進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0201201216255900
論文名稱(中文) 主要體感覺皮質觸覺感受與定位能力之行為與電生理研究
論文名稱(英文) Primary somatosensory cortex on tactile perception and localization – behavioral and electrophysiological analysis
校院名稱 成功大學
系所名稱(中) 心理學系認知科學碩士班
系所名稱(英) MS in Cognitive Science
學年度 100
學期 1
出版年 100
研究生(中文) 李文賢
研究生(英文) Wen-Hsien Li
學號 u76981010
學位類別 碩士
語文別 中文
論文頁數 71頁
口試委員 指導教授-蕭富仁
口試委員-嚴震東
口試委員-陳家進
中文關鍵字 觸覺  主要體感覺皮質  空氣噴射  跨顱磁刺激 
英文關鍵字 Tactile sensation  Primary somatosensory cortex  Air-puff  Transcranial magnetic stimulation 
學科別分類
中文摘要 觸覺是日常生活中基本且重要的感覺,由周邊刺激產生的觸覺訊息最後輸入至主要體感覺皮質,雖然主要體感覺皮質具有與刺激強度及刺激定位相關之能力,但是詳細的操作方式卻仍不清楚,本研究使用具有精確空間解析度的空氣噴射誘發非傷害性的觸覺,並使用visual analogous scale與定位作業評估觸覺強度感受與定位表現。結果發現強度感受評分隨著噴射持續時間增加而上升,其中30毫秒的三種噴射壓力(低、中、高)空氣噴射在強度感受評分與定位錯誤率的變化有明顯差異;空氣噴射產生的體感覺誘發電位的振幅值隨著刺激強度增強而增加;低強度空氣噴射刺激後20毫秒、30毫秒、90毫秒、115毫秒給予單脈衝跨顱磁刺激,受試者的強度感受評分顯著增加,而空氣噴射刺激後20毫秒給予單脈衝跨顱磁刺激,受試者的定位錯誤率顯著下降。本研究證實主要體感覺皮質在空氣噴射刺激的強度感受與定位能力上扮演重要的角色,而且對於刺激強度的反應受到不同時間點給予跨顱磁刺激而有所影響。
英文摘要 Tactile sensation is essential and important in our daily life. Tactile information in response to peripheral stimuli is projected to the primary somatosensory cortex (SI), which is believed to be functionally associated with intensity and localization of a stimulus. However, the detailed mechanism on these two functional aspects of the SI remains unclear. Air-puff stimulation was used to elicit innocuous perception assessed by the visual analogous scale (VAS) because of its fine spatial resolution. Our result showed that VAS values were significantly elevated as durations of air-puff stimulation increased. Three dispensing pressures of 30ms (low, medium, and high) showed a significant difference in the change of perceived intensity and localization errors. Magnitudes of air-puff induced cerebral potentials revealed a significant intensity-dependent change. Moreover, perception in response to low stimulus intensity was significantly enhanced by single pulse transcranial magnetic stimulation (TMS) with interstimulus intervals of 20, 30, 90, and 115 ms after air-puff stimulation. In contrast, localization errors were significantly reduced by TMS of 20 ms interstimulus interval. Our results suggest that the SI plays an important role in intensity perception and localization of air-puff stimuli with different time-related TMS effects in response to stimulus intensities.
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
符號 X
緒論 1
觸覺訊息的接收與傳遞路徑 1
主要體感覺皮質與觸覺訊息處理 2
跨顱磁刺激 4
研究動機與目的 7
研究方法 8
實驗儀器 8
空氣噴射刺激器 (air-puff stimulator) 8
腦電圖 (electroencephalogram, EEG) 8
跨顱磁刺激 (transcranial magnetic simulation, TMS) 9
實驗一 10
實驗設置 10
空氣噴射參數設定 10
環境設置及流程 10
統計分析 11
結果 13
實驗二 15
實驗設置 15
空氣噴射參數設定 15
腦電圖參數設定 15
時間點校準 15
環境設置及流程 16
統計分析 17
結果 18
實驗三 20
實驗設置 20
空氣噴射參數設定 20
跨顱磁刺激時間點 20
主要體感覺皮質定位 20
環境設置及流程 21
統計分析 22
結果 23
討論 25
結論 30
未來工作 31
參考文獻 32
中文部分 32
英文部分 32
附錄一 跨顱磁刺激器機體安全規範 68
附錄二 刺激線圈安全規範 70
參考文獻 阮啟弘、呂岱樺、陳巧雲(2005),「跨顱磁刺激在認知神經科學研究的角色」,應用心理研究,第二十八期,頁51-74。
薛人瑞(2010),「利用雷射誘發電位及跨顱磁刺激探討主要感覺皮質區在疼痛與定位之區辨能力」,國立成功大學認知科學研究所碩士論文。
Anand, S., & Hotson, J. (2002). Transcranial magnetic stimulation: neurophysiological applications and safety. Brain and Cognition, 50(3), 366-386.
Andre Obadia, N., Garcia Larrea, L., Garassus, P., & Mauguiere, F. (1999). Timing and characteristics of perceptual attenuation by transcranial stimulation: A study using magnetic cortical stimulation and somatosensory evoked potentials. Psychophysiology, 36(4), 476-483.
Azañón, E., & Haggard, P. (2009). Somatosensory processing and body representation. Cortex, 45(9), 1078-1084.
Biermann, K., Schmitz, F., Witte, O. W., Konczak, J., Freund, H. J., & Schnitzler, A. (1998). Interaction of finger representation in the human first somatosensory cortex: a neuromagnetic study. Neuroscience letters, 251(1), 13-16.
Cohen, L. G., Bandinelli, S., Sato, S., Kufta, C., & Hallett, M. (1991). Attenuation in detection of somatosensory stimuli by transcranial magnetic stimulation. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 81(5), 366-376.
Crichton, N. (2001). Visual Analogue Scale (VAS). Journal of Clinical Nursing, 10(s 706).
Forss, N., Salmelin, R., & Hari, R. (1994). Comparison of somatosensory evoked fields to airpuff and electric stimuli. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 92(6), 510-517.
Forster, B., & Eimer, M. (2005). Covert attention in touch: Behavioral and ERP evidence for costs and benefits. Psychophysiology, 42(2), 171-179.
Forster, B., Sambo, C. F., & Pavone, E. F. (2009). ERP correlates of tactile spatial attention differ under intra-and intermodal conditions. Biological psychology, 82(3), 227-233.
Franzén, O., & Offenloch, K. (1969). Evoked response correlates of psychophysical magnitude estimates for tactile stimulation in man. Experimental Brain Research, 8(1), 1-18.
Hagen, M. C., & Pardo, J. V. (2002). PET studies of somatosensory processing of light touch. Behavioural brain research, 135(1-2), 133-140.
Haggard, P., Taylor-Clarke, M., & Kennett, S. (2003). Tactile perception, cortical representation and the bodily self. Current Biology, 13(5), 170.
Harris, I. M., Benito, C. T., Ruzzoli, M., & Miniussi, C. (2008). Effects of right parietal transcranial magnetic stimulation on object identification and orientation judgments. Journal of Cognitive Neuroscience, 20(5), 916-926.
Harris, J. A., Clifford, C. W. G., & Miniussi, C. (2008). The functional effect of transcranial magnetic stimulation: signal suppression or neural noise generation? Journal of Cognitive Neuroscience, 20(4), 734-740.
Hashimoto, I. (1987). Somatosensory evoked potentials elicited by air-puff stimuli generated by a new high-speed air control system. Electroencephalography and clinical neurophysiology, 67(3), 231-237.
Hashimoto, I., Yoshikawa, K., & Kimura, T. (2000). Somatosensory evoked potentials to a threshold air-puff can predict stimulus detection in human subjects. Neuroscience letters, 282(3), 181-184.
Hashimoto, I., Yoshikawa, K., & Sasaki, M. (1988). Somatosensory evoked potential correlates of psychophysical magnitude estimations for tactile air-puff stimulation in man. Experimental Brain Research, 73(3), 459-469.
Hoechstetter, K., Rupp, A., Stancák, A., Meinck, H. M., Stippich, C., Berg, P., & Scherg, M. (2001). Interaction of tactile input in the human primary and secondary somatosensory cortex--a magnetoencephalographic study. Neuroimage, 14(3), 759-767.
Hoshiyama, M., Kakigi, R., Koyama, S., Kitamura, Y., Shimoio, M., & Watanabe, S. (1995). Somatosensory evoked magnetic fields after mechanical stimulation of the scalp in humans. Neuroscience letters, 195(1), 29-32.
Huttunen, J. (1986). Magnetic cortical responses evoked by tactile stimulation of the middle finger in man. Pflügers Archiv European Journal of Physiology, 407(2), 129-133.
Iguchi, Y., Hoshi, Y., Tanosaki, M., Taira, M., & Hashimoto, I. (2005). Attention induces reciprocal activity in the human somatosensory cortex enhancing relevant-and suppressing irrelevant inputs from fingers. Clinical neurophysiology, 116(5), 1077-1087.
Ilmoniemi, R. J., Virtanen, J., Ruohonen, J., Karhu, J., Aronen, H. J., & Katila, T. (1997). Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport, 8(16), 3537.
Imai, T., Kamping, S., Breitenstein, C., Pantev, C., Lütkenhöner, B., & Knecht, S. (2003). Learning of tactile frequency discrimination in humans. Human brain mapping, 18(4), 260-271.
Jahanshahi, M., & Rothwell, J. (2000). Transcranial magnetic stimulation studies of cognition: an emerging field. Experimental Brain Research, 131(1), 1-9.
Johansen-Berg, H., Christensen, V., Woolrich, M., & Matthews, P. M. (2000). Attention to touch modulates activity in both primary and secondary somatosensory areas. Neuroreport, 11(6), 1237.
Kakigi, R., & Shibasaki, H. (1984). Scalp topography of mechanically and electrically evoked somatosensory potentials in man. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 59(1), 44-56.
Kanda, M., Mima, T., Oga, T., Matsuhashi, M., Toma, K., Hara, H., . . . Shibasaki, H. (2003). Transcranial magnetic stimulation (TMS) of the sensorimotor cortex and medial frontal cortex modifies human pain perception. Clinical neurophysiology, 114(5), 860-866.
Karageorgiou, E., Koutlas, I. G., Alonso, A. A., Leuthold, A. C., Lewis, S. M., & Georgopoulos, A. P. (2008). Cortical processing of tactile stimuli applied in quick succession across the fingertips: temporal evolution of dipole sources revealed by magnetoencephalography. Experimental Brain Research, 189(3), 311-321.
Kobayashi, M., & Pascual-Leone, A. (2003). Transcranial magnetic stimulation in neurology. The Lancet Neurology, 2(3), 145-156.
Ku, Y., Ohara, S., Wang, L., Lenz, F. A., Hsiao, S. S., Bodner, M., . . . Zhou, Y. D. (2007). Prefrontal cortex and somatosensory cortex in tactile crossmodal association: an independent component analysis of ERP recordings. PLoS One, 2(8), e771.
Kujirai, T., Sato, M., Rothwell, J., & Cohen, L. (1993). The effect of transcranial magnetic stimulation on median nerve somatosensory evoked potentials. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 89(4), 227-234.
Lui, F., Duzzi, D., Corradini, M., Serafini, M., Baraldi, P., & Porro, C. (2008). Touch or pain? Spatio-temporal patterns of cortical fMRI activity following brief mechanical stimuli. Pain, 138(2), 362-374.
Malmivuo, J., & Plonsey, R. (1995). Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields: Oxford University Press, USA.
Marg, E., & Rudiak, D. (1994). Phosphenes induced by magnetic stimulation over the occipital brain: description and probable site of stimulation. Optometry & Vision Science, 71(5), 301.
Merabet, L. B., & Pascual-Leone, A. (2009). Transcranial Magnetic Stimulation. In R. S. Editor-in-Chief: Larry (Ed.), Encyclopedia of Neuroscience (pp. 1055-1062). Oxford: Academic Press.
Miniussi, C., Ruzzoli, M., & Walsh, V. (2010). The mechanism of transcranial magnetic stimulation in cognition. Cortex, 46(1), 128-130.
Nangini, C., Ross, B., Tam, F., & Graham, S. (2006). Magnetoencephalographic study of vibrotactile evoked transient and steady-state responses in human somatosensory cortex. Neuroimage, 33(1), 252-262.
Nikouline, V., Ruohonen, J., & Ilmoniemi, R. J. (1999). The role of the coil click in TMS assessed with simultaneous EEG. Clinical neurophysiology, 110(8), 1325-1328.
O'Reardon, J. P., Peshek, A. D., Romero, R., & Cristancho, P. (2006). Neuromodulation and Transcranial Magnetic Stimulation (TMS): A 21st Century Paradigm for Therapeutics in Psychiatry. Psychiatry (Edgmont), 3(1), 30.
Ohara, S., Wang, L., Ku, Y., Lenz, F., Hsiao, S., Hong, B., & Zhou, Y. D. (2008). Neural activities of tactile cross-modal working memory in humans: an event-related potential study. Neuroscience, 152(3), 692-702.
Onishi, H., Oyama, M., Soma, T., Kubo, M., Kirimoto, H., Murakami, H., & Kameyama, S. (2010). Neuromagnetic activation of primary and secondary somatosensory cortex following tactile-on and tactile-off stimulation. Clinical neurophysiology, 121(4), 588-593.
Onofrj, M., Basciani, M., Fulgente, T., Bazzano, S., Malatesta, G., & Curatola, L. (1990). Maps of somatosensory evoked potentials (SEPs) to mechanical (tapping) stimuli: comparison with P14, N20, P22, N30 of electrically elicited SEPs. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 77(4), 314-319.
Pascual-Leone, A., Walsh, V., & Rothwell, J. (2000). Transcranial magnetic stimulation in cognitive neuroscience-virtual lesion, chronometry, and functional connectivity. Current opinion in neurobiology, 10(2), 232-237.
Penfield, W., & Rasmussen, T. (1950). The cerebral cortex of man; a clinical study of localization of function.
Rossi, S., Hallett, M., Rossini, P. M., & Pascual-Leone, A. (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical neurophysiology, 120(12), 2008-2039.
Rossini, P. M., & Rossi, S. (2007). Transcranial magnetic stimulation. Neurology, 68(7), 484-488.
Ruzzoli, M., Marzi, C. A., & Miniussi, C. (2010). The neural mechanisms of the effects of transcranial magnetic stimulation on perception. Journal of neurophysiology, 103(6), 2982-2989.
Schwarzkopf, D. S., Silvanto, J., & Rees, G. (2011). Stochastic resonance effects reveal the neural mechanisms of transcranial magnetic stimulation. The Journal of Neuroscience, 31(9), 3143-3147.
Seyal, M., Masuoka, L. K., & Browne, J. K. (1992). Suppression of cutaneous perception by magnetic pulse stimulation of the human brain. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 85(6), 397-401.
Seyal, M., Siddiqui, I., & Hundal, N. S. (1997). Suppression of spatial localization of a cutaneous stimulus following transcranial magnetic pulse stimulation of the sensorimotor cortex. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control, 105(1), 24-28.
Simões, C., Mertens, M., Forss, N., Jousmäki, V., Lütkenhöner, B., & Hari, R. (2001). Functional overlap of finger representations in human SI and SII cortices. Journal of neurophysiology, 86(4), 1661-1665.
Tanosaki, M., Iguchi, Y., Hoshi, Y., & Hashimoto, I. (2003). Tactile interference to the face affects magnetic responses elicited by electric thumb stimulation. Clinical neurophysiology, 114(11), 2118-2123.
Tanosaki, M., Iguchi, Y., Kimura, T., Takino, R., & Hashimoto, I. (2004). Functional connectivity between forearm and digits representations in human somatosensory area 3b. Clinical neurophysiology, 115(11), 2638-2644.
Tanosaki, M., Suzuki, A., Takino, R., Kimura, T., Iguchi, Y., Kurobe, Y., . . . Hashimoto, I. (2002). Neural mechanisms for generation of tactile interference effects on somatosensory evoked magnetic fields in humans. Clinical neurophysiology, 113(5), 672-680.
Waberski, T., Gobbele, R., Kawohl, W., Cordes, C., & Buchner, H. (2003). Immediate cortical reorganization after local anesthetic block of the thumb: source localization of somatosensory evoked potentials in human subjects. Neuroscience letters, 347(3), 151-154.
Walsh, V., & Cowey, A. (2000). Transcranial magnetic stimulation and cognitive neuroscience. Nature Reviews Neuroscience, 1(1), 73-80.
Weinstein, S. (1968). Intensive and extensive aspects of tactile sensitivity as a function of body part, sex and laterality.
Yamauchi, N., Fujitani, Y., & Oikawa, T. (1981). Somatosensory evoked potentials elicited by mechanical and electrical stimulation of each single pain or tactile spot of the skin. The Tohoku journal of experimental medicine, 133(1), 81.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-01-11起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw