進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0201201915534100
論文名稱(中文) 應用仿生設計於改良積層製造支撐結構之研究
論文名稱(英文) Studies on Improving Support Structures for Additive Manufacturing by Applying Biomimetic Design
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 107
學期 1
出版年 107
研究生(中文) 余靜
研究生(英文) Jing Yu
學號 N16054776
學位類別 碩士
語文別 中文
論文頁數 86頁
口試委員 指導教授-李榮顯
口試委員-林震銘
口試委員-陳家豪
中文關鍵字 積層製造  仿生設計  支撐結構 
英文關鍵字 Additive Manufacturing  Biomimetic Design  Support Structures 
學科別分類
中文摘要 積層製造(Additive Manufacturing, AM)是近年來革命性的製造技術,透過材料層層堆疊的方式進行加工,是為加法式製造技術,不僅能處理具有複雜外形的模型,也可完整製作模型的內部結構,突破了以往傳統製造的限制。積層製造雖然帶來了更多設計可能性,卻也衍生出新的問題。當模型進行製作時,若模型特徵超過製程成形極限,便需額外增加支撐件來輔助列印,因此積層製造技術多了一項支撐件的製作成本,不僅增加製作時間,也增加材料的使用,於是優化的支撐結構設計便成為一項重要課題。
目前市面上已有商用軟體可為積層製造模型生成支撐件,一般常見的支撐結構有格狀、片狀以及樹枝狀。其中格狀與片狀的支撐結構雖然較為穩固,但使用了大量材料,不僅增加材料的消耗也導致後處理的時間拉長;而樹枝狀的支撐結構則相對減少了材料的使用,但卻容易因為支撐效果不佳而導致成品品質下降。
本研究觀察榕樹支柱根之結構,效仿支柱根之生長策略並使用其拓樸的形態,提出一個創新的支撐結構仿生設計法則。目標為改良現有的支撐結構設計,減少支撐件材料的使用與縮短列印時間,同時保有支撐件的支撐效果,並且確保其易拆除性,拆除後不損壞模型本體。
最後透過案例實作進行驗證,並與商用軟體進行結果比較,得到列印時間與材料使用皆有約10 %以上之改善,並且列印穩定性高、支撐效果佳,證實本研究所提出的支撐結構仿生設計方法確實改良了現有的設計。
英文摘要 Additive Manufacturing (AM) is a revolutionary manufacturing technology in recent years. Models are manufactured by stacking materials in a layer-by-layer manner. It can not only deal with models with complex shapes, but also the internal structures of the models. Although Additive Manufacturing brings more design possibilities, it causes new problems. If the features of the models exceed the forming limit, it will require support structures to complete production. Support structures increase printing time as well as the use of materials, resulting in an additional expense. Therefore, an optimized design of the support structures becomes an important issue.
Nowadays commercial software is available to produce support structures. But the designs produced by commercial software usually cause lots of materials, or lead to poor support.
This study proposes a set of novel biomimetic design rules by imitating the growth strategies of the banyan trees. The goal is to improve the existing support structure design. Reduce the use of materials and shorten the printing time, while preserve the effect of support structures, and ensure that the support structures are easy to remove.
Finally, according to the results of the experiments, it is obtained that the printing time and the use of materials of the models that generated by biomimetic design rules are of about 10% improvement compared to the ones generated by commercial software. Meanwhile the printing stability is high and the designs are efficient as well. It is demonstrated that the proposed biomimetic design rules of support structures for Additive Manufacturing can improve the existing design.
論文目次 摘要 I
致謝 VI
目錄 VII
表目錄 IX
圖目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 研究方法 3
1.4 全文架構 3
第二章 文獻回顧 5
2.1 積層製造 5
2.2 積層製造之支撐件 6
2.3 結構仿生設計 10
第三章 支撐件設計方法 12
3.1 積層製造製程要點 12
3.1.1 台階效應 12
3.1.2 擺放方向評估 13
3.1.3 製程成形極限評估 13
3.1.4 支撐結構 14
3.2 商用軟體之支撐件 16
3.3 支撐結構仿生設計 18
3.3.1 榕樹之支撐柱原理與分析 18
3.3.2 應用於積層製造之考量 24
3.3.3 支撐件設計法則 25
第四章 系統實作與結果討論 33
4.1 實驗設備 33
4.2 製程參數與成形極限決定 34
4.3 圓柱試件實作 36
4.3.1 30°試件 36
4.3.2 25°試件 43
4.3.3 20°試件 47
4.3.4 15°試件 50
4.3.5 10°試件 53
4.3.6 5°試件 56
4.3.7 0°試件 59
4.4 平板試件實作 63
4.4.1 20°試件 63
4.4.2 10°試件 68
4.4.3 0°試件 72
4.5 支撐件拆除實測 76
4.6 實例驗證 77
第五章 結論與建議 82
5.1 結論 82
5.2 建議 83
參考文獻 84

參考文獻 Anitha, R., Arunachalam, S. and Radhakrishnan, P. "Critical parameters influencing the quality of prototypes in fused deposition modelling" Journal of Materials Processing Technology 118(1-3): 385-388. (2001).
Brackett, D., Ashcroft, I. and Hague, R. Topology optimization for additive manufacturing. Proceedings of the solid freeform fabrication symposium, Austin, TX, S. (2011).
Chacón, J., Caminero, M., García-Plaza, E. and Núñez, P. "Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection" Materials & Design 124: 143-157. (2017).
Chalasani, K., Jones, L. and Roscoe, L. Support generation for fused deposition modeling. Proceedings of Solid Freeform Fabrication Symposium, University of Texas, Austin, TX, Aug. (1995).
Dickinson, M. H. "Bionics: Biological insight into mechanical design" Proceedings of the National Academy of Sciences 96(25): 14208-14209. (1999).
Emmelmann, C., Petersen, M., Kranz, J. and Wycisk, E. Bionic lightweight design by laser additive manufacturing (LAM) for aircraft industry. SPIE Eco-Photonics 2011: Sustainable Design, Manufacturing, and Engineering Workforce Education for a Green Future, International Society for Optics and Photonics. (2011).
Gibson, I., Rosen, D. W. and Stucker, B. "Additive manufacturing technologies. 2010" Google Scholar. (2010).
Huang, S. H., Liu, P., Mokasdar, A. and Hou, L. "Additive manufacturing and its societal impact: a literature review" The International Journal of Advanced Manufacturing Technology 67(5-8): 1191-1203. (2013).
Sabourin, E., Houser, S. A. and Helge Bøhn, J. "Adaptive slicing using stepwise uniform refinement" Rapid Prototyping Journal 2(4): 20-26. (1996).
Tymrak, B., Kreiger, M. and Pearce, J. M. "Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions" Materials & Design 58: 242-246. (2014).
Vanek, J., Galicia, J. A. G. and Benes, B. Clever support: Efficient support structure generation for digital fabrication. Computer graphics forum, Wiley Online Library. (2014).
Vincent, J. F. and Mann, D. L. "Systematic technology transfer from biology to engineering" Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 360(1791): 159-173. (2002).
Wang, W., Wang, T. Y., Yang, Z., Liu, L., Tong, X., Tong, W., Deng, J., Chen, F. and Liu, X. "Cost-effective printing of 3D objects with skin-frame structures" ACM Transactions on Graphics (TOG) 32(6): 177. (2013).
Wong, K. V. and Hernandez, A. "A review of additive manufacturing" ISRN Mechanical Engineering 2012. (2012).
Zhao, L., Ma, J., Wang, T. and Xing, D. "Lightweight design of mechanical structures based on structural bionic methodology" Journal of Bionic Engineering 7(4): S224-S231. (2010).
林柏志 "以積層製造旋轉對連桿一體成形之擺放方向研究" 國立成功大學機械工程學系碩士論文: 1-101. (2016).
陈岩, 王士玮, 杨周旺, 刘利刚 "FDM 三维打印的支撑结构的设计算法" 中国科学: 信息科学 45(2): 259-269. (2015).
洪慈憶 "應用拓樸最佳化於連桿機構積層製造之支撐結構設計研究" 國立成功大學機械工程學系碩士論文: 1-88. (2017).
黃彥三, 許富蘭 "從樹木生物力學看榕樹氣根之機能" 林業研究專訊 21(5): 81-83. (2014).
路甬祥 "仿生学的科学意义与前沿: 仿生学的意义与发展" 科学中国人(4): 22-24. (2004).
賴羿壬 "積層製造可行性評估方法於連桿機構一體成形之研究" 國立成功大學機械工程學系碩士論文:1-107. (2015).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw