進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0202201514275300
論文名稱(中文) 探討循環細胞對心臟修復之貢獻
論文名稱(英文) Contribution of Circulating Cells to Cardiac Repair
校院名稱 成功大學
系所名稱(中) 基礎醫學研究所
系所名稱(英) Institute of Basic Medical Sciences
學年度 103
學期 1
出版年 104
研究生(中文) 吳美芳
研究生(英文) Mei-Fang Wu
學號 S58991340
學位類別 博士
語文別 英文
論文頁數 70頁
口試委員 指導教授-謝清河
指導教授-吳梨華
召集委員-傅子芳
口試委員-莫凡毅
口試委員-吳佳慶
口試委員-張文昌
口試委員-劉扶東
中文關鍵字 雙體循環共用系統  循環細胞  融合  分化  免疫細胞 
英文關鍵字 parabiosis  circulating cells  fusion  differentiation  immune cells 
學科別分類
中文摘要 冠狀動脈阻塞將造成心肌死亡並伴隨著強烈的發炎反應產生。近年來研究發現早期發炎反應除了會吸引骨髓中的免疫細胞到達心臟受損的位置,其發炎調控因子也具有啟動心肌再生的能力。此外,有些研究結果亦指出骨隨幹細胞也可能是心肌再生的細胞來源之一。但此一論點仍具爭議,且已有研究結果顯示骨隨幹細胞只能在受損心臟中分化成血液細胞。出現爭議的原因有可能在於目前公認研究方法有缺陷,因而產出不同的結果。
我們先前的研究結果指出由內生性幹細胞參與之心肌再生是在心臟受損後七天內啟動。心臟受損發炎時所生成之前列腺素E2 (prostaglandin E2, PGE2)對於心臟再生具有調控功能,並可以刺激更多的內生性心肌幹細胞分化成心肌細胞。此外,PGE2亦調整心臟受損後三天內的M2巨噬細胞(macrophage)比率。我們先前的研究除了顯示PGE2很有可能透過其EP2受器來調控巨噬細胞,亦暗示探討循環系統中的細胞如何參與心臟修復必需考慮到時間性的問題。因此本篇研究除了探討免疫細胞在心臟修復所扮演的角色,並修改過去的研究方法來重新檢視循環系統中的骨隨幹細胞如何參與在心臟修復。
為了探究循環系統中的幹細胞在心臟修復中所扮演的角色,我們結合了誘導式的細胞血統追蹤(pulse-trace labeling) 和雙體循環共用系統 (parabiosis)來探究其參與修復之機制。結果發現循環系統中的細胞確實會在心臟損傷的位置成為心肌細胞,並表現成熟心肌特有的蛋白質。經由細胞血統追蹤系統,我們更近一步發現循環系統中的細胞會直接分化成心肌細胞,或與其原生的心肌細胞進行融合。相較於先前對於循環系統中的細胞或骨髓幹細胞的認知,我們的結果推翻了之前的論述。除了循環中的幹細胞,此篇研究亦探討延續了先前PGE2的研究,我們運用全身性EP2受器基因缺失之轉殖鼠來探討循環中的免疫細胞如何影響心臟修復。我們發現在缺少EP2受器的情況下,在受損心臟之巨噬細胞的數量有減少的現象,這說明了PGE2可能透過EP2受器來調控心臟受損後的發炎反應。EP2受器缺失除了減低內生幹細胞補充心肌細胞之比率,我們透過超音波檢測心功能也證實其心臟受損後的收縮功能亦受到影響。本篇研究結果指出骨髓來源之細胞,無論是幹細胞或免疫細胞,皆參與在心臟治療的過程。未來更進一步了解這些細胞群如何被調控將能更有效的促進其參與在心臟再生之功能。
英文摘要 Coronary artery occlusion is accompanied by extensive cardiomyocyte death, which subsequently leads to intensive inflammatory response. Accumulating studies have reported that early inflammation is critical for recruitment of immune cells to the injured myocardium and it has been implicated in tissue regeneration. In addition to immune cells, numerous studies have suggested that bone marrow served as a reservoir of stem cell populations for cardiomyocyte repopulation. However, this remains a controversial issue. It is observed that the bone marrow-borne cells can only adopt to the cells of hematopoietic lineage in the injured heart. The controversy may arise from a problematic methodology.
In previous study we discovered that cardiomyocyte replenishment was initiated in 7 days post- myocardial injury. Administration of immune modulator prostaglandin E2 (PGE2) not only promoted endogenous stem cell-mediated cardiomyocyte replenishment but also changed inflammatory microenvironment at day 3 post-infarction by altering percentage of the M2 macrophages. The finding implies that the time point is an important parameter to examine contribution of circulating cells to heart repair. Furthermore, a PGE2-related downstream signal, particularly acting through the EP2 receptor, is involved in cardiac repair by modulating macrophage activities. Therefore the main theme of current study is to examine the role of two distinct circulating cell populations, the bone marrow-borne stem cells and immune cells, in heart repair.
To evaluate the contribution of bone marrow-borne cells in myocardial regeneration, we combined two approaches, pulse-trace labeling and a parabiosis model, to examine the fate of circulating cells in the injured myocardium under normal physiological conditions. In the parabiosis model, we observed scattered circulating cells derived from the parabiotic partner expressed cardiac-specific markers throughout the myocardium. Genetic tracing revealed that circulating hematopoietic cells acquired cardiac cell fate by means of cell fusion and trans-differentiation. In contrast to the previous report that bone marrow-borne circulating cells only adopt hematopoietic cell fate in the injured myocardium, we showed that circulating hematopoietic cells participate in cardiomyocyte regeneration in a mouse model of parabiosis. To examine how PGE2-related immune response contributes to cardiac repair, EP2-deficient transgenic mice were used. In the EP2 knocked out mice we detected a reduction in number of macrophages at day 3 post-infarction, suggesting the EP2 receptor involved in acute inflammatory response. Lineage tracing revealed that EP2 deficiency effectively blocked endogenous stem cell-dependent cardiomyocyte replenishment. Furthermore, cardiac function of EP2 knocked out mice was also impaired.
In conclusion, our findings reveal the contribution of two different bone marrow-borne cell populations, the stem cells and immune cells, in cardiac repair. Detailed mechanistic studies are required to uncover how functions of these cells populations could be modulated to boost their power to repair injured tissue.
論文目次 中文摘要 I
Abstract III
Acknowledgments V
Table of Contents VI
Index of Figures IX
Index of Tables X
List of Abbreviation XI

Chapter 1: Introduction 1
1.1 Heart regeneration 1
1.2 Cell populations for cardiac regeneration 3
1.2-1 Resident cardiomyocytes 3
1.2-2 Heart-resident stem/progenitor cells 5
a. c-Kit+ cardiac cells 5
b. Sca-1+ cardiac cells 6
c. Cardiac side-population cells 7
d. Cardiosphere-derived cardiac stem cells 7
e. Islet-1+ cardiac stem cells 8
1.2-3 Non-heart resident stem cells 9
a. Skeletal myoblast 9
b. Bone marrow-borne cells 10
c. Pluripotent stem cells 11
1.3 Inflammation and tissue regeneration 13
Chapter 2: Rational and Hypothesis 16
Chapter 3: Materials and Methods 18
3.1 Materials 18
3.1-1 Primers 18
3.1-2 Antibodies 19
3.1-3 Chemicals and agents 19
3.2 Methods 20
3.2-1 Animals 20
3.2-2 In Vivo contrast-enhanced microbubble imaging 21
3.2-3 Parabiosis and myocardial injury model 21
3.2-4 Adult cardiomyocyte isolation 22
3.2-5 Immunohistochemical staining 22
3.2-6 Immunocytochemistry and X-Gal staining 23
3.2-7 Cardiomyocyte quantification 23
3.2-8 Flow cytometric analyses 24
3.2-9 RNA extraction and quantitative PCR 24
Chapter 4: Results 25
4.1 Stabilization of cross circulatory system requires 7 to 10 days after surgery 25
4.2 Circulating cells integrated into microvasculature and acquired mature hematopoietic cell fates in injured Heart 29
4.3 Circulation-derived cardiomyocytes integrated into injured myocardium 32
4.4 Circulation-derived cardiomyocytes arisen from cell fusion and transdifferentiation 39
4.5 Stabilized cross circulation is important for acquisition of cardiac fate by circulating cells 44
4.6 Loss of EP2 receptor reduces number of macrophages 47
4.7 EP2 deficiency impairs cardiomyocyte replenishment in the injured myocardium 51
Chapter 5: Discussion 53
5.1 Circulating cells contribute to myocardial
regeneration 53
5.2 Stabilized cross circulation is prerequisite for cardiac cell fate acquisition of hematopoietic ells in injured myocardium 53
5.3 Contribution of cell fusion to tissue repair 54
5.4 Exploring the role of EP2 receptor in post-infarcted myocardium 55
5.4-1 Inflammatory response is perturbed upon loss of EP2 55
5.4-2 EP2 deficiency impairs cardiac regeneration 56
5.5 Clinical implication 57
References 60
參考文獻 Abe, S., Boyer, C., Liu, X., et al. (2004). Cells derived from the circulation contribute to the repair of lung injury. Am J Resp Crit Care. 170, 1158-1163.
Abkowitz, J.L., Robinson, A.E., Kale, S., et al. (2003). Mobilization of hematopoietic stem cells during homeostasis and after cytokine exposure. Blood 102, 1249-1253.
Alvarez-Dolado, M., Pardal, R., Garcia-Verdugo, J.M., et al. (2003). Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425, 968-973.
Asahara, T., Masuda, H., Takahashi, T., et al. (1999). Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 85, 221-228.
Assmus, B., Rolf, A., Erbs, S., et al. (2010). Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ Heart Fail. 3, 89-96.
Aurora, A.B., Porrello, E.R., Tan, W., et al. (2014). Macrophages are required for neonatal heart regeneration. J Clin Invest. 124, 1382-1392.
Balsam, L.B., Wagers, A.J., Christensen, J.L., et al. (2004). Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428, 668-673.
Beltrami, A.P., Barlucchi, L., Torella, D., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763-776.
Bencze, M., Negroni, E., Vallese, D., et al. (2012). Proinflammatory macrophages enhance the regenerative capacity of human myoblasts by modifying their kinetics of proliferation and differentiation. Mol Ther. 20, 2168-2179.
Bergmann, O., Bhardwaj, R.D., Bernard, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science 324, 98-102.
Bersell, K., Arab, S., Haring, B., et al. (2009). Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138, 257-270.
Boulter, L., Govaere, O., Bird, T.G., et al. (2012). Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med. 18, 572-579.
Cai, C.L., Liang, X., Shi, Y., et al. (2003). Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Developmental cell 5, 877-889.
Camitta, M.G., Gabel, S.A., Chulada, P., et al. (2001). Cyclooxygenase-1 and -2 knockout mice demonstrate increased cardiac ischemia/reperfusion injury but are protected by acute preconditioning. Circulation 104, 2453-2458.
Chang, J., Liu, F., Lee, M., et al. (2013). NF-kappaB inhibits osteogenic differentiation of mesenchymal stem cells by promoting beta-catenin degradation. Proc Natl Acad Sci USA 110, 9469-9474.
Chaudhry, H.W., Dashoush, N.H., Tang, H., et al. (2004). Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium. J Biol Chem. 279, 35858-35866.
Chen, J., Huang, Z.P., Seok, H.Y., et al. (2013). mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res. 112, 1557-1566.
Chong, J.J., Yang, X., Don, C.W., et al. (2014). Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510, 273-277.
Covacu, R., Perez Estrada, C., Arvidsson, L., et al. (2014). Change of fate commitment in adult neural progenitor cells subjected to chronic inflammation. J Neuro. 34, 11571-11582.
D'Amario, D., Fiorini, C., Campbell, P.M., et al. (2011). Functionally competent cardiac stem cells can be isolated from endomyocardial biopsies of patients with advanced cardiomyopathies. Circ Res. 108, 857-861.
Degousee, N., Fazel, S., Angoulvant, D., et al. (2008). Microsomal prostaglandin E2 synthase-1 deletion leads to adverse left ventricular remodeling after myocardial infarction. Circulation 117, 1701-1710.
Delewi, R., Hirsch, A., Tijssen, J.G., et al. (2014). Impact of intracoronary bone marrow cell therapy on left ventricular function in the setting of ST-segment elevation myocardial infarction: a collaborative meta-analysis. Eur heart J. 35, 989-998.
Ellison, G.M., Vicinanza, C., Smith, A.J., et al. (2013). Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell 154, 827-842.
Endo, J., Sano, M., Fujita, J., et al. (2007). Bone marrow derived cells are involved in the pathogenesis of cardiac hypertrophy in response to pressure overload. Circulation 116, 1176-1184.
Engel, F.B., Hsieh, P.C., Lee, R.T., et al. (2006). FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci USA 103, 15546-15551.
Espin-Palazon, R., Stachura, D.L., Campbell, C.A., et al. (2014). Proinflammatory signaling regulates hematopoietic stem cell emergence. Cell 159, 1070-1085.
Eulalio, A., Mano, M., Dal Ferro, M., et al. (2012). Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492, 376-381.
Fazel, S., Cimini, M., Chen, L., et al. (2006). Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J Clin Invest. 116, 1865-1877.
Ferreira, E., Porter, R.M., Wehling, N., et al. (2013). Inflammatory cytokines induce a unique mineralizing phenotype in mesenchymal stem cells derived from human bone marrow. J Biol Chem. 288, 29494-29505.
Frangogiannis, N.G. (2014). The inflammatory response in myocardial injury, repair, and remodelling. N Nat Rev Cardiol. 11, 255-265.
Garbern, J.C., and Lee, R.T. (2013). Cardiac stem cell therapy and the promise of heart regeneration. Cell stem cell 12, 689-698.
Go, A.S., Mozaffarian, D., Roger, V.L., et al. (2014). Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation 129, e28-e292.
Godwin, J.W., Pinto, A.R., and Rosenthal, N.A. (2013). Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci USA 110, 9415-9420.
Gordon, S. (2003). Alternative activation of macrophages. Nat Rev Immunol. 3, 23-35.
Goren, I., Allmann, N., Yogev, N., et al. (2009). A transgenic mouse model of inducible macrophage depletion: effects of diphtheria toxin-driven lysozyme M-specific cell lineage ablation on wound inflammatory, angiogenic, and contractive processes. Am J Pathol. 175, 132-147.
Goumans, M.J., de Boer, T.P., Smits, A.M., et al. (2007). TGF-beta1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res. 1, 138-149.
Grosser, T., Fries, S., and FitzGerald, G.A. (2006). Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J Clin Invest. 116, 4-15.
Gussoni, E., Soneoka, Y., Strickland, C.D., et al. (1999). Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390-394.
Haider, H., Tan, A.C., Aziz, S., et al. (2004). Myoblast transplantation for cardiac repair: a clinical perspective. Mol Ther. 9, 14-23.
Heallen, T., Zhang, M., Wang, J., et al. (2011). Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332, 458-461.
Hoggatt, J., Mohammad, K.S., Singh, P., et al. (2013). Differential stem- and progenitor-cell trafficking by prostaglandin E2. Nature 495, 365-369.
Hoggatt, J., Singh, P., Sampath, J., et al. (2009). Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 113, 5444-5455.
Hsieh, P.C., Segers, V.F., Davis, M.E., et al. (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med. 13, 970-974.
Hsueh, Y.C., Wu, J.M., Yu, C.K., et al. (2014). Prostaglandin E2 promotes post-infarction cardiomyocyte replenishment by endogenous stem cells. EMBO Mol Med. 6, 496-503.
Inserte, J., Molla, B., Aguilar, R., et al. (2009). Constitutive COX-2 activity in cardiomyocytes confers permanent cardioprotection Constitutive COX-2 expression and cardioprotection. J Mol Cell Cardiol. 46, 160-168.
Jackson, K.A., Majka, S.M., Wang, H., et al. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest. 107, 1395-1402.
Jeevanantham, V., Butler, M., Saad, A., et al. (2012). Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation 126, 551-568.
Jiang, B., and Liao, R. (2010). The paradoxical role of inflammation in cardiac repair and regeneration. J Cardiovasc Transl Res. 3, 410-416.
Jiang, J., Quan, Y., Ganesh, T., et al. (2013). Inhibition of the prostaglandin receptor EP2 following status epilepticus reduces delayed mortality and brain inflammation. Proc Natl Acad Sci USA 110, 3591-3596.
Jopling, C., Sleep, E., Raya, M., et al. (2010). Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606-609.
Kalinski, P. (2012). Regulation of immune responses by prostaglandin E2. J Immuno. 188, 21-28.
Kanazawa, H., Tseliou, E., Malliaras, K., et al. (2015). Cellular Post-Conditioning: Allogeneic Cardiosphere-Derived Cells Reduce Infarct Size and Attenuate Microvascular Obstruction When Administered After Reperfusion in Pigs With Acute Myocardial Infarction. Circ Heart Fail. [Epub ahead of print].
Kawai, T., and Akira, S. (2011). Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637-650.
Kollet, O., Shivtiel, S., Chen, Y.Q., et al. (2003). HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest. 112, 160-169.
Kucia, M., Dawn, B., Hunt, G., et al. (2004). Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res. 95, 1191-1199.
Kucia, M., Zhang, Y.P., Reca, R., et al. (2006). Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 20, 18-28.
Kyritsis, N., Kizil, C., Zocher, S., et al. (2012). Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science 338, 1353-1356.
Laube, F., Heister, M., Scholz, C., et al. (2006). Re-programming of newt cardiomyocytes is induced by tissue regeneration. J Cell Sci. 119, 4719-4729.
Laugwitz, K.L., Moretti, A., Lam, J., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433, 647-653.
Lee, S., Huen, S., Nishio, H., et al. (2011). Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol. 22, 317-326.
Li, F., Huang, Q., Chen, J., et al. (2010). Apoptotic cells activate the "phoenix rising" pathway to promote wound healing and tissue regeneration. Sci Signal. 3, ra13.
Li, Y., Esain, V., Teng, L., et al. (2014). Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production. Genes Dev. 28, 2597-2612.
Lin, T., Islam, O., and Heese, K. (2006). ABC transporters, neural stem cells and neurogenesis--a different perspective. Cell Res. 16, 857-871.
Loffredo, F.S., Steinhauser, M.L., Gannon, J., et al. (2011). Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell stem cell 8, 389-398.
Makkar, R.R., Smith, R.R., Cheng, K., et al. (2012). Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379, 895-904.
Matsuura, K., Nagai, T., Nishigaki, N., et al. (2004a). Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem. 279, 11384-11391.
Matsuura, K., Wada, H., Nagai, T., et al. (2004b). Cardiomyocytes fuse with surrounding noncardiomyocytes and reenter the cell cycle. J Cell Biol. 167, 351-363.
Mauritz, C., Schwanke, K., Reppel, M., et al. (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118, 507-517.
Menasche, P. (2007). Skeletal myoblasts as a therapeutic agent. Prog Cardiovasc Dis. 50, 7-17.
Menasche, P., Alfieri, O., Janssens, S., et al. (2008). The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117, 1189-1200.
Messina, E., De Angelis, L., Frati, G., et al. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 95, 911-921.
Montine, T.J., Milatovic, D., Gupta, R.C., et al. (2002). Neuronal oxidative damage from activated innate immunity is EP2 receptor-dependent. J Neurochem. 83, 463-470.
Morita, Y., Iseki, A., Okamura, S., et al. (2011). Functional characterization of hematopoietic stem cells in the spleen. Exp Hematol. 39, 351-359 e353.
Mouquet, F., Pfister, O., Jain, M., et al. (2005). Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circ Res. 97, 1090-1092.
Nygren, J.M., Jovinge, S., Breitbach, M., et al. (2004). Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med. 10, 494-501.
Oh, H., Bradfute, S.B., Gallardo, T.D., et al. (2003). Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100, 12313-12318.
Orlic, D., Kajstura, J., Chimenti, S., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature 410, 701-705.
Oyama, T., Nagai, T., Wada, H., et al. (2007). Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J Cell Biol. 176, 329-341.
Pfister, O., Oikonomopoulos, A., Sereti, K.I., et al. (2008). Role of the ATP-binding cassette transporter Abcg2 in the phenotype and function of cardiac side population cells. Circ Res. 103, 825-835.
Porrello, E.R., Mahmoud, A.I., Simpson, E., et al. (2011). Transient regenerative potential of the neonatal mouse heart. Science 331, 1078-1080.
Quan, Y., Jiang, J., and Dingledine, R. (2013). EP2 receptor signaling pathways regulate classical activation of microglia. J Biol Chem. 288, 9293-9302.
Reinecke, H., Poppa, V., and Murry, C.E. (2002). Skeletal Muscle Stem Cells Do Not Transdifferentiate Into Cardiomyocytes After Cardiac Grafting. J Mol Cell Cardiol. 34, 241-249.
Roger, V.L., Go, A.S., Lloyd-Jones, D.M., et al. (2011). Heart disease and stroke statistics--2011 update: a report from the American Heart Association. Circulation 123, e18-e209.
Ruckh, J.M., Zhao, J.W., Shadrach, J.L., et al. (2012). Rejuvenation of regeneration in the aging central nervous system. Cell stem cell 10, 96-103.
Senyo, S.E., Steinhauser, M.L., Pizzimenti, C.L., et al. (2013). Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493, 433-436.
Shapiro, S.D., Ranjan, A.K., Kawase, Y., et al. (2014). Cyclin A2 induces cardiac regeneration after myocardial infarction through cytokinesis of adult cardiomyocytes. Sci Transl Med. 6, 224ra227.
Smith, R.R., Barile, L., Cho, H.C., et al. (2007). Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115, 896-908.
Song, G., Nguyen, D.T., Pietramaggiori, G., et al. (2010). Use of the parabiotic model in studies of cutaneous wound healing to define the participation of circulating cells. Wound Repair Regen. 18, 426-432.
Summan, M., Warren, G.L., Mercer, R.R., et al. (2006). Macrophages and skeletal muscle regeneration: a clodronate-containing liposome depletion study. Am J Physiol Regul Integr Comp Physiol. 290, R1488-1495.
Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676.
Tane, S., Kubota, M., Okayama, H., et al. (2014). Repression of cyclin D1 expression is necessary for the maintenance of cell cycle exit in adult mammalian cardiomyocytes. J Biol Chem. 289, 18033-18044.
Tidball, J.G., and Wehling-Henricks, M. (2007). Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J Physiol. 578, 327-336.
Traverse, J.H., Henry, T.D., Pepine, C.J., et al. (2012). Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: JAMA 308, 2380-2389.
van Amerongen, M.J., Harmsen, M.C., van Rooijen, N., et al. (2007). Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. J Pathol. 170, 818-829.
van den Borne, S.W., Diez, J., Blankesteijn, W.M., et al. (2010). Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol. 7, 30-37.
Vassilopoulos, G., Wang, P.R., and Russell, D.W. (2003). Transplanted bone marrow regenerates liver by cell fusion. Nature 422, 901-904.
Vi, L., Baht, G.S., Whetstone, H., et al. (2014). Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J Bone Miner Res. [Epub ahead of print]
Wang, D., Patel, V.V., Ricciotti, E., et al. (2009). Cardiomyocyte cyclooxygenase-2 influences cardiac rhythm and function. Proc Natl Acad Sci USA 106, 7548-7552.
Wang, X., Takagawa, J., Lam, V.C., et al. (2011). Donor myocardial infarction impairs the therapeutic potential of bone marrow cells by an interleukin-1-mediated inflammatory response. Sci Transl Med. 3, 100ra190.
Weimann, J.M., Charlton, C.A., Brazelton, T.R., et al. (2003). Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc Natl Acad Sci USA 100, 2088-2093.
Weinberger, F., Mehrkens, D., Friedrich, F.W., et al. (2012). Localization of Islet-1-positive cells in the healthy and infarcted adult murine heart. Circ Res. 110, 1303-1310.
Willenborg, S., Lucas, T., van Loo, G., et al. (2012). CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood 120, 613-25.
Wright, D.E., Wagers, A.J., Gulati, A.P., et al. (2001). Physiological migration of hematopoietic stem and progenitor cells. Science 294, 1933-1936.
Yang, W.J., Li, S.H., Weisel, R.D., et al. (2012). Cell fusion contributes to the rescue of apoptotic cardiomyocytes by bone marrow cells. J Cell Mol Med. 16, 3085-3095.
Ye, L., Chang, Y.H., Xiong, Q., et al. (2014). Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell stem cell 15, 750-761.
Yoshizumi, M., Lee, W.S., Hsieh, C.M., et al. (1995). Disappearance of cyclin A correlates with permanent withdrawal of cardiomyocytes from the cell cycle in human and rat hearts. J Clin Invest. 95, 2275-2280.
Yu, F.X., and Guan, K.L. (2013). The Hippo pathway: regulators and regulations. Genes Dev.27, 355-371.
Zajac, E., Schweighofer, B., Kupriyanova, T.A., et al. (2013). Angiogenic capacity of M1- and M2-polarized macrophages is determined by the levels of TIMP-1 complexed with their secreted proMMP-9. Blood 122, 4054-4067.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-03-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw