進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0108201916471200
論文名稱(中文) 以微波方式製作硫脲修飾磁性生物炭於回收鉑族金屬之應用
論文名稱(英文) Thiourea modified magnetic biochar from spent coffee grounds by microwave-assisted activation for recycling platinum group metals
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 羅韶儀
研究生(英文) Shao-Yi Lo
學號 p56064152
學位類別 碩士
語文別 英文
論文頁數 134頁
口試委員 指導教授-劉守恒
口試委員-林彥谷
口試委員-施育仁
口試委員-朱信
口試委員-蒲盈志
中文關鍵字 選擇性  鉑族金屬  生物炭  微波活化  農業廢棄物 
英文關鍵字 selectivity  platinum groups metal  biochar  biomass, microwave- assisted activation 
學科別分類
中文摘要 自工業革命以後,人們不斷開採金屬以製造工業產品,金屬使用量隨著時間的推移不斷的上升。其中,鉑族金屬因其具有熔點高、電熱性穩定、抗腐蝕性優良以及催化活性好等物化特性,近年來被廣泛運用在太陽能面板、觸媒或是醫藥品當中。然而,過度的開採造成鉑族金屬的含量急遽下滑,因而透過城市採礦的概念,將散佈於城市工業產品中的貴重金屬加以回收再利用。過往,集取鉑族金屬的過程中,多以有毒氰化物或是王水以淋洗回收,又或以離子交換膜或離子液體收集貴重金屬,然而在集取過程中,排出的有毒物質會間接對環境造成危害。近年來隨著生物炭的興起,多數城市與農業廢棄物將回收並燒結成具有特殊物化特性的生物炭再利用,能應用在於吸附汙染水體中等貴重金屬以及土地復育。本研究利用生質廢棄物咖啡渣製成複合性磁性生物炭材,使用不同溫度與CO2流量進行物理活化,輔以KOH為化學活化劑進行微波活化。再以微波加熱方式將氨水修飾於炭材上,以及修飾硫脲官能基增加目標鉑族金屬的萃取。以比表面積分析儀(BET)、掃描電子顯微鏡(SEM)等方法進行特性分析,並透過動力學、等溫吸附實驗以及熱力學等探討複合性吸附材料的效能。同時與商業化活性碳吸附汽車觸媒消化液以比較材料對於鉑族金屬的專一性。結果顯示,以CO2流量500 cm3/min與碳化溫度700℃的條件下,具有最佳的比表面積320.9 m2/g,而以微波輔助N-doping十分鐘於炭材上具有多佳的含氮量,因以此與硫脲結合為磁性複合性活性炭。其中,吸附實驗以0.25 g吸附劑量,25℃及pH=2的條件下,鉑吸附效能在360分鐘內達到98.8%的去除效率,而鈀的吸附效能為74.9%的吸附效率。此外,本研究中針對於吸附劑的動力學、等溫吸附與熱力學實驗中,進行參數與吸附模式探討。並由再利用實驗中發現此吸附劑之最佳重複使用次數為六次吸附實驗。
英文摘要 Since the industrial revolution, people have been mining metals to produce industrial products, and the amounts of metal have been extensively used over time. Among them, platinum group metals have been widely used in solar panels, catalysts, or pharmaceuticals in recent years because of their high melting point, stable electrothermal stability, excellent corrosion resistance, and superior catalytic activity. However, excessive mining has caused a rapid decline in the contents of platinum group metals, so the precious metals distributed in urban industrial products are recycled and reused through the concept of urban mining. In the past, in the process of collecting platinum group metals, most of them were recovered by toxic cyanide or aqua regia, or precious metals were collected by ion exchange membrane or ionic liquid. However, during the collection process, the toxic substances would be discharged to the environment. In recent years, the biochars with special physicochemical properties, which can be applied to adsorb precious metals in polluted water bodies and land rejuvenation. In this study, magnetic biochar composites were prepared from waste coffee grounds, and physical activation was carried out using different temperatures and CO2 flow rate, and KOH was used as a chemical activator under microwave activation. The nitrogen is then modified on the biochars by microwave heating under ammonia flow, and the thiourea functional group is modified to assist in the extraction of the target platinum group metals. The characteristics were analyzed by specific surface area analyzer (BET), scanning electron microscope (SEM) and so no, and the performance of the biochar adsorbents was investigated by kinetics, isothermal adsorption experiments, and thermodynamics. At the same time, commercial activated carbon is used to adsorb automotive catalyst digestion liquids to compare the selectivity of the platinum group metals. The results show that with the CO2 flow rate of 500 cm3/min and the carbonization temperature of 700 °C, the optimal specific surface area is 320.9 m2/g, and microwave-assisted N-doping for ten min has higher nitrogen contents in the biochars, followed by incorporating with thiourea to prepare magnetic composites. As a result, the adsorption efficiency of platinum and palladium adsorption of 98.8% and 74.9% can be obtained under the condition (0.25 g of dose, 25 °C and pH = 2) within 360 min. Besides, the kinetics, adsorption isotherms and thermodynamic experiments of adsorbents are investigated. The adsorption stability of magnetic biochars can be maintained after 6 runs of cyclic tests.
論文目次 CONTENT
摘要 I
ABSTRACT II
CONTENT IV
LIST OF TABLES IX
LIST OF FIGURES XI
CHAPTER 1 INTRODUCTION 1
1.1. Introduction 1
1.2. Objective 3
CHAPTER 2 LITERATURE REVIEW 4
2.1. Platinum group metals 4
2.1.1. Recycling methods for precious metals 5
2.2. Urban mining 6
2.3. Biomass waste 8
2.3.1. Spent coffee grounds 9
2.4. Biochar 12
2.5. Carbonization 14
2.5.1. Pyrolysis carbonization 15
2.5.2. Hydrothermal carbonization 15
2.5.3. Activation 16
2.5.3.1. Physical activation 16
2.5.3.2. Chemical activation 17
2.6. Microwave method 18
2.7. Adsorption principle 19
2.7.1. Chemisorption 19
2.7.2. Hard-soft-acid-base theory 20
CHAPTER 3 PERMANENT METHODS 21
3.1. Experimental procedures 21
3.1.1. Chemicals 23
3.2. Preparation of activated carbon from bagasse 23
3.2.1. Waste material 23
3.2.2. Preparation of magnetite biochar 24
3.2.3. Carbonization 24
3.2.4. Activation 25
3.2.5. N-doping of magnetite biochar 26
3.2.6. Thiourea surface-modified magnetic biochar 26
3.3. Batch Experiments 27
3.3.1. Effect of sample dose of adsorption 27
3.3.2. Effect of pH of adsorption 28
3.3.3. Adsorption Dynamics Experiment 29
3.3.4. Adsorption Isothermal Experiment 29
3.3.5. Selectivity studies 31
3.3.6. . Desorption and reusability studies of NDAC-10-Tu 32
3.4. Characterization And Analysis 33
3.4.1. Scanning Electron Microscope 33
3.4.2. Transmission Electron Microscope 33
3.4.3. X-ray Diffraction 33
3.4.4. X-ray Photoelectron Spectroscopy 34
3.4.5. Fourier Transform Infrared Spectroscopy 34
3.4.6. Thermogravimetric/ differential thermal analysis 34
3.4.7. Element Analysis 35
3.4.8. Brunauer-Emmett-Teller 35
3.4.9. Zeta potential 36
3.4.10. Superconducting Quantum Interference Device 36
3.5. Analysis of Adsorption Mode 37
3.5.1. Analysis of Adsorption Dynamic Mode 37
3.5.2. Analysis of Adsorption Isothermal Mode 38
3.6. Thermodynamics 40
3.7. Selectivity 41
CHAPTER 4 RESULTS AND DISCUSSION 42
4.1. Characterization of thiourea modified magnetic biochar 42
4.1.1. Effect of pyrolysis temperature 42
4.1.1.1. Thermal behavior and thermogravimetric analysis 42
4.1.1.2. Chemical compositions and surface functional groups 45
4.1.1.3. Crystalline phase 47
4.1.1.4. Porous properties 48
4.1.1.5. SEM 49
4.1.1.6. TEM 50
4.1.2. Effect of pyrolysis flow rate 52
4.1.2.1. Chemical compositions and surface functional groups 52
4.1.2.2. Crystalline phase 55
4.1.2.3. Porous properties 56
4.1.2.4. Magnetic property 58
4.1.2.5. SEM 59
4.1.2.6. TEM 61
4.1.3. Effect of N-doping time 62
4.1.3.1. Chemical composition and surface functional groups 62
4.1.3.2. Crystalline phase 63
4.1.3.3. Porous properties 64
4.1.3.4. Magnetic property 66
4.1.3.5. XPS 67
4.1.3.6. SEM 67
4.1.3.7. TEM 69
4.1.4. The characteristic of NDAC-10-Tu 70
4.1.4.1. Chemical compositions and surface functional groups 70
4.1.4.2. Crystalline phase 71
4.1.4.3. Porous properties 72
4.1.4.4. Zeta potential 73
4.1.4.5. Magnetic property 73
4.1.4.6. XPS 74
4.1.4.7. SEM 76
4.1.4.8. TEM 76
4.2. Effect of dosage on NDAC-10-Tu adsorption capacity of Pt (IV) 80
4.3. Effect of pH on NDAC-10-Tu adsorption capacity of Pt (IV) and Pd (II) 81
4.4. Adsorption kinetic studies 82
4.5. Adsorption isotherm studies 88
4.6. Thermodynamics studies 100
4.7. Sorption mechanism 102
4.8. Selectivity studies of NDAC-10-Tu 105
4.9. Desorption and reusability studies of NDAC-10-Tu 108
4.9.1. Desorption studies 108
4.9.2. Reusability studies 109
CHAPTER 5 CONCLUSIONS 115
REFERENCES 116
參考文獻 Adhikari, C. R., Parajuli, D., Inoue, K., Ohto, K., Kawakita, H., & Harada, H. (2008). Recovery of precious metals by using chemically modified waste paper. New Journal of Chemistry, 32(9), 1634-1641. doi:10.1039/B802946F
Ahmad, Z., Gao, B., Mosa, A., Yu, H., Yin, X., Bashir, A., . . . Wang, S. (2018). Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass. Journal of Cleaner Production, 180, 437-449. doi:https://doi.org/10.1016/j.jclepro.2018.01.133
Ahmed, M. J., & Theydan, S. K. (2013). Microporous activated carbon from Siris seed pods by microwave-induced KOH activation for metronidazole adsorption. Journal of Analytical and Applied Pyrolysis, 99, 101-109.
Akhtar, M., Hasany, S. M., Bhanger, M. I., & Iqbal, S. (2007). Low cost sorbents for the removal of methyl parathion pesticide from aqueous solutions. Chemosphere, 66(10), 1829-1838. doi:https://doi.org/10.1016/j.chemosphere.2006.09.006
Al-Enezi, G., Hamoda, M. F., & Fawzi, N. (2004). Ion Exchange Extraction of Heavy Metals from Wastewater Sludges. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 39(2), 455-464. doi:10.1081/ESE-120027536
Alam, M., & DebRoy, T. (1987). Reaction between CO2 and coke doped with NaCN. Carbon, 25(2), 279-288. doi:https://doi.org/10.1016/0008-6223(87)90127-8
Alslaibi, T. M., Abustan, I., Ahmad, M. A., & Foul, A. A. (2013). A review: production of activated carbon from agricultural byproducts via conventional and microwave heating. Journal of chemical technology and biotechnology, 88(7), 1183-1190.
Autumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Chan, W. P., Kenny, T. W., . . . Full, R. J. (2000). Adhesive force of a single gecko foot-hair. Nature, 405(6787), 681-685. doi:10.1038/35015073
Azarova, Y. A., Pestov, A. V., Ustinov, A. Y., & Bratskaya, S. Y. (2015). Application of chitosan and its N-heterocyclic derivatives for preconcentration of noble metal ions and their determination using atomic absorption spectrometry. Carbohydrate Polymers, 134, 680-686. doi:https://doi.org/10.1016/j.carbpol.2015.07.086
Bamdad, H., Hawboldt, K., & MacQuarrie, S. (2018). A review on common adsorbents for acid gases removal: Focus on biochar. Renewable and Sustainable Energy Reviews, 81, 1705-1720. doi:10.1016/j.rser.2017.05.261
Bevilacqua, N., Gokhale, R., Serov, A., Banerjee, R., Schmid, M., Atanassov, P., & Zeis, R. (2018). Comparing novel PGM-free, platinum, and alloyed platinum catalysts for HT-PEMFCs. Paper presented at the ECS Transactions.
Bezuidenhout, G. A., Eksteen, J. J., Akdogan, G., Bradshaw, S. M., & De Villiers, J. P. R. (2013). Pyrometallurgical upgrading of PGM-rich leach residues from the Western Platinum base metals refinery through roasting. Minerals Engineering, 53, 228-240. doi:10.1016/j.mineng.2013.04.002
Birinci, E., Gülfen, M., & Aydın, A. O. (2009). Separation and recovery of palladium(II) from base metal ions by melamine–formaldehyde–thiourea (MFT) chelating resin. Hydrometallurgy, 95(1), 15-21. doi:https://doi.org/10.1016/j.hydromet.2008.04.002
Boonamnuayvitaya, V., Chaiya, C., Tanthapanichakoon, W., & Jarudilokkul, S. (2004). Removal of heavy metals by adsorbent prepared from pyrolyzed coffee residues and clay. Separation and Purification Technology, 35(1), 11-22. doi:https://doi.org/10.1016/S1383-5866(03)00110-2
Burniol-Figols, A., Cenian, K., Skiadas, I. V., & Gavala, H. N. (2016). Integration of chlorogenic acid recovery and bioethanol production from spent coffee grounds. Biochemical Engineering Journal, 116, 54-64. doi:10.1016/j.bej.2016.04.025
Cacciotti, I., Mori, S., Cherubini, V., & Nanni, F. (2018). Eco-sustainable systems based on poly(lactic acid), diatomite and coffee grounds extract for food packaging. International Journal of Biological Macromolecules, 112, 567-575. doi:10.1016/j.ijbiomac.2018.02.018
Caturla, F., Molina-Sabio, M., & Rodriguez-Reinoso, F. (1991). Preparation of activated carbon by chemical activation with ZnCl2. Carbon, 29(7), 999-1007.
Cayumil, R., Khanna, R., Rajarao, R., Mukherjee, P. S., & Sahajwalla, V. (2016). Concentration of precious metals during their recovery from electronic waste. Waste Management, 57, 121-130. doi:10.1016/j.wasman.2015.12.004
Chang, C.-F., Chang, C.-Y., & Tsai, W.-T. (2000). Effects of burn-off and activation temperature on preparation of activated carbon from corn cob agrowaste by CO2 and steam. Journal of Colloid and Interface Science, 232(1), 45-49.
Changmei, S., Guanghua, Z., Chunhua, W., Rongjun, Q., Ying, Z., & Quanyun, G. (2011). A resin with high adsorption selectivity for Au (III): Preparation, characterization and adsorption properties. Chemical Engineering Journal, 172(2), 713-720. doi:https://doi.org/10.1016/j.cej.2011.06.040
Chassary, P., Vincent, T., Sanchez Marcano, J., Macaskie, L. E., & Guibal, E. (2005). Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy, 76(1), 131-147. doi:https://doi.org/10.1016/j.hydromet.2004.10.004
Chen, W.-H., Ye, S.-C., & Sheen, H.-K. (2012). Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresource technology, 118, 195-203.
Chen, Y., Yang, H., Wang, X., Zhang, S., & Chen, H. (2012). Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: Influence of temperature. Bioresource Technology, 107, 411-418. doi:https://doi.org/10.1016/j.biortech.2011.10.074
Cheng, P., Li, T., Yu, H., Zhi, L., Liu, Z., & Lei, Z. (2016). Biomass-Derived Carbon Fiber Aerogel as a Binder-Free Electrode for High-Rate Supercapacitors. The Journal of Physical Chemistry C, 120(4), 2079-2086. doi:10.1021/acs.jpcc.5b11280
Chinga-Carrasco, G., Ehman, N. V., Filgueira, D., Johansson, J., Vallejos, M. E., Felissia, F. E., . . . Area, M. C. (2019). Bagasse—A major agro-industrial residue as potential resource for nanocellulose inks for 3D printing of wound dressing devices. Additive Manufacturing, 28, 267-274. doi:10.1016/j.addma.2019.05.014
Cho, D.-W., Kim, S., Tsang, D. C. W., Bolan, N. S., Kim, T., Kwon, E. E., . . . Song, H. (2018). Contribution of pyrolytic gas medium to the fabrication of co-impregnated biochar. Journal of CO2 Utilization, 26, 476-486. doi:https://doi.org/10.1016/j.jcou.2018.06.003
Cho, D. W., Cho, S. H., Song, H., & Kwon, E. E. (2015). Carbon dioxide assisted sustainability enhancement of pyrolysis of waste biomass: A case study with spent coffee ground. Bioresource Technology, 189, 1-6. doi:10.1016/j.biortech.2015.04.002
Corti, C. W., Coupland, D. R., & Selman, G. L. (1980). ENHANCED OXIDATION AND CORROSION RESISTANCE FOR INDUSTRIAL AND AEROSPACE APPLICATIONS. Platinum Metals Review, 24(1), 2-11.
Cyganowski, P., & Jermakowicz-Bartkowiak, D. (2016). Synthesis and studies on core–shell type anion exchange resins based on a hybrid polymeric support. Journal of Applied Polymer Science, 133(34). doi:10.1002/app.43841
Cypres, R., & Soudan-Moinet, C. (1980). Pyrolysis of coal and iron oxides mixtures. 1. Influence of iron oxides on the pyrolysis of coal. Fuel, 59(1), 48-54. doi:https://doi.org/10.1016/0016-2361(80)90010-1
Danish, M., & Ahmad, T. (2018). A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renewable and Sustainable Energy Reviews, 87, 1-21.
Darling, A. S. (1973). Some Properties and Applications of the Platinum-Group Metals. International Metallurgical Reviews, 18(3), 91-122. doi:10.1179/imtlr.1973.18.3.91
Djahed, B., Shahsavani, E., Khalili Naji, F., & Mahvi, A. H. (2016). A novel and inexpensive method for producing activated carbon from waste polyethylene terephthalate bottles and using it to remove methylene blue dye from aqueous solution. Desalination and Water Treatment, 57(21), 9871-9880. doi:10.1080/19443994.2015.1033647
Dong, H., Zhao, J., Chen, J., Wu, Y., & Li, B. (2015). Recovery of platinum group metals from spent catalysts: A review. International Journal of Mineral Processing, 145, 108-113. doi:10.1016/j.minpro.2015.06.009
Dutta, T., Kim, T., Vellingiri, K., Tsang, D. C. W., Shon, J. R., Kim, K.-H., & Kumar, S. (2019). Recycling and regeneration of carbonaceous and porous materials through thermal or solvent treatment. Chemical Engineering Journal, 364, 514-529. doi:https://doi.org/10.1016/j.cej.2019.01.049
Ehsani, A. (2016). A brief overview of mineral and metallurgical processing of marine ores. Paper presented at the IMPC 2016 - 28th International Mineral Processing Congress.
Elaigwu, S. E., & Greenway, G. M. (2016). Microwave-assisted and conventional hydrothermal carbonization of lignocellulosic waste material: comparison of the chemical and structural properties of the hydrochars. Journal of Analytical and Applied Pyrolysis, 118, 1-8.
Fiol, N., Escudero, C., & Villaescusa, I. (2008). Re‐use of Exhausted Ground Coffee Waste for Cr(VI) Sorption. Separation Science and Technology, 43(3), 582-596. doi:10.1080/01496390701812418
Firmansyah, M. L., Kubota, F., & Goto, M. (2018). Solvent extraction of Pt(IV), Pd(II), and Rh(III) with the ionic liquid trioctyl(dodecyl) phosphonium chloride. Journal of Chemical Technology and Biotechnology, 93(6), 1714-1721. doi:10.1002/jctb.5544
Fornalczyk, A., & Saternus, M. (2013). Vapour treatment method against other pyro- and hydrometallurgical processes applied to recover platinum from used auto catalytic converters. Acta Metallurgica Sinica (English Letters), 26(3), 247-256. doi:10.1007/s40195-012-0125-1
Fu, Q., Deng, Y., Li, H., Liu, J., Hu, H., Chen, S., & Sa, T. (2009). Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals. Applied Surface Science, 255(8), 4551-4557. doi:https://doi.org/10.1016/j.apsusc.2008.11.075
Fujiwara, K., Ramesh, A., Maki, T., Hasegawa, H., & Ueda, K. (2007). Adsorption of platinum (IV), palladium (II) and gold (III) from aqueous solutions onto l-lysine modified crosslinked chitosan resin. Journal of Hazardous Materials, 146(1), 39-50. doi:https://doi.org/10.1016/j.jhazmat.2006.11.049
Gao, X., Zhang, Y., Dai, Y., & Fu, F. (2016). High-performance magnetic carbon materials in dye removal from aqueous solutions. Journal of Solid State Chemistry, 239, 265-273. doi:https://doi.org/10.1016/j.jssc.2016.05.001
Geng, J., Jefferson, D. A., & Johnson, B. F. G. (2004). Direct conversion of iron stearate into magnetic Fe and Fe3C nanocrystals encapsulated in polyhedral graphite cages. Chemical Communications(21), 2442-2443. doi:10.1039/B406227B
Ghaedi, M., Ghaedi, A. M., Hossainpour, M., Ansari, A., Habibi, M. H., & Asghari, A. R. (2014). Least square-support vector (LS-SVM) method for modeling of methylene blue dye adsorption using copper oxide loaded on activated carbon: Kinetic and isotherm study. Journal of Industrial and Engineering Chemistry, 20(4), 1641-1649. doi:https://doi.org/10.1016/j.jiec.2013.08.011
Ghaedi, M., Nasab, A. G., Khodadoust, S., Rajabi, M., & Azizian, S. (2014). Application of activated carbon as adsorbents for efficient removal of methylene blue: Kinetics and equilibrium study. Journal of Industrial and Engineering Chemistry, 20(4), 2317-2324. doi:https://doi.org/10.1016/j.jiec.2013.10.007
Girgis, B. S., Temerk, Y. M., Gadelrab, M. M., & Abdullah, I. D. (2007). X-ray diffraction patterns of activated carbons prepared under various conditions. Carbon letters, 8(2), 95-100.
González-García, P. (2017). Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renewable and Sustainable Energy Reviews.
Guibal, E., Von Offenberg Sweeney, N., Vincent, T., & Tobin, J. M. (2002). Sulfur derivatives of chitosan for palladium sorption. Reactive and Functional Polymers, 50(2), 149-163. doi:10.1016/S1381-5148(01)00110-9
He, J., Li, Y., Wang, C., Zhang, K., Lin, D., Kong, L., & Liu, J. (2017). Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers. Applied Surface Science, 426, 29-39. doi:https://doi.org/10.1016/j.apsusc.2017.07.103
Hesas, R. H., Daud, W. M. A. W., Sahu, J., & Arami-Niya, A. (2013). The effects of a microwave heating method on the production of activated carbon from agricultural waste: a review. Journal of Analytical and Applied Pyrolysis, 100, 1-11.
Hgeig, A., Novaković, M., & Mihajlović, I. (2019). Sorption of carbendazim and linuron from aqueous solutions with activated carbon produced from spent coffee grounds: Equilibrium, kinetic and thermodynamic approach. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 54(4), 226-236. doi:10.1080/03601234.2018.1550307
Hoslett, J., Ghazal, H., Ahmad, D., & Jouhara, H. (2019). Removal of copper ions from aqueous solution using low temperature biochar derived from the pyrolysis of municipal solid waste. Science of The Total Environment, 673, 777-789. doi:https://doi.org/10.1016/j.scitotenv.2019.04.085
Huang, X., Cao, X., Wang, W., Zhong, H., & Cao, Z. (2017). Preparation of a novel resin with acyl and thiourea groups and its properties for Cu(II) removal from aqueous solution. Journal of Environmental Management, 204, 264-271. doi:https://doi.org/10.1016/j.jenvman.2017.09.007
.
Ioannidou, O., & Zabaniotou, A. (2007). Agricultural residues as precursors for activated carbon production—a review. Renewable and Sustainable Energy Reviews, 11(9), 1966-2005.
Islam, M. A., Benhouria, A., Asif, M., & Hameed, B. H. (2015). Methylene blue adsorption on factory-rejected tea activated carbon prepared by conjunction of hydrothermal carbonization and sodium hydroxide activation processes. Journal of the Taiwan Institute of Chemical Engineers, 52, 57-64. doi:10.1016/j.jtice.2015.02.010
Jain, A., Balasubramanian, R., & Srinivasan, M. P. (2015). Production of high surface area mesoporous activated carbons from waste biomass using hydrogen peroxide-mediated hydrothermal treatment for adsorption applications. Chemical Engineering Journal, 273, 622-629. doi:https://doi.org/10.1016/j.cej.2015.03.111
Jamali-Behnam, F., Najafpoor, A. A., Davoudi, M., Rohani Bastami, T., Alidadi, H., Esmaily, H., & Dolatabadi, M. (2017). Adsorptive removal of arsenic from aqueous solutions using magnetite nanoparticles and silica-coated magnetite nanoparticles.
Jones, R. T., & Geldenhuys, I. J. (2011). The pros and cons of reductive matte smelting for PGMs. Minerals Engineering, 24(6), 495-498. doi:10.1016/j.mineng.2011.03.007
Jutakridsada, P., Prajaksud, C., Kuboonya-Aruk, L., Theerakulpisut, S., & Kamwilaisak, K. (2016). Adsorption characteristics of activated carbon prepared from spent ground coffee. Clean Technologies and Environmental Policy, 18(3), 639-645. doi:10.1007/s10098-015-1083-x
Karmee, S. K. (2018). A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. Waste Management, 72, 240-254. doi:https://doi.org/10.1016/j.wasman.2017.10.042
Khan, T. A., Chaudhry, S. A., & Ali, I. (2015). Equilibrium uptake, isotherm and kinetic studies of Cd(II) adsorption onto iron oxide activated red mud from aqueous solution. Journal of Molecular Liquids, 202, 165-175. doi:https://doi.org/10.1016/j.molliq.2014.12.021
Konishi, Y., Yokota, M., Tochihara, M., & Ogi, T. (2017). Separation and Recovery of Precious and Rare Metals Utilizing Metal Ion-Reducing Bacteria and Its Application to Fabrication of Metal Nanoparticle Catalysts. Journal of the Japan Society of Powder and Powder Metallurgy, 64(5), 222-229. doi:10.2497/jjspm.64.222
Kononova, O. N., Melnikov, A. M., & Demitrichenko, D. S. (2013). Simultaneous Ion Exchange Recovery and Subsequent Separation of Platinum(II, IV), Rhodium(III), and Nickel(II) from Chloride and Sulfate-Chloride Solutions. Solvent Extraction and Ion Exchange, 31(3), 306-319. doi:10.1080/07366299.2012.757133
Kostas, E. T., Beneroso, D., & Robinson, J. P. (2017). The application of microwave heating in bioenergy: A review on the microwave pre-treatment and upgrading technologies for biomass. Renewable and Sustainable Energy Reviews, 77, 12-27.
Kovačević, N., & Kokalj, A. (2013). The relation between adsorption bonding and corrosion inhibition of azole molecules on copper. Corrosion Science, 73, 7-17. doi:10.1016/j.corsci.2013.03.016
Ktori, R., Kamaterou, P., & Zabaniotou, A. (2018). Spent coffee grounds valorization through pyrolysis for energy and materials production in the concept of circular economy. Materials Today: Proceedings, 5(14, Part 1), 27582-27588. doi:https://doi.org/10.1016/j.matpr.2018.09.078
Kul, A. R., & Koyuncu, H. (2010). Adsorption of Pb(II) ions from aqueous solution by native and activated bentonite: Kinetic, equilibrium and thermodynamic study. Journal of Hazardous Materials, 179(1), 332-339. doi:https://doi.org/10.1016/j.jhazmat.2010.03.009
Kumar, G., Dharmaraja, J., Arvindnarayan, S., Shoban, S., Bakonyi, P., Saratale, G. D., . . . Kim, S. H. (2019). A comprehensive review on thermochemical, biological, biochemical and hybrid conversion methods of bio-derived lignocellulosic molecules into renewable fuels. Fuel, 251, 352-367. doi:10.1016/j.fuel.2019.04.049
Kumar, K. V. (2007). Pseudo-second order models for the adsorption of safranin onto activated carbon: Comparison of linear and non-linear regression methods. Journal of Hazardous Materials, 142(1), 564-567. doi:https://doi.org/10.1016/j.jhazmat.2006.08.018
Kuong, I. H., Li, J. H., Zhang, J., & Zeng, X. L. (2019). Estimating the Evolution of Urban Mining Resources in Hong Kong, Up to the Year 2050. Environmental Science & Technology, 53(3), 1394-1403. doi:10.1021/acs.est.8b04063
Kwon, E. E., Yi, H., & Jeon, Y. J. (2013). Sequential co-production of biodiesel and bioethanol with spent coffee grounds. Bioresource Technology, 136, 475-480. doi:https://doi.org/10.1016/j.biortech.2013.03.052
López-Barrera, D. M., Vázquez-Sánchez, K., Loarca-Piña, M. G. F., & Campos-Vega, R. (2016). Spent coffee grounds, an innovative source of colonic fermentable compounds, inhibit inflammatory mediators in vitro. Food Chemistry, 212, 282-290. doi:10.1016/j.foodchem.2016.05.175
Laine, J., & Calafat, A. (1991). Factors affecting the preparation of activated carbons from coconut shell catalized by potassium. Carbon, 29(7), 949-953.
Laird, D. A., Brown, R. C., Amonette, J. E., & Lehmann, J. (2009). Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels, Bioproducts and Biorefining, 3(5), 547-562. doi:10.1002/bbb.169
Lam, D. V., Jo, K., Kim, C.-H., Kim, J.-H., Lee, H.-J., & Lee, S.-M. (2016). Activated Carbon Textile via Chemistry of Metal Extraction for Supercapacitors. ACS Nano, 10(12), 11351-11359. doi:10.1021/acsnano.6b06608
Lam, S. S., Liew, R. K., Lim, X. Y., Ani, F. N., & Jusoh, A. (2016). Fruit waste as feedstock for recovery by pyrolysis technique. International Biodeterioration and Biodegradation, 113, 325-333. doi:10.1016/j.ibiod.2016.02.021
Lam, S. S., Wan Mahari, W. A., Cheng, C. K., Omar, R., Chong, C. T., & Chase, H. A. (2016). Recovery of diesel-like fuel from waste palm oil by pyrolysis using a microwave heated bed of activated carbon. Energy, 115, 791-799. doi:https://doi.org/10.1016/j.energy.2016.09.076
Lan, Y., Li, X., Zong, Y., Li, Z., Sun, Y., Tan, G., . . . Zheng, X. (2016). In-situ synthesis of carbon nanotubes decorated by magnetite nanoclusters and their applications as highly efficient and enhanced microwave absorber. Ceramics International, 42(16), 19110-19118. doi:https://doi.org/10.1016/j.ceramint.2016.09.072
Langmuir, I. (1918). THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. Journal of the American Chemical Society, 40(9), 1361-1403. doi:10.1021/ja02242a004
Le, M. N., Lee, M. S., & Senanayake, G. (2018). A Short Review of the Separation of Iridium and Rhodium from Hydrochloric Acid Solutions by Solvent Extraction. Journal of Solution Chemistry, 47(8), 1373-1394. doi:10.1007/s10953-018-0770-8
Lee, J., Oh, J.-I., Ok, Y. S., & Kwon, E. E. (2017). Study on susceptibility of CO2-assisted pyrolysis of various biomass to CO2. Energy, 137, 510-517. doi:https://doi.org/10.1016/j.energy.2017.01.155
Li, W., Zhang, L.-b., Peng, J.-h., Li, N., & Zhu, X.-y. (2008). Preparation of high surface area activated carbons from tobacco stems with K2CO3 activation using microwave radiation. Industrial crops and products, 27(3), 341-347.
Lian, F., Cui, G., Liu, Z., Duo, L., Zhang, G., & Xing, B. (2016). One-step synthesis of a novel N-doped microporous biochar derived from crop straws with high dye adsorption capacity. Journal of Environmental Management, 176, 61-68. doi:https://doi.org/10.1016/j.jenvman.2016.03.043
Lin, J., & Wang, L. (2009). Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Frontiers of Environmental Science & Engineering in China, 3(3), 320-324. doi:10.1007/s11783-009-0030-7
Liu, H., Xu, F., Xie, Y., Wang, C., Zhang, A., Li, L., & Xu, H. (2018). Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil. Science of The Total Environment, 645, 702-709. doi:10.1016/j.scitotenv.2018.07.115
Liu, S.-J., Guo, Y.-P., Yang, H.-Y., Wang, S., Ding, H., & Qi, Y. (2016). Synthesis of a water-soluble thiourea-formaldehyde (WTF) resin and its application to immobilize the heavy metal in MSWI fly ash. Journal of Environmental Management, 182, 328-334. doi:https://doi.org/10.1016/j.jenvman.2016.07.086
Long, C., Chen, X., Jiang, L., Zhi, L., & Fan, Z. (2015). Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy, 12, 141-151. doi:10.1016/j.nanoen.2014.12.014
Ma, J., Wang, J., Yu, X. J., Zhou, M., Sun, H. W., & Wang, L. (2017). Phosphorus Removal Capacity of Domestic Wastewater Treated by a Modified CAST Process Under Different Operating Modes. Huanjing Kexue/Environmental Science, 38(12), 5146-5153. doi:10.13227/j.hjkx.201705206
Meadowcroft, D. B. (1970). Low-cost carbon monoxide electrode material. Nature, 226(5248), 847-848. doi:10.1038/226847a0
Meng, X., Xu, Y., Sun, X., Wang, J., Xiong, L., Du, X., & Mao, S. (2015). Graphene oxide sheets-induced growth of nanostructured Fe3O4 for a high-performance anode material of lithium ion batteries. Journal of Materials Chemistry A, 3(24), 12938-12946. doi:10.1039/C5TA01617G
Minamisawa, M., Minamisawa, H., Yoshida, S., & Takai, N. (2004). Adsorption Behavior of Heavy Metals on Biomaterials. Journal of Agricultural and Food Chemistry, 52(18), 5606-5611. doi:10.1021/jf0496402
Mohan, D., Sarswat, A., Singh, V. K., Alexandre-Franco, M., & Pittman, C. U. (2011). Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chemical Engineering Journal, 172(2), 1111-1125. doi:https://doi.org/10.1016/j.cej.2011.06.054
Mumme, J., Getz, J., Prasad, M., Lüder, U., Kern, J., Mašek, O., & Buss, W. (2018). Toxicity screening of biochar-mineral composites using germination tests. Chemosphere, 207, 91-100. doi:10.1016/j.chemosphere.2018.05.042
Mussatto, S. I., Machado, E. M. S., Carneiro, L. M., & Teixeira, J. A. (2012). Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Applied Energy, 92, 763-768. doi:https://doi.org/10.1016/j.apenergy.2011.08.020
Naderi, H. R., Norouzi, P., Ganjali, M. R., & Gholipour-Ranjbar, H. (2016). Synthesis of a novel magnetite/nitrogen-doped reduced graphene oxide nanocomposite as high performance supercapacitor. Powder Technology, 302, 298-308. doi:https://doi.org/10.1016/j.powtec.2016.08.054
Nethaji, S., Sivasamy, A., & Mandal, A. B. (2013). Preparation and characterization of corn cob activated carbon coated with nano-sized magnetite particles for the removal of Cr(VI). Bioresource Technology, 134, 94-100. doi:https://doi.org/10.1016/j.biortech.2013.02.012
Nguyen, V.-T., Nguyen, T.-B., Chen, C.-W., Hung, C.-M., Vo, T.-D.-H., Chang, J.-H., & Dong, C.-D. (2019). Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground. Bioresource Technology, 284, 197-203. doi:https://doi.org/10.1016/j.biortech.2019.03.096
Obruca, S., Benesova, P., Kucera, D., Petrik, S., & Marova, I. (2015). Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids. New Biotechnology, 32(6), 569-574. doi:https://doi.org/10.1016/j.nbt.2015.02.008
Ongondo, F. O., Williams, I. D., & Whitlock, G. (2015). Distinct Urban Mines: Exploiting secondary resources in unique anthropogenic spaces. Waste Management, 45, 4-9. doi:10.1016/j.wasman.2015.05.026
Otowa, T., Tanibata, R., & Itoh, M. (1993). Production and adsorption characteristics of MAXSORB: high-surface-area active carbon. Gas separation & purification, 7(4), 241-245.
Packiyam, R., Pachaiyappan, S., & Seshadri, S. (2011). Preparation and Characterization of Activated Carbons Derived from Palmyra Waste of Coastal Region.
Pandey, M. P., & Kim, C. S. (2011). Lignin Depolymerization and Conversion: A Review of Thermochemical Methods. Chemical Engineering & Technology, 34(1), 29-41. doi:10.1002/ceat.201000270
Panusa, A., Zuorro, A., Lavecchia, R., Marrosu, G., & Petrucci, R. (2013). Recovery of Natural Antioxidants from Spent Coffee Grounds. Journal of Agricultural and Food Chemistry, 61(17), 4162-4168. doi:10.1021/jf4005719
Parajuli, D., Kawakita, H., Inoue, K., & Funaoka, M. (2006). Recovery of Gold(III), Palladium(II), and Platinum(IV) by Aminated Lignin Derivatives. Industrial & Engineering Chemistry Research, 45(19), 6405-6412. doi:10.1021/ie0603518
Park, C. I., Chung, J. S., & Cha, K. W. (2000). Separation and preconcentration method for palladium, platinum and gold from some heavy metals using amberlite IRC 718 chelating resin. Bulletin of the Korean Chemical Society, 21(1), 121-124.
Park, H. N., Choi, H. A., & Won, S. W. (2018). Fibrous polyethylenimine/polyvinyl chloride crosslinked adsorbent for the recovery of Pt(IV) from acidic solution: Adsorption, desorption and reuse performances. Journal of Cleaner Production, 176, 360-369. doi:https://doi.org/10.1016/j.jclepro.2017.12.160
Park, J., Kim, B., & Lee, J. W. (2016). In-situ transesterification of wet spent coffee grounds for sustainable biodiesel production. Bioresource Technology, 221, 55-60. doi:10.1016/j.biortech.2016.09.001
Pearson, D. G., & Woodland, S. J. (2000). Solvent extraction/anion exchange separation and determination of PGEs (Os, Ir, Pt, Pd, Ru) and Re-Os isotopes in geological samples by isotope dilution ICP-MS. Chemical Geology, 165(1-2), 87-107. doi:10.1016/S0009-2541(99)00161-8
Pearson, R. G. (1963). Hard and Soft Acids and Bases. Journal of the American Chemical Society, 85(22), 3533-3539. doi:10.1021/ja00905a001
Peng, Z., Li, Z., Lin, X., Ma, Y., Zhang, Y., Zhang, Y., . . . Jiang, T. (2018) Thermodynamic analysis of smelting of spent catalysts for recovery of platinum group metals. In: Vol. Part F10. Minerals, Metals and Materials Series (pp. 215-223).
Phimsen, S., Kiatkittipong, W., Yamada, H., Tagawa, T., Kiatkittipong, K., Laosiripojana, N., & Assabumrungrat, S. (2016). Oil extracted from spent coffee grounds for bio-hydrotreated diesel production. Energy Conversion and Management, 126, 1028-1036. doi:10.1016/j.enconman.2016.08.085
Pyrzyñska, K., & Trojanowicz, M. (1999). Functionalized Cellulose Sorbents for Preconcentration of Trace Metals in Environmental Analysis. Critical Reviews in Analytical Chemistry, 29(4), 313-321. doi:10.1080/10408349891199329
Qiu, J., Tian, D., Shen, F., Hu, J., Zeng, Y., Yang, G., . . . Zhang, J. (2018). Bioethanol production from wheat straw by phosphoric acid plus hydrogen peroxide (PHP) pretreatment via simultaneous saccharification and fermentation (SSF) at high solid loadings. Bioresource Technology, 268, 355-362. doi:10.1016/j.biortech.2018.08.009
Raymundo-Pinero, E., Azais, P., Cacciaguerra, T., Cazorla-Amorós, D., Linares-Solano, A., & Béguin, F. (2005). KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon, 43(4), 786-795.
Reddy, D. H. K., Wei, W., Shuo, L., Song, M.-H., & Yun, Y.-S. (2017). Fabrication of Stable and Regenerable Amine Functionalized Magnetic Nanoparticles as a Potential Material for Pt(IV) Recovery from Acidic Solutions. ACS Applied Materials & Interfaces, 9(22), 18650-18659. doi:10.1021/acsami.6b16813
Reffas, A., Bernardet, V., David, B., Reinert, L., Lehocine, M. B., Dubois, M., . . . Duclaux, L. (2010). Carbons prepared from coffee grounds by H3PO4 activation: Characterization and adsorption of methylene blue and Nylosan Red N-2RBL. Journal of Hazardous Materials, 175(1), 779-788. doi:https://doi.org/10.1016/j.jhazmat.2009.10.076
Reid, F. H. (1963). Electrodeposition of the platinum-group metals. Metallurgical Reviews, 8(1), 167-211. doi:10.1179/mtlr.1963.8.1.167
Ren, G., Wang, X., Huang, P., Zhong, B., Zhang, Z., Yang, L., & Yang, X. (2017). Chromium (VI) adsorption from wastewater using porous magnetite nanoparticles prepared from titanium residue by a novel solid-phase reduction method. Science of The Total Environment, 607-608, 900-910. doi:https://doi.org/10.1016/j.scitotenv.2017.06.103
Renner, H., Schlamp, G., Kleinwächter, I., Drost, E., Lüschow, H., Tews, P., . . . Schiele, R. (2000). Platinum Group Metals and Compounds
Ullmann's Encyclopedia of Industrial Chemistry, 6th ed., 40v.
Sato, T., Abe, S., Ito, S., & Abe, T. (2019). Silk fibroin fiber for selective palladium adsorption: Kinetic, isothermal and thermodynamic properties. Journal of Environmental Chemical Engineering, 7(2), 102958. doi:https://doi.org/10.1016/j.jece.2019.102958
Schwenke, A. M., Hoeppener, S., & Schubert, U. S. (2015). Synthesis and modification of carbon nanomaterials utilizing microwave heating. Advanced Materials, 27(28), 4113-4141.
Sfez, S., De Meester, S., & Dewulf, J. (2017). Co-digestion of rice straw and cow dung to supply cooking fuel and fertilizers in rural India: Impact on human health, resource flows and climate change. Science of The Total Environment, 609, 1600-1615. doi:10.1016/j.scitotenv.2017.07.150
Shaheen, S. M., Niazi, N. K., Hassan, N. E. E., Bibi, I., Wang, H., Tsang, Daniel C. W., . . . Rinklebe, J. (2019). Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review. International Materials Reviews, 64(4), 216-247. doi:10.1080/09506608.2018.1473096
Sharififard, H., Zokaee Ashtiani, F., & Soleimani, M. (2013). Adsorption of palladium and platinum from aqueous solutions by chitosan and activated carbon coated with chitosan. Asia-Pacific Journal of Chemical Engineering, 8(3), 384-395. doi:10.1002/apj.1671
Shelimov, B. N., Lambert, J. F., Che, M., & Didillon, B. (2000). Molecular-level studies of transition metal–support interactions during the first steps of catalysts preparation: platinum speciation in the hexachloroplatinate/alumina system. Journal of Molecular Catalysis A: Chemical, 158(1), 91-99. doi:https://doi.org/10.1016/S1381-1169(00)00047-9
Shen, Z. T., Zhang, Y. H., McMillan, O., Jin, F., & Al-Tabbaa, A. (2017). Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk. Environmental Science and Pollution Research, 24(14), 12809-12819. doi:10.1007/s11356-017-8847-2
Shi, Y., Zhang, X., & Liu, G. (2015). Activated Carbons Derived from Hydrothermally Carbonized Sucrose: Remarkable Adsorbents for Adsorptive Desulfurization. ACS Sustainable Chemistry and Engineering, 3(9), 2237-2246. doi:10.1021/acssuschemeng.5b00670
Silva, M. A., Nebra, S. A., Machado Silva, M. J., & Sanchez, C. G. (1998). THE USE OF BIOMASS RESIDUES IN THE BRAZILIAN SOLUBLE COFFEE INDUSTRY. Biomass and Bioenergy, 14(5), 457-467. doi:https://doi.org/10.1016/S0961-9534(97)10034-4
Sinan, N., & Unur, E. (2016). Fe3O4/carbon nanocomposite: Investigation of capacitive & magnetic properties for supercapacitor applications. Materials Chemistry and Physics, 183, 571-579. doi:https://doi.org/10.1016/j.matchemphys.2016.09.016
Singh, B. P., Cowie, A. L., & Smernik, R. J. (2012). Biochar Carbon Stability in a Clayey Soil As a Function of Feedstock and Pyrolysis Temperature. Environmental Science & Technology, 46(21), 11770-11778. doi:10.1021/es302545b
Sivrikaya, S., Altundag, H., Zengin, M., & Imamoglu, M. (2011). Separation, Preconcentration, and Recovery of Pd(II) Ions using Newly Modified Silica Gel with Bis(3-Aminopropyl)Amine. Separation Science and Technology, 46(13), 2032-2040. doi:10.1080/01496395.2011.572111
Sole, K. C., Feather, A. M., & Cole, P. M. (2005). Solvent extraction in southern Africa: An update of some recent hydrometallurgical developments. Hydrometallurgy, 78(1-2 SPEC. ISS.), 52-78. doi:10.1016/j.hydromet.2004.11.012
Son, J., Kim, B., Park, J., Yang, J., & Lee, J. W. (2018). Wet in situ transesterification of spent coffee grounds with supercritical methanol for the production of biodiesel. Bioresource Technology, 259, 465-468. doi:10.1016/j.biortech.2018.03.067
Spieker, W. A., Liu, J., Hao, X., Miller, J. T., Kropf, A., & Regalbuto, J. R. (2003). An EXAFS study of the coordination chemistry of hydrogen hexachloroplatinate (IV) (Vol. 243).
Stylianou, M., Agapiou, A., Omirou, M., Vyrides, I., Ioannides, I. M., Maratheftis, G., & Fasoula, D. (2018). Converting environmental risks to benefits by using spent coffee grounds (SCG) as a valuable resource. Environmental Science and Pollution Research, 25(36), 35776-35790. doi:10.1007/s11356-018-2359-6
Sun, F., Gao, J., Liu, X., Pi, X., Yang, Y., & Wu, S. (2016). Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials. Applied Surface Science, 387, 857-863. doi:https://doi.org/10.1016/j.apsusc.2016.06.176
Tahir, M. H., Çakman, G., Goldfarb, J. L., Topcu, Y., Naqvi, S. R., & Ceylan, S. (2019). Demonstrating the suitability of canola residue biomass to biofuel conversion via pyrolysis through reaction kinetics, thermodynamics and evolved gas analyses. Bioresource Technology, 67-73. doi:10.1016/j.biortech.2019.01.106
Uheida, A., Iglesias, M., Fontàs, C., Hidalgo, M., Salvadó, V., Zhang, Y., & Muhammed, M. (2006). Sorption of palladium(II), rhodium(III), and platinum(IV) on Fe3O4 nanoparticles. Journal of Colloid and Interface Science, 301(2), 402-408. doi:https://doi.org/10.1016/j.jcis.2006.05.015
Ur-Rehman, S., Mushtaq, Z., Zahoor, T., Jamil, A., & Murtaza, M. A. (2015). Xylitol: A Review on Bioproduction, Application, Health Benefits, and Related Safety Issues. Critical Reviews in Food Science and Nutrition, 55(11), 1514-1528. doi:10.1080/10408398.2012.702288
Valenzuela, R., Fuentes, M. C., Parra, C., Baeza, J., Duran, N., Sharma, S. K., . . . Freer, J. (2009). Influence of stirring velocity on the synthesis of magnetite nanoparticles (Fe3O4) by the co-precipitation method. Journal of Alloys and Compounds, 488(1), 227-231. doi:https://doi.org/10.1016/j.jallcom.2009.08.087
Van Santen, R. A., & Tranca, I. (2016). How molecular is the chemisorptive bond? Physical Chemistry Chemical Physics, 18(31), 20868-20894. doi:10.1039/c6cp01394e
Veisi, H., Safarimehr, P., & Hemmati, S. (2019). Buchwald–Hartwig C–N cross coupling reactions catalyzed by palladium nanoparticles immobilized on thio modified-multi walled carbon nanotubes as heterogeneous and recyclable nanocatalyst. Materials Science and Engineering: C, 96, 310-318. doi:https://doi.org/10.1016/j.msec.2018.11.026
Venkateswarlu, S., Natesh Kumar, B., Prathima, B., Anitha, K., & Jyothi, N. V. V. (2015). A novel green synthesis of Fe3O4-Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance. Physica B: Condensed Matter, 457, 30-35. doi:https://doi.org/10.1016/j.physb.2014.09.007
Walter J. Weber, & J. Carrell Morris. (1963). Kinetics of Adsorption on Carbon from Solution. Journal of the Sanitary Engineering Division, 89(2), 31-60.
Wang, F. C., Zhao, J. M., Wang, W. K., & Liu, H. Z. (2018). Superior Au-adsorption performance of aminothiourea-modified waste cellulosic biomass. Journal of Central South University, 25(12), 2992-3003. doi:10.1007/s11771-018-3969-3
Wang, G., Chen, G., Wei, Z., Dong, X., & Qi, M. (2013). Multifunctional Fe3O4/graphene oxide nanocomposites for magnetic resonance imaging and drug delivery. Materials Chemistry and Physics, 141(2), 997-1004. doi:https://doi.org/10.1016/j.matchemphys.2013.06.054
Wang, H., Guo, W., Yin, R., Du, J., Wu, Q., Luo, H., . . . Ren, N. (2019). Biochar-induced Fe(III) reduction for persulfate activation in sulfamethoxazole degradation: Insight into the electron transfer, radical oxidation and degradation pathways. Chemical Engineering Journal, 561-569. doi:10.1016/j.cej.2019.01.053
Wang, J., Li, J., & Wei, J. (2015). Adsorption characteristics of noble metal ions onto modified straw bearing amine and thiol groups. Journal of Materials Chemistry A, 3(35), 18163-18170. doi:10.1039/C5TA05371D
Wang, L., Yan, W., He, C., Wen, H., Cai, Z., Wang, Z., . . . Liu, W. (2018). Microwave-assisted preparation of nitrogen-doped biochars by ammonium acetate activation for adsorption of acid red 18. Applied Surface Science, 433, 222-231. doi:https://doi.org/10.1016/j.apsusc.2017.10.031
Wang, M., Ren, L., Wang, D., Cai, Z., Xia, X., & Ding, A. (2019). Assessing the capacity of biochar to stabilize copper and lead in contaminated sediments using chemical and extraction methods. Journal of Environmental Sciences, 79, 91-99. doi:https://doi.org/10.1016/j.jes.2018.11.007
Wang, M., Tan, Q., Chiang, J. F., & Li, J. (2017). Recovery of rare and precious metals from urban mines—A review. Frontiers of Environmental Science & Engineering, 11(5), 1. doi:10.1007/s11783-017-0963-1
Wang, S., Ren, Z., Li, J., Ren, Y., Zhao, L., & Yu, J. (2014). Cotton-based hollow carbon fibers with high specific surface area prepared by ammonia etching for supercapacitor application. RSC Advances, 4(59), 31300-31307. doi:10.1039/C4RA04383A
Wang, S., Vincent, T., Roux, J.-C., Faur, C., & Guibal, E. (2017). Pd(II) and Pt(IV) sorption using alginate and algal-based beads. Chemical Engineering Journal, 313, 567-579. doi:https://doi.org/10.1016/j.cej.2016.12.039
Wang, X., Liu, Y., Arandiyan, H., Yang, H., Bai, L., Mujtaba, J., . . . Sun, H. (2016). Uniform Fe3O4 microflowers hierarchical structures assembled with porous nanoplates as superior anode materials for lithium-ion batteries. Applied Surface Science, 389, 240-246. doi:https://doi.org/10.1016/j.apsusc.2016.07.105
Wang, X., Song, J., Huang, J., Zhang, J., Wang, X., Ma, R., . . . Zhao, J. (2016). Activated carbon-based magnetic TiO2 photocatalyst codoped with iodine and nitrogen for organic pollution degradation. Applied Surface Science, 390, 190-201. doi:https://doi.org/10.1016/j.apsusc.2016.08.040
Wang, Y., & Li, X. (2013). Progress in recycling of precious metals in automobile catalysts. Xiyou Jinshu/Chinese Journal of Rare Metals, 37(6), 1004-1015. doi:10.3969/j.issn.0258-7076.2013.06.022
Watkins, D. M. (1978). SOLAR ENERGY CONVERSION USING PLATINUM GROUP METAL CO-ORDINATION COMPLEXES. Platinum Metals Review, 22(4), 118-125.
Wu, G. (2017). Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells. Frontiers in Energy, 11(3), 286-298. doi:10.1007/s11708-017-0477-3
Xiao, Z., & Laplante, A. R. (2004). Characterizing and recovering the platinum group minerals––a review. Minerals Engineering, 17(9), 961-979. doi:https://doi.org/10.1016/j.mineng.2004.04.001
Xiong, X., Yu, I. K. M., Cao, L., Tsang, D. C. W., Zhang, S., & Ok, Y. S. (2017). A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresource Technology, 246, 254-270. doi:10.1016/j.biortech.2017.06.163
Xiong, Y., Xie, Y., Li, Z., Zhang, R., Yang, J., & Wu, C. (2003). Complexing-reagent assisted synthesis of α-Fe and γ-Fe2O3 nanowires under mild conditions (Vol. 27).
Xu, G., Han, J., Ding, B., Nie, P., Pan, J., Dou, H., . . . Zhang, X. (2015). Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chemistry, 17(3), 1668-1674. doi:10.1039/c4gc02185a
Xu, H., Tan, L., Dong, H., He, J., Liu, X., Qiu, G., . . . Xie, J. (2017). Competitive biosorption behavior of Pt(iv) and Pd(ii) by Providencia vermicola. RSC Advances, 7(51), 32229-32235. doi:10.1039/C7RA02786A
Xu, Z., Zhao, Y., Wang, P., Yan, X., Cai, M., & Yang, Y. (2019). Extraction of Pt(IV), Pt(II), and Pd(II) from Acidic Chloride Media Using Imidazolium-Based Task-Specific Polymeric Ionic Liquid. Industrial and Engineering Chemistry Research, 58(5), 1779-1786. doi:10.1021/acs.iecr.8b03408
Xue, D., Li, T., Liu, Y., Yang, Y., Zhang, Y., Cui, J., & Guo, D. (2019). Selective adsorption and recovery of precious metal ions from water and metallurgical slag by polymer brush graphene–polyurethane composite. Reactive and Functional Polymers, 136, 138-152. doi:10.1016/j.reactfunctpolym.2018.12.026
Yang, N., Zhu, S., Zhang, D., & Xu, S. (2008). Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal. Materials Letters, 62(4), 645-647. doi:https://doi.org/10.1016/j.matlet.2007.06.049
Yang, X., Zhang, S., Ju, M., & Liu, L. (2019). Preparation and Modification of Biochar Materials and their Application in Soil Remediation (Vol. 9).
Yao, L., Yang, J., Zhang, P., & Deng, L. (2018). In situ surface decoration of Fe3C/Fe3O4/C nanosheets: Towards bi-functional activated carbons with supercapacitance and efficient dye adsorption. Bioresource Technology, 256, 208-215. doi:https://doi.org/10.1016/j.biortech.2018.02.027
Yeh, C.-L., Hsi, H.-C., Li, K.-C., & Hou, C.-H. (2015). Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio. Desalination, 367, 60-68.
Yeung, P.-T., Chung, P.-Y., Tsang, H.-C., Cheuk-On Tang, J., Yin-Ming Cheng, G., Gambari, R., . . . Lam, K.-H. (2014). Preparation and characterization of bio-safe activated charcoal derived from coffee waste residue and its application for removal of lead and copper ions. RSC Advances, 4(73), 38839-38847. doi:10.1039/C4RA05082G
You, S., Ok, Y. S., Chen, S. S., Tsang, D. C. W., Kwon, E. E., Lee, J., & Wang, C.-H. (2017). A critical review on sustainable biochar system through gasification: Energy and environmental applications. Bioresource Technology, 246, 242-253. doi:https://doi.org/10.1016/j.biortech.2017.06.177
Yousif, A. M., Labib, S. A., Ibrahim, I. A., & Atia, A. A. (2019). Recovery of Pt (IV) from aqueous solutions using magnetic functionalized cellulose with quaternary amine. Separation Science and Technology, 54(8), 1257-1268. doi:10.1080/01496395.2018.1534866
Yu, H., Zou, W., Chen, J., Chen, H., Yu, Z., Huang, J., . . . Gao, B. (2019). Biochar amendment improves crop production in problem soils: A review. Journal of Environmental Management, 232, 8-21. doi:10.1016/j.jenvman.2018.10.117
Yue, M. B., Sun, L. B., Cao, Y., Wang, Y., Wang, Z. J., & Zhu, J. H. (2008). Efficient CO2 Capturer Derived from As-Synthesized MCM-41 Modified with Amine. 14(11), 3442-3451. doi:10.1002/chem.200701467
Zaremba, E. (1977). Theory of helium adsorption on simple and noble-metal surfaces (Vol. 15).
Zhang, J., Wang, K., Xu, Q., Zhou, Y., Cheng, F., & Guo, S. (2015). Beyond Yolk–Shell Nanoparticles: Fe3O4@Fe3C Core@Shell Nanoparticles as Yolks and Carbon Nanospindles as Shells for Efficient Lithium Ion Storage. ACS Nano, 9(3), 3369-3376. doi:10.1021/acsnano.5b00760
Zhang, L., Liu, X., Wang, W., Li, Y., Sun, P., Shang, S., & Jiang, Q. (2018). Characteristics and mechanism of lead adsorption from aqueous solutions by oil crops straw-derived biochar. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 34(7), 218-226. doi:10.11975/j.issn.1002-6819.2018.07.028
Zhang, W., Li, X., Zou, R., Wu, H., Shi, H., Yu, S., & Liu, Y. (2015). Multifunctional glucose biosensors from Fe3O4 nanoparticles modified chitosan/graphene nanocomposites. Scientific Reports, 5, 11129. doi:10.1038/srep11129
https://www.nature.com/articles/srep11129#supplementary-information
Zhang, Y., Li, Y., Li, H., Zhao, Y., Yin, F., & Bakenov, Z. (2016). Electrochemical performance of carbon-encapsulated Fe3O4 nanoparticles in lithium-ion batteries: morphology and particle size effects. Electrochimica Acta, 216, 475-483. doi:https://doi.org/10.1016/j.electacta.2016.09.054
Zhang, Y., Liu, L., Zhang, P., Wang, J., Xu, M., Deng, Q., . . . Deng, S. (2019). Ultra-high surface area and nitrogen-rich porous carbons prepared by a low-temperature activation method with superior gas selective adsorption and outstanding supercapacitance performance. Chemical Engineering Journal, 355, 309-319. doi:https://doi.org/10.1016/j.cej.2018.08.169
Zhang, Y., Xu, X., Cao, L., Ok, Y. S., & Cao, X. (2018). Characterization and quantification of electron donating capacity and its structure dependence in biochar derived from three waste biomasses. Chemosphere, 211, 1073-1081. doi:10.1016/j.chemosphere.2018.08.033
Zhang, Z., Zhu, Z., Shen, B., & Liu, L. (2019). Insights into biochar and hydrochar production and applications: A review. Energy, 171, 581-598. doi:https://doi.org/10.1016/j.energy.2019.01.035
Zhou, H., Wang, P., Chen, D., Shi, G., Cheng, K., Bian, R., . . . Pan, G. (2018). Short-term biochar manipulation of microbial nitrogen transformation in wheat rhizosphere of a metal contaminated Inceptisol from North China plain. Science of The Total Environment, 640-641, 1287-1296. doi:10.1016/j.scitotenv.2018.06.009
Zhou, L., Liu, J., & Liu, Z. (2009). Adsorption of platinum(IV) and palladium(II) from aqueous solution by thiourea-modified chitosan microspheres. Journal of Hazardous Materials, 172(1), 439-446. doi:https://doi.org/10.1016/j.jhazmat.2009.07.030
Zhu, Y.-J., & Chen, F. (2014). Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chemical reviews, 114(12), 6462-6555.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-07-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-07-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw