進階搜尋


 
系統識別號 U0026-0201201318282900
論文名稱(中文) 砂岩彈性行為與其組織結構之研究
論文名稱(英文) The experiment study of sandstones elastic properties and texture
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 101
學期 1
出版年 102
研究生(中文) 簡祐祥
研究生(英文) Yu-Hsiang Chien
學號 l46991087
學位類別 碩士
語文別 中文
論文頁數 122頁
口試委員 指導教授-龔慧貞
口試委員-楊耿明
口試委員-董家鈞
口試委員-范振暉
中文關鍵字 砂岩  超聲波  孔隙率  X光電腦斷層掃描  速度非均向性 
英文關鍵字 sandstone  ultrasound wave  porosity  X-ray computer tomography  velocity anisotropy 
學科別分類
中文摘要   本研究探討岩性與孔隙組織在不同壓力環境下對砂岩彈性行為的影響。使用孔隙率較高(約14-17 %)之澳洲砂岩與孔隙率較低(約5-10 %)的山東砂岩作為研究對象。兩種岩樣皆具有明顯紋理組織,其中山東砂岩又可區分出均勻無紋理區域與明暗分層條帶組成的紋理區域。透過薄片觀察及配合拉曼光譜與X光粉末繞射鑑定,分析砂岩主要組成礦物、顆粒大小與其組織結構。再以X光電腦斷層掃描(XCT)建構岩石中孔隙幾何形狀及三維空間分布關係,並估計岩體之孔隙率。同時利用吸滲法(imbibitions method)與氦氣高壓孔隙儀(Helium Porosimeter)分別量測常壓與高壓下的孔隙率。岩體波速(VP、VS)以超聲波方法量測,同樣分為常壓與高壓實驗,並比較經高壓與未經高壓樣品之差異。
  本研究使用XCT技術分析砂岩樣品的孔徑大小、孔隙幾何形狀並與速度量測結果進行討論。本研究樣品孔隙幾何形狀上可被分辨的主要來自孔徑大於0.02 mm的孔洞,並為雙峰式分布(bimodal distribution),主要為α=0.5與1兩群。兩岩樣之常壓下速度與孔隙率呈反比關係。澳洲砂岩孔隙率分布較分散但速度分布較集中;山東砂岩無紋理樣品孔隙率與速度分布都很分散;山東砂岩紋理樣品的孔隙率則集中在約8 %。而在VP、VS部分,實驗樣品的整體呈線性分布,並與前人研究的分布趨勢相符合,其中澳洲砂岩分布在高VP、VS的區域,山東砂岩則在低VP、VS的區域。非均向性質則以山東砂岩紋理樣品最為明顯(>10 %),其非均向性主要受孔隙密度的疏密分布所影響。
  高壓孔隙率實驗中在約30 MPa以內,所有樣品皆觀察到孔隙率明顯的變化,但持續加壓至實驗最大壓力150 MPa,孔隙率與常壓下相比僅相差2-3 %。高壓超聲波實驗選用常壓下的速度皆相近之岩樣,當加壓至最高壓力時山東砂岩的速度明顯高於澳洲砂岩,但相差不超過5 %,雖然澳洲砂岩的起始孔隙率約為山東砂岩的兩倍。經由高壓速度測量中觀察得知,無紋理的樣品(澳洲砂岩、山東砂岩無紋理樣品),經高壓實驗後僅改變平均速度,而對其速度非均向性質則改變不明顯。但在有紋理的樣品內(山東砂岩紋理樣品),由剪力波的速度變化顯示平均速度與速度非均向性皆有明顯改變,此現象應該與不同方向的孔隙閉合有關。
英文摘要   Depositional environments and tectonic activities determine the overall reservoir properties of sandstones, which have been reflected from the seismic data. It has been long recognized that the seismic velocity is sensitive to critical reservoir parameters, such as lithofacies, porosity, pore fluids and pore pressure.
  In this study, laboratory measurements of elastic waves (Vp and Vs) and porosity at ambient conditions and under confining pressures up to 150 MPa were carried out on two different sandstones: Australia sandstone (AS) with higher porosity (14-17%) and Shandong sandstone (SDS) with lower values (5-10%). Three sets of rock specimens were cored from AS (non-textured) and SDS (non-bedding and bedding texture). The mineral phases in the sandstone were analyzed using Raman spectroscopy and X-ray diffraction. The lithological description of studied sandstones were provided by the observations of thin sections using optical microscopy. Moreover, the X-ray Computed Tomography (XCT) technique was employed to characterize the geometry of pores and their distribution in 3-D that helps to estimate the porosity of studied sandstones. Furthermore, the porosity of sample was measured using imbibitions method at ambient conditions and helium porosimeter at high pressure (up to 150 MPa).
  At ambient conditions, the XCT analysis showed that these three tested rocks all possessed large proportion of micropore which size is smaller than 20 microns, and the aspect ratio of pores showed strong bimodal distribution (α=0.5 and 1). The porosity and velocity measurements in these three sets of specimens showed that compared with the non-textured specimens between AS and SDS, the porosity for both specimens exhibits a wide range distribution but AS measured velocity showed scattering within narrow range, and opposite trends in SDS. The measured P and S wave velocities of this set specimens presented a linear function, the velocity varying from 3.20 km/s to 4.26 km/s for P wave and 2.08 km/s to 2.83 km/s for S wave, yielding a value of 1.5-1.7 for Vp/Vs ratio.
  At high pressure experiments, the porosity measurements in three types of specimens studied here presented markedly decreasing at lower pressure range (< 30 MPa). The amount of porosity decrease in those specimens was about < 3% when reaching the peak pressure (150 MPa). The high pressure velocity measurements were performed on the selected specimens from three different sets of rocks, which the bench-top velocity started with similar values but with low- and high-porosity. Although the porosity of AS is two times of SDS, the measured velocity at peak pressure condition (150 MPa) showed that the lower porosity specimens from SDS have slightly higher values compared with those of AS, but only less than 5% higher.
  Basically, the changing of velocity of porous rock is due to the variation of porosity and pore features. The obtained results suggested that non-bedding samples (i.e., AS and SDS non-textured samples) only changed average velocity after high pressure experiments. The bedding samples (i.e., SDS textured samples) not only changed average velocity but also velocity anisotropy.
論文目次 摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 X
表目錄 XIV
第1章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與目的 11
第2章 實驗理論 12
2.1 物質的彈性性質 12
2.2 單晶晶體的彈性係數(Cij) 14
2.3 多晶質材料(polycrystal)的彈性係數 15
2.3.1 單相多晶質(single-phase polycrystal)的彈性係數 16
2.3.2 多成份相聚合物(aggregate)的彈性係數 17
2.4 多成份相孔隙材料(porous material)的彈性係數 19
2.4.1 O’Connell與Budiansky的自洽模型 (SC模型) 19
第3章 實驗方法 22
3.1 實驗目的 22
3.2 實驗樣品描述 23
3.2.1 標準樣品 23
3.2.2 砂岩樣品 24
3.3 樣品備製 28
3.3.1 粉末與薄片備製 28
3.3.2 圓柱狀與立方體樣品備製 28
3.4 礦物相鑑定 33
3.4.1 拉曼光譜儀 33
3.4.2 X光粉末繞射儀 33
3.5 微組織與孔隙特徵 35
3.5.1 光學顯顯微鏡 35
3.5.2 X光電腦斷層掃描系統(XCT system) 35
3.6 孔隙率量測 39
3.6.1 吸滲法 39
3.6.2 氦氣孔隙儀 40
3.7 超聲波量測 42
3.7.1 常壓下的超聲波量測 42
3.7.2 高壓超聲波實驗 44
3.8 超聲波資料分析 47
3.8.1 常壓下走時分析(arrival time,t0) 47
3.8.2 高壓下走時分析走時位移(time shift,Δt) 48
3.9 標準試體波速測量測試 51
3.9.1 標準試體波速測試 51
3.9.2 波導的走時對壓力的變化關係 52
3.9.3 介面耦合效應 53
第4章 實驗結果與討論 56
4.1 樣品特性描述 56
4.1.1 礦物組成 56
4.1.2 微組織與孔隙特徵 60
4.1.3 孔隙率量測 69
-吸滲法孔隙率與密度 69
-氦氣孔隙率高壓實驗 73
-高壓下閉合之孔隙幾何形狀 75
-孔隙率量測方法之比較 77
4.2 澳洲砂岩 78
4.2.1 常壓三軸速度量測(軸向非均向性檢測) 78
4.2.2 常壓X軸向圓柱體速度分布 80
4.2.3 高壓X軸向速度資料 81
4.3 山東砂岩 84
4.3.1 常壓三軸速度資料(軸向非均向性檢測) 84
4.3.2 常壓X軸向圓柱體速度分布 87
4.3.3 高壓X軸向速度資料 90
4.4 孔隙率與常壓速度量測結果總結 94
第5章 影響波速的因素與速度非均向性 96
5.1 實驗樣品之比較 96
5.1.1 未加壓前之樣品 96
5.1.2 孔隙形狀對速度影響之探討 101
5.1.3 加壓前後的樣品 103
5.2 高壓下影響波速變化的因素 106
5.2.1 高壓下的速度變化 106
5.2.2 高壓下之孔彈性特性 107
第6章 結論與建議 111
參考文獻 113
附錄 117
A. 砂岩樣品S波速度對方位角之分布 117
參考文獻 Alex, A. V., 2001, Ultrasonic measurement of the elastic constants of selected nonlinear optical /semiorganic crystals with orthorhombic symmetry [Ph. D: Cochin University of Science and Technology, 162 p.
Appoloni, C., Fernandes, C., and Rodrigues, C., 2007, X-ray microtomography study of a sandstone reservoir rock: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, v. 580, no. 1, pp. 629-632.
ASTM, 1999, Standard Test Method for Laboratory Determination of Pulse Velocities and Ultrasonic Elastic Constants of Rock, West Conshohocken, ASTM, Annual Book of ASTM Standards, pp. 1-7.
Auld, B. A., 1973, Acoustic fields and waves in solids, Wiley, v. 1.
Bass, J. D., 1995, Elasticity of Minerals, Glasses, and Melts American Geophysical Union special publication, Handbook of Physical Constants, pp. 45-63.
Benson, P., Meredith, P., Platzman, E., and White, R., 2005, Pore fabric shape anisotropy in porous sandstones and its relation to elastic wave velocity and permeability anisotropy under hydrostatic pressure: International Journal of Rock Mechanics and Mining Sciences, v. 42, no. 7-8, pp. 890-899.
Benson, P. M., Meredith, P. G., and Platzman, E. S., 2003, Relating pore fabric geometry to acoustic and permeability anisotropy in Crab Orchard Sandstone: A laboratory study using magnetic ferrofluid: Geophysical Research Letters, v. 30, no. 19, pp. 1-4.
Berryman, J. G., 1995, Mixture theories for rock properties: American Geophysical Union, pp. 205-228.
Budiansky, B., and O'Connell, R. J., 1976, Elastic moduli of a cracked solid: International Journal of Solids and Structures, v. 12, no. 2, pp. 81-97.
Dodds, K., Dewhurst, D., Siggins, A., Ciz, R., Urosevic, M., Gurevich, B., and Sherlock, D., 2007, Experimental and theoretical rock physics research with application to reservoirs, seals and fluid processes: Journal of Petroleum Science and Engineering, v. 57, no. 1-2, pp. 16-36.
Downs, R. T., and Hall-Wallace, M., 2003, The American Mineralogist Crystal Structure Database.: American Mineralogist, v. 88, pp. 247-250.
Eberhart-Phillips, D., Han, D.-H., and Zoback, M. D., 1989, Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone: Geophysics, v. 54, no. 1, pp. 82-89.
Fedorov, F. I., 1968, Theory of elastic waves in crystals, Plenum Press.
Folk, R. L., 1980, Petrology of sedimentary rocks, Hemphill Pub. Co.
Han, D.-h., Nur, A., and Morgan, D., 1986, Effects of porosity and clay content on wave velocities in sandstones: Geophysics, v. 51, no. 11, pp. 2093-2107.
Hill, R., 1952, The Elastic Behaviour of a Crystalline Aggregate: Proceedings of the Physical Society. Section A, v. 65, no. 5, pp. 349.
-, 1963, Elastic properties of reinforced solids: Some theoretical principles: Journal of the Mechanics and Physics of Solids, v. 11, no. 5, pp. 357-372.
Hudson, J. A., 1980, Overall properties of a cracked solid: Mathematical Proceedings of the Cambridge Philosophical Society, v. 88, no. 02, pp. 371-384.
Ketcham, R. A., and Carlson, W. D., 2001, Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences: Computers & Geosciences, v. 27, no. 4, pp. 381-400.
Khaksar, Griffiths, and McCann, 1999, Compressional- and shear-wave velocities as a function of confining stress in dry sandstones: Geophysical Prospecting, v. 47, no. 4, pp. 487-508.
Louis, L., David, C., Metz, V., Robion, P., Menendez, B., and Kissel, C., 2005, Microstructural control on the anisotropy of elastic and transport properties in undeformed sandstones: International Journal of Rock Mechanics and Mining Sciences, v. 42, no. 7-8, pp. 911-923.
Louis, L., David, C., and Robion, P., 2003, Comparison of the anisotropic behaviour of undeformed sandstones under dry and saturated conditions: Tectonophysics, v. 370, no. 1-4, pp. 193-212.
Mavko, G., Mukerji, T., and Dvorkin, J., 2009, The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media, Cambridge University Press.
Molyneux, J. B., and Schmitt, D. R., 1999, First-break timing: Arrival onset times by direct correlation: Geophysics, v. 64, no. 5, pp. 1492-1501.
Nakashima, Y., Nakano, T., Nakamura, K., Uesugi, K., Tsuchiyama, A., and Ikeda, S., 2004, Three-dimensional diffusion of non-sorbing species in porous sandstone: computer simulation based on X-ray microtomography using synchrotron: Journal of Contaminant Hydrology, v. 74, no. 1-4, pp. 253-264.
Nur, A. M., Mavko, G., Dvorkin, J., and Gal, D., 1995, Critical porosity: The key to relating physical properties to porosity in rocks: SEG Technical Program Expanded Abstracts, v. 14, no. 1, pp. 878-881.
Nye, J. F., 1985, Physical properties of crystals: their representation by tensors and matrices, Clarendon Press.
O'Connell, R. J., and Budiansky, B., 1974, Seismic Velocities in Dry and Saturated Cracked Solids: J. Geophys. Res., v. 79, no. 35, pp. 5412-5426.
Parfitt, A. M., Drezner, M. K., Glorieux, F. H., Kanis, J. A., Malluche, H., Meunier, P. J., Ott, S. M., and Recker, R. R., 1987, Bone histomorphometry: Standardization of nomenclature, symbols, and units: Report of the asbmr histomorphometry nomenclature committee: Journal of Bone and Mineral Research, v. 2, no. 6, pp. 595-610.
Pickett, G. R., 1963, Acoustic Character Logs and Their Applications in Formation Evaluation: Journal of Petroleum Technology, v. 15, pp. 659-667.
Reuss, A., 1929, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle: ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, v. 9, no. 1, pp. 49-58.
Tanikawa, W., and Shimamoto, T., 2006, Klinkenberg effect for gas permeability and its comparison to water permeability for porous sedimentary rocks: Hydrol. Earth Syst. Sci. Discuss., v. 3, no. 4, pp. 1315-1338.
Tatham, R. H., 1982, Vp/Vs and lithology: Geophysics, v. 47, no. 3, pp. 336-344.
Taud, H., Martinezangeles, R., Parrot, J., and Hernandezescobedo, L., 2005, Porosity estimation method by X-ray computed tomography: Journal of Petroleum Science and Engineering, v. 47, no. 3-4, pp. 209-217.
Toksoz, M. N., Cheng, C. H., and Timur, A., 1976, Velocities of seismic waves in porous rocks: Geophysics, v. 41, no. 4, pp. 621-645.
Van Geet, M., Swennen, R., and Wevers, M., 2000, Quantitative analysis of reservoir rocks by microfocus X-ray computerised tomography: Sedimentary Geology, v. 132, no. 1–2, pp. 25-36.
Voigt, W., 1928, Lehrbuch der Kristallphysik, Leipzig, Verlag Teubner.
Walsh, J. B., 1965, The Effect of Cracks on the Compressibility of Rock: J. Geophys. Res., v. 70, no. 2, pp. 381-389.
Watt, J. P., Davies, G. F., and O'connell, R. J., 1976, The Elastic Properties of Composite Materials: Reviews of Geophysics and Space Physics, v. 14, no. 4, pp. 541-563.
Zimmerman, R. W., 1991, Compressibility of Sandstones, Elsevier.
王讓甲,1997。聲波岩石分級和岩石動彈性力學參數的分析研究,地質出版社。
吳文傑,2009。應力歷史相關之沉積岩孔隙率模型,國立中央大學應用地質研究所碩士論文,95頁。
姜在興,2003。沉積學,石油工業出版社。
許瑞育,2007。沉積岩應力相關之流體特性與沉積盆地之孔隙水壓異常現象,國立中央大學應用地質研究所碩士論文,84頁。
簡淑櫻,2002。石英之超聲波量測,國立成功大學地球科學系碩士論文,53頁。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-01-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-01-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw