 2008. 4(10): p. e1000176.
11. Bellier, A., et al., Hypoxia and the hypoxic response pathway protect against pore-forming toxins in C. elegans. PLoS Pathog, 2009. 5(12): p. e1000689.
12. Los, F.C., et al., RAB-5- and RAB-11-dependent vesicle-trafficking pathways are required for plasma membrane repair after attack by bacterial pore-forming toxin. Cell Host Microbe, 2011. 9(2): p. 147-57.
13. Griffitts, J.S., et al., Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme. Science, 2001. 293(5531): p. 860-4.
14. Marroquin, L.D., et al., Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics, 2000. 155(4): p. 1693-9.
15. Mortimore, G.E. and C.M. Schworer, Induction of autophagy by amino-acid deprivation in perfused rat liver. Nature, 1977. 270(5633): p. 174-6.
16. Pfeifer, U. and M. Warmuth-Metz, Inhibition by insulin of cellular autophagy in proximal tubular cells of rat kidney. Am J Physiol, 1983. 244(2): p. E109-14.
17. Arstila, A.U. and B.F. Trump, Studies on cellular autophagocytosis. The formation of autophagic vacuoles in the liver after glucagon administration. Am J Pathol, 1968. 53(5): p. 687-733.
18. Ohsumi, Y., M. Ohsumi, and M. Baba, [Autophagy in yeast]. Tanpakushitsu Kakusan Koso, 1993. 38(1): p. 46-52.
19. Feng, Y., Z. Yao, and D.J. Klionsky, How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol, 2015. 25(6): p. 354-63.
20. Papinski, D., et al., Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase. Mol Cell, 2014. 53(3): p. 471-83.
21. Maiuri, M.C., et al., Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol, 2007. 8(9): p. 741-52.
22. Glick, D., S. Barth, and K.F. Macleod, Autophagy: cellular and molecular mechanisms. J Pathol, 2010. 221(1): p. 3-12.
23. Mizushima, N. and B. Levine, Autophagy in mammalian development and differentiation. Nat Cell Biol, 2010. 12(9): p. 823-30.
24. Levine, B., N. Mizushima, and H.W. Virgin, Autophagy in immunity and inflammation. Nature, 2011. 469(7330): p. 323-35.
25. Huang, J. and J.H. Brumell, Bacteria-autophagy interplay: a battle for survival. Nat Rev Microbiol, 2014. 12(2): p. 101-14.
26. Jin, M. and D.J. Klionsky, Regulation of autophagy: modulation of the size and number of autophagosomes. FEBS Lett, 2014. 588(15): p. 2457-63.
27. Melendez, A. and B. Levine, Autophagy in C. elegans. WormBook, 2009: p. 1-26.
28. Kovacs, A.L. and H. Zhang, Role of autophagy in Caenorhabditis elegans. FEBS Lett, 2010. 584(7): p. 1335-41.
29. Settembre, C., et al., TFEB links autophagy to lysosomal biogenesis. Science, 2011. 332(6036): p. 1429-33.
30. Lapierre, L.R., et al., The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat Commun, 2013. 4: p. 2267.
31. O'Rourke, E.J. and G. Ruvkun, MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat Cell Biol, 2013. 15(6): p. 668-76.
32. Gutierrez, M.G., et al., Protective role of autophagy against Vibrio cholerae cytolysin, a pore-forming toxin from V. cholerae. Proc Natl Acad Sci U S A, 2007. 104(6): p. 1829-34.
33. Mestre, M.B., et al., Alpha-hemolysin is required for the activation of the autophagic pathway in Staphylococcus aureus-infected cells. Autophagy, 2010. 6(1): p. 110-25.
34. Maurer, K., et al., Autophagy mediates tolerance to Staphylococcus aureus alpha-toxin. Cell Host Microbe, 2015. 17(4): p. 429-40.
35. Steingrimsson, E., et al., Mitf and Tfe3, two members of the Mitf-Tfe family of bHLH-Zip transcription factors, have important but functionally redundant roles in osteoclast development. Proc Natl Acad Sci U S A, 2002. 99(7): p. 4477-82.
36. Hemesath, T.J., et al., microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev, 1994. 8(22): p. 2770-80.
37. Martina, J.A., et al., MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy, 2012. 8(6): p. 903-14.
38. Roczniak-Ferguson, A., et al., The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal, 2012. 5(228): p. ra42.
39. Sancak, Y., et al., The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science, 2008. 320(5882): p. 1496-501.
40. Sancak, Y., et al., Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell, 2010. 141(2): p. 290-303.
41. Zoncu, R., et al., mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science, 2011. 334(6056): p. 678-83.
42. Medina, D.L., et al., Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol, 2015. 17(3): p. 288-99.
43. Napolitano, G. and A. Ballabio, TFEB at a glance. J Cell Sci, 2016. 129(13): p. 2475-81.
44. Settembre, C., et al., TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol, 2013. 15(6): p. 647-58.
45. Goldstein, B., Sydney Brenner on the Genetics of Caenorhabditis elegans. Genetics, 2016. 204(1): p. 1-2.
46. Goldstein, B. and N. King, The Future of Cell Biology: Emerging Model Organisms. Trends Cell Biol, 2016. 26(11): p. 818-824.
47. Rengarajan, S. and E.A. Hallem, Olfactory circuits and behaviors of nematodes. Curr Opin Neurobiol, 2016. 41: p. 136-148.
48. Maglioni, S., N. Arsalan, and N. Ventura, C. elegans screening strategies to identify pro-longevity interventions. Mech Ageing Dev, 2016. 157: p. 60-9.
49. Sorathia, N. and M.S. Rajadhyaksha, Caenorhabditis elegans: A Model for Studying Human Pathogen Biology. Recent Pat Biotechnol, 2016. 10(2): p. 217-225.
50. Engelmann, I. and N. Pujol, Innate immunity in C. elegans. Adv Exp Med Biol, 2010. 708: p. 105-21.
51. Rual, J.F., et al., Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res, 2004. 14(10B): p. 2162-8.
52. Kamath, R.S., et al., Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 2003. 421(6920): p. 231-7.
53. Corsi, A.K., B. Wightman, and M. Chalfie, A Transparent window into biology: A primer on Caenorhabditis elegans. WormBook, 2015: p. 1-31.
54. Brenner, S., The genetics of Caenorhabditis elegans. Genetics, 1974. 77(1): p. 71-94.
55. Kang, C., Y.J. You, and L. Avery, Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev, 2007. 21(17): p. 2161-71.
56. Espelt, M.V., et al., Oscillatory Ca2+ signaling in the isolated Caenorhabditis elegans intestine: role of the inositol-1,4,5-trisphosphate receptor and phospholipases C beta and gamma. J Gen Physiol, 2005. 126(4): p. 379-92.
57. Sarov, M., et al., A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nat Methods, 2006. 3(10): p. 839-44.
58. Miedel, M.T., et al., A pro-cathepsin L mutant is a luminal substrate for endoplasmic-reticulum-associated degradation in C. elegans. PLoS One, 2012. 7(7): p. e40145.
59. Guo, B., et al., Genome-wide screen identifies signaling pathways that regulate autophagy during Caenorhabditis elegans development. EMBO Rep, 2014. 15(6): p. 705-13.
60. Griffitts, J.S., et al., Resistance to a bacterial toxin is mediated by removal of a conserved glycosylation pathway required for toxin-host interactions. J Biol Chem, 2003. 278(46): p. 45594-602.
61. Praitis, V., Creation of transgenic lines using microparticle bombardment methods. Methods Mol Biol, 2006. 351: p. 93-107.
62. Bischof, L.J., D.L. Huffman, and R.V. Aroian, Assays for toxicity studies in C. elegans with Bt crystal proteins. Methods Mol Biol, 2006. 351: p. 139-54.
63. Zhang, H., et al., Guidelines for monitoring autophagy in Caenorhabditis elegans. Autophagy, 2015. 11(1): p. 9-27.
64. Klionsky, D.J., et al., Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016. 12(1): p. 1-222.
65. O'Rourke, E.J., et al., C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metab, 2009. 10(5): p. 430-5.
66. Jia, K., et al., Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proc Natl Acad Sci U S A, 2009. 106(34): p. 14564-9.
67. Howe, K.L., et al., WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Res, 2016. 44(D1): p. D774-80.
68. Medina-Rivera, A., et al., RSAT 2015: Regulatory Sequence Analysis Tools. Nucleic Acids Res, 2015. 43(W1): p. W50-6.
69. van Helden, J., B. Andre, and J. Collado-Vides, Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J Mol Biol, 1998. 281(5): p. 827-42.
70. Gupta, S., et al., Quantifying similarity between motifs. Genome Biol, 2007. 8(2): p. R24.
71. Bailey, T.L., et al., MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res, 2009. 37(Web Server issue): p. W202-8.
72. Turatsinze, J.V., et al., Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules. Nat Protoc, 2008. 3(10): p. 1578-88.
73. Huang da, W., B.T. Sherman, and R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 2009. 4(1): p. 44-57.
74. Kang, C. and L. Avery, Death-associated protein kinase (DAPK) and signal transduction: fine-tuning of autophagy in Caenorhabditis elegans homeostasis. FEBS J, 2010. 277(1): p. 66-73.
75. Eisenberg, T., et al., Induction of autophagy by spermidine promotes longevity. Nat Cell Biol, 2009. 11(11): p. 1305-14.
76. Fazeli, G., et al., C. elegans midbodies are released, phagocytosed and undergo LC3-dependent degradation independent of macroautophagy. J Cell Sci, 2016. 129(20): p. 3721-3731.
77. Dwivedi, M., et al., Disruption of endocytic pathway regulatory genes activates autophagy in C. elegans. Mol Cells, 2011. 31(5): p. 477-81.
78. Visvikis, O., et al., Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. Immunity, 2014. 40(6): p. 896-909.
79. Bischofberger, M., I. Iacovache, and F.G. van der Goot, Pathogenic pore-forming proteins: function and host response. Cell Host Microbe, 2012. 12(3): p. 266-75.
80. Wild, P., et al., Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science, 2011. 333(6039): p. 228-33.
81. Checroun, C., et al., Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc Natl Acad Sci U S A, 2006. 103(39): p. 14578-83.
82. O'Seaghdha, M. and M.R. Wessels, Streptolysin O and its co-toxin NAD-glycohydrolase protect group A Streptococcus from Xenophagic killing. PLoS Pathog, 2013. 9(6): p. e1003394.
83. Hu, Y., et al., Bacillus thuringiensis Cry5B protein is highly efficacious as a single-dose therapy against an intestinal roundworm infection in mice. PLoS Negl Trop Dis, 2010. 4(3): p. e614.
84. McEwan, D.L., N.V. Kirienko, and F.M. Ausubel, Host translational inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an immune response in Caenorhabditis elegans. Cell Host Microbe, 2012. 11(4): p. 364-74.
85. Dunbar, T.L., et al., C. elegans detects pathogen-induced translational inhibition to activate immune signaling. Cell Host Microbe, 2012. 11(4): p. 375-86.
86. Melo, J.A. and G. Ruvkun, Inactivation of conserved C. elegans genes engages pathogen- and xenobiotic-associated defenses. Cell, 2012. 149(2): p. 452-66.
87. Pellegrino, M.W., et al., Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection. Nature, 2014. 516(7531): p. 414-7.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-02-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-02-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw