進階搜尋


下載電子全文  
系統識別號 U0026-0109201517443200
論文名稱(中文) 圖樣與非圖樣光阻層對液晶透鏡陣列之不連續線改善研究
論文名稱(英文) Study of Prevention of Disclination Lines in Liquid Crystal Lens Arrays via Individual Addition of Patterned and Non-patterned Photoresist Films
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 103
學期 2
出版年 104
研究生(中文) 唐賓鴻
研究生(英文) Pin-Hung Tang
學號 L76021066
學位類別 碩士
語文別 中文
論文頁數 67頁
口試委員 指導教授-許家榮
口試委員-黃啟炎
口試委員-林俊宏
口試委員-鄭協昌
中文關鍵字 液晶  透鏡陣列  不連續線 
英文關鍵字 Liquid crystal  Lens array  Disclination line 
學科別分類
中文摘要 本論文提出一製程方式,以避免圓孔電極液晶透鏡陣列操作電壓時產生之不連續線(disclination line)問題,其製程方法是製作整面(非圖樣化)或圓孔圖樣陣列(圖樣化)之SU8光阻薄層於圓孔陣列之銦錫氧化物電極表面。
實驗結果顯示利用改變圖樣化SU8之圓孔液晶透鏡陣列的液晶配向方向,並且搭配緩慢加電壓,可以抑制不連續線產生的區域,但存在少許區域仍有不連續線無法用此方式避免;進而嘗試塗佈整層不同厚度的光阻膜,以及改變不同孔徑的圓孔電極,觀察其條件對於不連續線的影響,實驗發現厚度於2 μm以上的光阻層可以有效的防止不連續產生,而縮小圓孔電極的孔徑對不連續線的生成並無直接影響,但卻可觀察到驅動電壓下降的趨勢。由於SU8光阻膜對液晶無配向能力,導致液晶排列會因電壓加大時被電力線拉成放射狀排列,而此方法不需利用緩慢加電壓,可以快速且任意調控電壓,亦不會有不連續線產生,同時,液晶透鏡陣列的特性未受影響,其成像品質較佳。
英文摘要 In this thesis, a proposed method of extra patterned or non-patterned SU8 photoresist films on hole-patterned ITO films of glass substrates used to prevent the problem of disclination line occurrence in liquid crystal (LC) lens arrays is investigated. When SU8 films are larger than 2 μm thickness, it will be no disclination line occurrence in LC lens arrays. In addition, the extra SU8 films do not affect performance of LC lens arrays compared with LC lens arrays without SU8 films. However, initial LC alignments of LC lens arrays are not good enough due to SU8 films without capability of LC alignments.
論文目次 摘要 I
Abstract II
致謝 IX
目錄 XI
圖目錄 XIV
表目錄 XVII
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-3 研究動機 9
第二章 實驗原理 11
2-1 液晶材料特性 11
2-1.1 雙折射性(Birefringence)[28] 11
2-1.2 連續彈性體理論(The elastic continuum theory)[29] 13
2-1.3 外加電場對液晶的影響 14
2-2 液晶透鏡原理 15
2-2.1 折射率梯度型透鏡(Gradient refractive index lenses) 15
2-2.2 圓孔電極液晶透鏡的空間電場形式 17
2-2.3 圓孔電極液晶透鏡產生之干涉條紋 18
2-2.4 圓孔電極液晶透鏡產生之不連續線 20
第三章 圓孔電極液晶透鏡陣列製作與量測裝置 22
3-1 圓孔電極液晶透鏡陣列製作 22
3-1.1 設備與材料 22
3-1.2 圓孔電極液晶透鏡陣列製作 23
3-1.3 具圓孔SU8光阻膜之圓孔電極液晶透鏡陣列製作 29
3-1.4 具SU8光阻膜之圓孔電極液晶透鏡陣列製作 31
3-2 量測裝置 33
3-2.1 液晶透鏡之干涉條紋量測 33
3-2.2 液晶透鏡成像觀察 34
第四章 實驗結果與討論 36
4-1 配向方向對於避免不連續線的影響 36
4-2 具SU8光阻膜之圓孔電極液晶透鏡陣列 39
4-2.1 具不同厚度SU8光阻膜之圓孔電極液晶透鏡陣列 39
4-2.2 具不同孔徑SU8光阻膜之圓孔電極液晶透鏡陣列 44
4-2.3 具SU8光阻膜之圓孔電極液晶透鏡陣列配向情況 50
4-3 具SU8光阻膜之圓孔電極液晶透鏡陣列內部之液晶分佈情形 51
4-4 影像品質與不連續線關係 58
第五章 結論與未來展望 61
5-1 結論 61
5-2 未來展望 62
參考文獻 63
參考文獻 [1] P. Vally, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. peyman, and N Peyghambarian, “Tunable-focus flat liquid-crystal diffractive lens,” Opt. Lett. 35, 336-338(2010)
[2] S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39, 480-484(2000)
[3] H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys. 49, 102502(2010)
[4] T. H. Lin, Y. Huang, A. Y. G. Fuh and S. T. Wu, “Polarization controllable Fresnel lens using dye-doped liquid crystal,” Opt. Express 14(6), 2359-2364(2006)
[5] Y. M. Lou, Q. K. Liu, H. Wang, Y. C. Shi and S. L. He, “Rapid fabrication of an electrically switchable liquid crystal Fresnel zone lens,” Appl. Opt. 49(26), 4995-5000(2010)
[6] S. J. Hwang, T. A. Chen, K. R. Lin and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151-155(2012)
[7] X. Q. Wang, A. K. Srivastava, V. G. Chigrinov and H. S. Kwok, “Switchable Fresnel lens based on micropatterned alignment,” Opt. Lett. 38(11), 1775-1777(2013)
[8] T. Nose, S. Masuda and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(5B), 1643-1646(1992)
[9] M. Ye, B. Wang and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Opt. Commun. 259(2), 710-722(2006)
[10] M. Ye, B. Wang, T. Takahashi and S. Sato, “Properties of variable-focus liquid crystal lens and its application in focusing system,” Opt. Rev. 14(4), 173-175(2007)
[11] M. Ye, B. Wang, M Kawamura and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl Phys 46(10A), 6776-6777(2007)
[12] C. W. Chiu, Y. C. Lin, P. C. P. Chao and A. Y. G. Fuh, “Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes,” Opt. Express 16(23), 19277-19284(2008)
[13] C. Y. Huang, Y. J. Huang and Y. H. Tseng, “Dual-operation-mode liquid crystal lens,” Opt. Express 17(23), 20860-20865(2009)
[14] C. J. Hsu and C. R. Sheu, “Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocal,” Opt. Express 20(4), 4738-4746(2012)
[15] Y. Choi, J. H. Park, J. H. Kim and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643-646(2002)
[16] H. S. Ji, J. H. Kim and S. Kumar, “Electrically controllable microlens array fabricated by anisotropic phase separation from liquid-crystal and polymer composite materals,” Opt. Lett. 28(13), 1147-1149(2003)
[17] H. T. Dai, Y. J. Liu, X. W. Sun and D. Lou, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express 17(6), 4317-4323(2009)
[18] H. Ren, S. Xu and S. T. Wu, “Polymer-stabilized liquid crystal microlens array with large dynamic range and fast response time,” Opt. Lett. 38(16), 3144-3147(2013)
[19] M. Xu, Z. Zhou, H. Ren, S. H. Lee and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 133(5), 053105(2013)
[20] M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, 571-573(2002)
[21] S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev. 6, 471-485(1999)
[22] M. Ye, B. Wang and S. Sato, “Driving of liquid crystal lens without disclination line occurring by applying in-plane electric field,” Jpn. J. Appl. Phys. 42, 5086-5089(2003)
[23] C. J. Hsu and C. R. Sheu, “Preventing occurrence of disclination lines in liquid crystal lenses with a large aperture by means of polymer stabilization,” Opt. Express. 19(16), 14999-15008(2011)
[24] C. H. Kuo, W. C. Chien, C. T. Hsieh, C. Y. Huang, J. J. Jiang, Y. C. Li, M. F. Chen, Y. P. Hsieh, H. L. Kuo and C. H. Lin, “Influence of pretilt angle on disclination lines of liquid crystal lens,” Appl. Opt. 43, 4269-4274(2012)
[25] Z. Xiangjie, L. Cangli, Z. Dayong and L. Yongquan, “Tunable liquid crystal microlens array using hole patterned electrode structure with ultrathin glass slab,” Appl. Opt. 51(15), 3024-3030(2012)
[26] 何嘉珊, “額外光阻薄膜製作於液晶透鏡陣列中以避免不連續線發生,” 國立成功大學光電科學與工程研究所碩士論文, 中華民國一零
[27] J. S. Jang and B. Javidi, “Three-dimensional synthetic aperture integral imaging,” Opt. Lett. 38(13), 1144-1146(2002)
[28] J. Cao and B. J. Berne, “Theory of polarizable liquid crystals:Optical birefringence,” J. Chem. Phys, 99(3), 1 August, 1993
[29] F. C. Frank, “On The Theory Of Liquid Crystals,” Faraday SOC., 25, p.19, 1958.
[30] 張繼鴻,” 發展一可用電壓調控焦距的液晶元件”, 私立中原大學應用物理研究所碩士論文, 中華民國九十二年六月
[31] 許哲儒, “電控式圓孔型液晶透鏡之光學特性隨玻璃層厚度變化之影響及不連續線問題解決方法之研究,” 國立成功大學光電科學與工程研究所碩士論文, 中華民國九十八年七月
[32] L. C. Khoo, “Liquid crystal,” 2nd. Edition, Chap. 1, John Wiley & Sons (2007)
[33] S. W. Ko, Y. Y. Tzeng, C. L. Ting, A. Y.-G. Fuh and T. H. Lin, “Axially symmetric liquid crystal devices based on double-side photo-alignment,” Opt. Express. 16, 19643-19648(2008)
[34] M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid crystal polarization converters,” Opt. Lett. 21(1996)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-09-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-09-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw