系統識別號 U0026-0109202002591300
論文名稱(中文) 助行器使用者之動態運動分析
論文名稱(英文) Dynamic Analysis of Movement for Walking-aid Users
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 呂宗翰
研究生(英文) Tsung-Han Lu
學號 N16071558
學位類別 碩士
語文別 中文
論文頁數 131頁
口試委員 口試委員-張仁宗
中文關鍵字 肌肉骨骼建模  助行器  步態  坐立姿態轉換  OpenSIM 
英文關鍵字 musculoskeletal modeling  Walking-aid  gait  sit-to-stand conversion  OpenSIM 
中文摘要 本研究建立一具有動力驅動與量測功能之助行器系統。助行器由底部驅動平台與握桿組合而成,配合人體穿戴之力量感測裝置,在使用者使用助行器於站坐姿態轉換與行走時,即時記錄使用者所受外力。此外,以攝影機記錄人體運動姿態,再使用人體模擬軟體進行人體運動分析。在人體狀態資訊方面,以 Kinect 取像系統進行運動姿態捕捉並即時運算辨識人體骨架的關節座標;以力敏電阻量測腳底正向力搭配等效面積概念簡化腳底受力情形;以荷重元量測使用者支撐於助行器握把上的力量。感測器採用雙藍牙主機進行無線資料傳輸以減少有線傳輸帶來的運動限制。將量測到的資料搭配 OpenSIM 進行肌肉骨骼模型建模並計算出關節力矩以及肌肉出力。實驗結果顯示,此系統所評估之肌肉力量與關節力矩有一定可信度。
英文摘要 This study aims to establish a power-driven walking-aid system with measuring function. The system consists of a powered base and a stick. By wearing force sensors, external forces on the user during the transition from sitting to standing and walking can be recorded in real-time. Besides, the user’s movement is recorded with a camera and then analyzed with software. As for body state recording, Kinect system is used to record the user’s movement and identify the corresponding joint positions; force sensitive resistors are placed on the user’s feet to measure the normal force based on the equivalent-area simplification; load cells are installed on the handle of stick to measure the force that the user exerts on the walking-aid system. In particular, instead of using wired system, all measured data are transmitted with two Bluetooth devices to avoid hindering the user’s movement. At last, based on the measured data, OpenSIM is utilized to build up a human musculoskeletal model and then calculate the joint torques and muscle forces respectively. The final result shows that the estimated muscle forces and joint torques are at a certain degree of reliability.
論文目次 圖目錄 iii
表目錄 ix
符號表 xi
第一章 緒論 1
第二章 OpenSIM介紹 4
2.1 參考模型 5
2.2 OpenSIM功能 11

第三章 人體模型與助行器系統 29
3.1 系統架構 29
3.2 系統參數 33

第四章 感測器 39
4.1 力敏電阻(Force Sensing Resistor) 39
4.1.1 力敏電阻參數校正 40
4.1.2 力敏電阻(FSR)之使用 45
4.2 荷重元(Load Cell) 49
4.2.1 荷重元原理 50
4.3 體態捕捉攝影機(kinect) 52

第五章 實驗與討論 58
5.1 實驗軟硬體 58
5.1.1 實驗硬體 58
5.1.2 實驗軟體 69
5.1.3 通訊介面 70
5.2 實驗條件與設定 74
5.2.1 人體參數 74
5.2.2 參考標記位置 75
5.2.3 實驗姿態 77
5.3 行走姿態實驗結果 79
5.3.1 kinect結果 80
5.3.2 力敏電阻(FSR)結果 81
5.3.3 荷重元(Load Cell)結果 83
5.3.4 OpenSIM結果 85
5.4 坐-立姿轉換實驗結果 . 102
5.4.1 kinect結果 102
5.4.2 力敏電阻(FSR)結果 104
5.4.3 荷重元(Load Cell)結果 106
5.4.4 OpenSIM結果 108

第六章 結論與未來展望 126
6.1 結論 126
6.2 未來展望 126
參考文獻 128
參考文獻 [1] Wikipedia. Population ageing — Wikipedia, the free encyclopedia, 2020.
[Online; accessed 7-July-2020].

[2] cureresearch. Conditions by people affected (prevalence or incidence), 2020.
[Online; accessed 7-July-2020].

[3] A. Taimoor et al. Cognitive demands during wearable exoskeleton assisted walking in persons with multiple sclerosis. 2017 International Symposium on Wearable Robotics and Rehabilitation, WeRob 2017, pages 1–2, 2018.

[4] Z. Zhang. Microsoft kinect sensor and its effect. 19(2):4 – 10, April 2012.

[5] E. Riyad A., H. Jidong, and Y. Michael. Study on the use of Microsoft Kinect for robotics applications. Record - IEEE PLANS, Position Location and Navigation Symposium, pages 1280–1288, 2012.

[6] Hiroyuki et al. Ukida. Human motion capture system using color markers and silhouette. Conference Record - IEEE Instrumentation and Measurement Technology Conference, (April):151–156, 2006.

[7] Young Kee Ryu and Choonsuk Oh. RF Signal Synchronized Low Cost Motion
Capture Device. 2007 Asia-Pacific Microwave Conference, pages 4–7, 2007.

[8] S. Tadano, R. Takeda, and H. Miyagawa. Three dimensional gait analysis using wearable acceleration and gyro sensors based on quaternion calculations. sensors, 13(7):9321–9343, 2013.

[9] Q. Li, J.A. Stankovic, and M.A. Hanson. Accurate, fast fall detection us- ing gyroscopes and accelerometer-derived posture information. 9(5):138–143, June 2009.

[10] A.H.A. Razak, A. Zayegh, R.K. Begg, and Yufridin Wahab. Foot plantar
pressure measurement system: A review. 12(7):9884–9912, July 2012.

[11] Malvade et al. IoT based monitoring of foot pressure using FSR sensor. Proceedings of the 2017 IEEE International Conference on Communication and Signal Processing, ICCSP 2017, 2018-Janua:635–639, 2018.

[12] R.L. Bumann. Using load-cells to unveil limitations to the human movement
system. Master’s thesis, ETH Zurich.

[13] E. et al. Klimiec. Measuring of foot plantar pressure - Possible applications in quantitative analysis of human body mobility. Measurement Science and Technology, 28(5), 2017.

[14] T.A.English and M.Kilvington. In vivo records of hip loads using a femoral implant with telemetric output (a prelimary report). Journal of Biomedical Engineering, 1(2):111–115, April 1979.

[15] G.M. Kotzar, D.T. Davy, and V.M. Goldberg. Telemeterized in vivo hip joint force data: A report on two patients after total hip surgery. Journal of Orthopaedic Research, 9(5):621–633, September 1991.

[16] S.J.G. Taylar, J Gorjan, and P.S Walker. An Intrumented Prosthesis F Knee Joint Force Measurement in Vivo. The Institution of Electrical Engineers, pages 1–2, 1999.

[17] R. Susmita et al. Modeling of muscle activation from electromyography recordings in patients with cerebral palsy. Applied Sciences (Switzerland), 8(12), 2018.

[18] G. Felipe et al. EMG signal analysis based on fractal dimension for muscle activation detection under exercice protocol. 2016 21st Symposium on Signal Processing, Images and Artificial Vision, STSIVA 2016, pages 13–17, 2016.

[19] R.N. Jazar. Advanced Dynamics: Rigid Body, Multibody, and Aerospace Ap-
plications. John Wiley & Sons, inc, 2011.

[20] P. Di, J. Huang, and K. Sekiyama. Motion control of intelligent cane robot under normal and abnormal walking condition. 20th IEEE International Sym- posium on Robot and Human Interactive Communication, July 2011.

[21] P. Di, J. Huang, and S. Nakagawa. Real-time fall and overturn prevention
control for human-cane robotic system. IEEE ISR 2013, October 2013.

[22] D.G. Thelen and F.C. Anderson. Using computed muscle control to gener- ate forward dynamic simulations of human walking from experimental data. Journal of Biomechanics, 39(6):1107–1115, 2006.

[23] OpenSIM. Residual reduction algorithm - opensim documentation - global
site, 2020. [Online; accessed 7-July-2020].

[24] P. Brenner. A technical tutorial on the ieee 802.11 protocol. Breezecom
Wireless Communications, July 1996.

[25] Texas Instruments. CC2640 SimpleLink— Bluetooth® Wireless MCU
datasheet (Rev. B). http://www.ti.com/lit/ds/symlink/cc2640.pdf, Ju- ly 2016.

[26] Texas Instruments. CC2640/CC2650 Bluetooth low energy Software Develop- er’s Guide (Rev. E). http://www.ti.com/lit/ug/swru393e/swru393e.pdf, March 2018.

[27] Scott L et al. Delp. Delp2007.pdf. 54(11):1940–1950, 2007.

[28] ANSYS Inc. Workbench User’s Guide. ANSYS Manual, 15317(Release
15.0):724–746, 2013.

[29] OpenSIM. Opensim musculoskeletal models, 2020. [Online; accessed 7-July-

[30] Chand T John. Residual reduction algorithm (rra), 2008. [Online; accessed

[31] Darryl G. Thelen. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. Journal of Biomechanical En- gineering, 125(1):70–77, 2003.

[32] Matthew et al. Millard. Flexing computational muscle: Modeling and sim- ulation of musculotendon dynamics. Journal of Biomechanical Engineering, 135(2):1–11, 2013.

[33] Clay Anderson. Physics-based Simulation of Biological Structures Equations for Modeling the Forces Generated by Muscles and Tendons. Bioe215, pages 1–13, 2007.

[34] Apoorva et al. Rajagopal. Full-Body Musculoskeletal Model for Muscle- Driven Simulation of Human Gait. IEEE Transactions on Biomedical En- gineering, 63(10):2068–2079, 2016.

[35] D.L. Paolo. Adjustments to zatsiorsky-seluyanov’s segment inertia parame-
ters. Journal of biomechanics, 29(9):1223–1230, 1996.

[36] Interlink Electronics. FSR Integration Guide . https://www.pololu.com/

[37] E. Klimiec. Measuring of foot plantar pressure—possible applications in quan- titative analysis of human body mobility. Measurement Science and Technol- ogy, 28(5), 2017.

[38] Spark fun. LoadCell TAL220 Guide . https://cdn.sparkfun.com/


[39] Microsoft. Microsoft kinect - starting to develop with kinect, 2020. [Online;
accessed 7-July-2020].

[40] Texas Instruments. TMS320F2810, TMS320F2811, TMS320F2812, TM-
S320C2810, TMS320C2811,TMS320C2812 DSPs datasheet (Rev. T) . http: //www.ti.com/lit/ds/symlink/tms320f2812.pdf, May 2012.

[41] Arduino. ATmega328/P. http://ww1.microchip.com/downloads/en/
Datasheet.pdf, November 2016.

[42] Texas Instruments. 2.4-GHz Bluetooth® low energy and Proprietary System- on-Chip datasheet (Rev. D). http://www.ti.com/lit/ds/symlink/cc2541. pdf, June 2013.

[43] STMicroelectronics. DUAL FULL-BRIDGE DRIVER. https://www.st.
com/resource/en/datasheet/l298.pdf, 2000.

[44] Pololu. 20.4:1 metal gearmotor 25dx50l mm hp 12v with 48 cpr encoder.

[45] zskpower. PBS-5312-3040 Car starter power bank and emergency k-

it chinese. http://www.zskpower.com/images/PBS-5312-3040%20Car%


[46] Texas Instruments. TMS320x281x DSP System Control and Interrupts Refer- ence Guide. http://www.ti.com/lit/ug/spru078g/spru078g.pdf, August 2012.

[47] Texas Instruments. TMS320x281x DSP Event Manager (EV) Reference
Guide. http://www.ti.com/lit/ug/spru065e/spru065e.pdf, June 2007.

[48] Texas Instruments. TMS320x281x Serial Peripheral Interface Reference Guide (Rev. E). http://www.ti.com/lit/ug/spru059e/spru059e.pdf, February 2009.

[49] Texas Instruments. TMS320x281x Serial Communications Interface Reference Guide (Rev. D). http://www.ti.com/lit/ug/spru059e/spru059e.pdf, Ju- ly 2009.

[50] Texas Instruments. Inter-Integrated Circuit (I2C) Module User’s Guide for the C6472/TCI648x DSP (Rev. C) . http://www.ti.com/lit/ug/sprue11c/ sprue11c.pdf, October 2009.
  • 同意授權校內瀏覽/列印電子全文服務,於起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於起公開。

  • 如您有疑問,請聯絡圖書館