系統識別號 U0026-0109201504124700
論文名稱(中文) IL-8在胰臟癌惡病質中所扮演的角色
論文名稱(英文) The role of interleukin-8 in pancreatic cancer cachexia
校院名稱 成功大學
系所名稱(中) 臨床醫學研究所
系所名稱(英) Institute of Clinical Medicine
學年度 103
學期 2
出版年 104
研究生(中文) 陳浩雲
研究生(英文) Hao-Yun Chen
學號 S96024080
學位類別 碩士
語文別 英文
論文頁數 51頁
口試委員 指導教授-沈延盛
中文關鍵字 惡病質  胰臟癌  白細胞介素-8 (IL-8) 
英文關鍵字 Cachexia  Pancreatic cancer  Interleukin-8 (IL-8) 
中文摘要 胰臟癌在歐美國家的癌症死因排名第四,五年存活率小於5%。在2014年台灣癌症死亡病人中,有4% 癌症病人死於胰臟癌,其中95%的胰臟癌是腺癌的型態。胰臟癌在早期就會發生轉移,病人通常在晚期才會被診斷出罹患胰臟癌。臨床上發現約有80~90%的胰臟癌病人會發生惡病質,是目前造成20%胰臟癌病人死亡的原因。惡病質主要為病人有明顯的體重降低,並伴隨著發炎、胰島素抗性、厭食、體脂肪下降、疲勞和生化指標異常等癥兆。目前已知IL-6、IL-1β、TNF-α是造成病人肌肉萎縮並導致體重下降的細胞因子,其中IL-8也被提到跟病人的虛弱和食慾下降有關連,但和惡病質之間的關係目前尚未明確。因此,本研究想探討IL-8與胰臟癌惡病質的產生是否有關聯性。我們分析臨床胰臟癌合併惡病質的病人,觀察其血清和胰臟腫瘤組織中IL-8的表現同時比較病人的存活率和IL-8之間的關係。此外我們利用C57B/L6小鼠植入KrasG12D;Trp53R172H;Pdx1-Cre (KPC)胰臟癌細胞以建立同種原位移植胰臟癌惡病質小鼠模型,觀察胰臟癌老鼠中IL-8表現量的變化與惡病質的關係。我們也利用小鼠肌肉母細胞C2C12來研究IL-8導致肌肉萎縮的機制。結果顯示IL-8的表現量在胰臟癌腫瘤組織與血清中明顯增加,與沒有惡病質的病人比較,有惡病質的病人血清中 IL-8的表現量明顯較高,且高IL-8表現量與較差病人存活率有關。另外在胰臟癌動物模型中,我們觀察到相較皮下胰臟癌移植小鼠,原位胰臟癌移植小鼠有明顯的肌肉萎縮和體重下降,並明顯的降低體脂肪含量。且使用免疫組織染色發現跟胰臟癌移植小鼠腫瘤比較後發現,原位胰臟癌移植小鼠的腫瘤中 IL-8的表現量明顯增加。這樣的結果暗示著,可能是原位胰臟癌移植小鼠的腫瘤中 IL-8的表現量較高,進而導致執政惡病質的發生。此外在小鼠肌肉細胞上的研究成果,我們發現將小鼠肌肉細胞處理IL-8後會透過活化NF-κB並使肌肉泛素酶 (MuRF1) 表現增加。總結,分析臨床病人資料顯示IL-8和胰臟癌惡病質發生有關係。可能是經由活化NF-κB促進肌肉蛋白質降解,因此抑制IL-8的表現可能是未來改善胰臟癌惡病質有效的方法。
英文摘要 Pancreatic cancer is the fourth most common cause of cancer-related death in the Western countries and has a poor prognosis. In Taiwan, pancreatic cancer is responsible for about 4% of all cancer deaths. The most common type, accounting for 95% of these tumors, is adenocarcinoma. Pancreatic cancers can metastasize very early in their development and are diagnosed in advanced stages. It is estimated that more than 80% of patients with pancreatic cancer experience cancer-induced cachexia, the main cause of death in approximately 20% of cancer patients. The major characteristic of cachexia is skeletal muscle atrophy that leads to body weight loss. In addition, inflammation, anorexia, insulin resistance, weakness, fatigue, loss of fat mass, and abnormal biochemistry also frequently occur in the cachexia patients. Interleukin-8 (IL-8), a pro-inflammatory cytokine, has been reported to be associated with both weakness and lack of appetite; however, its role on pancreatic cancer-induced cachexia remains to be explored. In this study, we statistically analyzed the correlation between IL-8 expression and pancreatic cancer cachexia using clinical samples. Furthermore, we established a syngeneic orthotopic pancreatic cancer cachexia model in C57B/L6 mice using primary mouse cancer cells line from KrasG12D; Trp53R172H; Pdx1-Cre (KPC) mice to investigate whether IL-8 can induce cancer cachexia in vivo. We also used mouse myoblasts C2C12 to study the mechanism underlying the induction of cachexia by IL-8. We found that IL-8 levels were significantly increased in serum of patients with pancreatic cancer. High IL-8 levels in the tumor tissues or serum were associated with body weight loss and poor patient outcomes. Moreover, we observed muscle wasting in hindlimb muscles and significant body weight loss in the cachexia mouse model. In in vitro experiments, we found that IL-8 could up-regulate ubiquitin ligase (MuRF1) by activating NF-κB signaling in C2C12 cells. Taken together, these results suggest that IL-8 is involved in cachexia induction in pancreatic cancer patients. IL-8 may activate the ubiquitin proteasome system via NF-κB in muscular cells. Targeting IL-8 may be a promising therapy for pancreatic cancer patients, especially for those with cachexia.
論文目次 摘要 II
Abstract IV
Acknowledgements VI
Contents VII
I. Abbreviation 1
II. Introduction 2
1 cachexia 2
1.1 Definition of cachexia 2
1.2 Cancer cachexia 2
1.3 Inflammatory cytokines in muscle wasting 3
2 Interleukin-8 4
2.1 The function of interleukin-8 in tumor microenvironment 4
2.2 The function of interleukin-8 in skeleton muscle 5
2.3 Association between interleukin-8 and cancer cachexia 6
3 Research motive 7
3.1 Significance 7
3.2 Specific Aims 7
III. Material and methods 8
Cell Culture 8
Muscle Cell Differentiation Assay 8
Treatment of IL-8 Recombined Protein in Muscle Cells 9
Total Protein Extraction 9
Isolation of Nuclear and Cytoplasmic Protein 9
Western Blotting (WB) 10
Tumor Formation in C57BL/6 Mice and Therapy 10
Locomotor Activity Test 11
Force Swimming Test 11
Mouse Muscle Strength Test 12
Non Invasion In Vivo Imaging System (IVIS) 12
Micro Computed Tomography (Micro-CT) 12
Primary Culture from Mouse Ascitic Pancreatic Cancer Cells 12
Mouse Muscle Tissue Protein Extraction 13
Frozen Muscle Sections 13
Trichrome Stain (Masson) 14
Immunohistochemistry (IHC) 15
Immunofluorescence (IF) 16
Statistical analysis 17
IV. Results 18
High IL-8 expression is associated with body weight loss in pancreatic cancer patients 18
High expression of IL-8 leads to poor prognosis in pancreatic cancer patients 19
Establishment of the syngeneic pancreatic cachexia model 19
Orthotopic mouse model can induce bigger tumor than subcutaneous group 19
Orthotopic pancreatic cancer cachexia model has severe muscle wasting 20
Functional assays in cachexia mouse models 20
Cachexia-induce rate is associated with tumor volume 21
Orthotopic pancreatic cancer cachexia mice can induce more serve body weight then subcutaneous pancreatic cancer cachexia mice 22
IL-8 activates the NF-κB pathway to induce muscle wasting 22
IL-8 induces NF-κB activation and promotes MuRF-1 production in vitro 23
Evaluate the therapeutic potential of blockade of IL-8 signaling in cachexia using animal models 23
V. Discussion 25
Cachexia is a common metabolic syndrome in pancreatic cancer patients 25
Proinflammatory cytokines are important factor to induce cacner cachexia 25
Orthotopic injection of pancreatic cancer cell in mouse model can promote cancer cachexia 26
IL-8 can induce MuRF1 expression to cause muscle wasting through activate the NF-κB pathway 27
Muscle microenvironment suppresses the immune system may a therapy of pancreatic cancer cachexia 28
VI. References 29
VII. Figures 33
VIII. Applendix 50
IX. Curriculum vitae 52
參考文獻 Amitani, M., Asakawa, A., Amitani, H., & Inui, A. (2013). Control of food intake and muscle wasting in cachexia. Int J Biochem Cell Biol, 45(10), 2179-2185.
Argiles, J. M., Busquets, S., & Lopez-Soriano, F. J. (2003). Cytokines in the pathogenesis of cancer cachexia. Curr Opin Clin Nutr Metab Care, 6(4), 401-406.
Argiles, J. M., Busquets, S., Stemmler, B., & Lopez-Soriano, F. J. (2014). Cancer cachexia: understanding the molecular basis. Nat Rev Cancer, 14(11), 754-762.
Baggiolini, M., Dewald, B., & Moser, B. (1994). Interleukin-8 and related chemotactic cytokines--CXC and CC chemokines. Adv Immunol, 55, 97-179.
Bilimoria, K. Y., et al. (2007). Validation of the 6th edition AJCC Pancreatic Cancer Staging System: report from the National Cancer Database. Cancer, 110(4), 738-744.
Bonetto, A., et al. (2012). JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am J Physiol Endocrinol Metab, 303(3), E410-421.
Bonetto, A., et al. (2011). STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PLoS One, 6(7), e22538.
Brodal, P., Ingjer, F., & Hermansen, L. (1977). Capillary supply of skeletal muscle fibers in untrained and endurance-trained men. Am J Physiol, 232(6), H705-712.
Chen, S. Z. & Xiao, J. D. (2014). Rosiglitazone and imidapril alone or in combination alleviate muscle and adipose depletion in a murine cancer cachexia model. Tumour Biol, 35(1), 323-332.
Deboer, M. D. (2009). Animal models of anorexia and cachexia. Expert Opin Drug Discov, 4(11), 1145-1155.
Dewys, W. D., et al. (1980). Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group. Am J Med, 69(4), 491-497.
Evans, W. J., et al. (2008). Cachexia: a new definition. Clin Nutr, 27(6), 793-799.
Evans, W. K., et al. (1987). A randomized study of oral nutritional support versus ad lib nutritional intake during chemotherapy for advanced colorectal and non-small-cell lung cancer. J Clin Oncol, 5(1), 113-124.
Friday, B. B. & Adjei, A. A. (2005). K-ras as a target for cancer therapy. Biochim Biophys Acta, 1756(2), 127-144.
Glynn, P. C., Henney, E., & Hall, I. P. (2002). The selective CXCR2 antagonist SB272844 blocks interleukin-8 and growth-related oncogene-alpha-mediated inhibition of spontaneous neutrophil apoptosis. Pulm Pharmacol Ther, 15(2), 103-110.
He, W. A., et al. (2013). NF-kappaB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. J Clin Invest, 123(11), 4821-4835.
Heinemann, V., Boeck, S., Hinke, A., Labianca, R., & Louvet, C. (2008). Meta-analysis of randomized trials: evaluation of benefit from gemcitabine-based combination chemotherapy applied in advanced pancreatic cancer. BMC Cancer, 8, 82.
Holmes, W. E., Lee, J., Kuang, W. J., Rice, G. C., & Wood, W. I. (2009). Structure and functional expression of a human interleukin-8 receptor. Science. 1991. 253: 1278-1280. J Immunol, 183(5), 2895-2897.
Jeffrey, R. B. (2012). Pancreatic cancer: radiologic imaging. Gastroenterol Clin North Am, 41(1), 159-177.
Lainscak, M., Filippatos, G. S., Gheorghiade, M., Fonarow, G. C., & Anker, S. D. (2008). Cachexia: common, deadly, with an urgent need for precise definition and new therapies. Am J Cardiol, 101(11A), 8E-10E.
Li, A., Dubey, S., Varney, M. L., Dave, B. J., & Singh, R. K. (2003). IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol, 170(6), 3369-3376.
Louis, E., Raue, U., Yang, Y., Jemiolo, B., & Trappe, S. (2007). Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J Appl Physiol (1985), 103(5), 1744-1751.
Mann, C. J., et al. (2011). Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle, 1(1), 21.
Manna, S. K. & Ramesh, G. T. (2005). Interleukin-8 induces nuclear transcription factor-kappaB through a TRAF6-dependent pathway. J Biol Chem, 280(8), 7010-7021.
Mukaida, N., Hishinuma, A., Zachariae, C. O., Oppenheim, J. J., & Matsushima, K. (1991). Regulation of human interleukin 8 gene expression and binding of several other members of the intercrine family to receptors for interleukin-8. Adv Exp Med Biol, 305, 31-38.
Nelson, K. A., Walsh, D., & Sheehan, F. A. (1994). The cancer anorexia-cachexia syndrome. J Clin Oncol, 12(1), 213-225.
Paez, D., Labonte, M. J., & Lenz, H. J. (2012). Pancreatic cancer: medical management (novel chemotherapeutics). Gastroenterol Clin North Am, 41(1), 189-209.
Sandstrom, R., et al. (1993). The effect of postoperative intravenous feeding (TPN) on outcome following major surgery evaluated in a randomized study. Ann Surg, 217(2), 185-195.
Scheede-Bergdahl, C., et al. (2012). Is IL-6 the best pro-inflammatory biomarker of clinical outcomes of cancer cachexia? Clin Nutr, 31(1), 85-88.
Singer, M. & Sansonetti, P. J. (2004). IL-8 is a key chemokine regulating neutrophil recruitment in a new mouse model of Shigella-induced colitis. J Immunol, 173(6), 4197-4206.
Smithson, A., et al. (2005). Expression of interleukin-8 receptors (CXCR1 and CXCR2) in premenopausal women with recurrent urinary tract infections. Clin Diagn Lab Immunol, 12(12), 1358-1363.
Song, B., Zhang, D., Wang, S., Zheng, H., & Wang, X. (2009). Association of interleukin-8 with cachexia from patients with low-third gastric cancer. Comp Funct Genomics, 212345.
Sullivan, D. H., Johnson, L. E., Bopp, M. M., & Roberson, P. K. (2004). Prognostic significance of monthly weight fluctuations among older nursing home residents. J Gerontol A Biol Sci Med Sci, 59(6), M633-639.
Tazi, E. & Errihani, H. (2010). Treatment of cachexia in oncology. Indian J Palliat Care, 16(3), 129-137.
Tisdale, M. J. (2009). Mechanisms of cancer cachexia. Physiol Rev, 89(2), 381-410.
Waugh, D. J. & Wilson, C. (2008). The interleukin-8 pathway in cancer. Clin Cancer Res, 14(21), 6735-6741.
Yoshizawa, K., et al. (1994). Effects of natural human interleukin-6 on thrombopoiesis and tumor progression in tumor-bearing mice. Cancer Lett, 79(1), 83-89.
  • 同意授權校內瀏覽/列印電子全文服務,於2017-09-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-09-07起公開。

  • 如您有疑問,請聯絡圖書館