進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0108201915163500
論文名稱(中文) 以矽鐵進行轉爐石氣化脫磷可行性研究
論文名稱(英文) Phosphorus Vaporization from Basic Oxygen Furnace (BOF) Slag using Ferrosilicon
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 何蕾亞
研究生(英文) Heldagardis Renyaan
學號 P56067037
學位類別 碩士
語文別 英文
論文頁數 95頁
口試委員 指導教授-劉守恒
口試委員-陳婉如
口試委員-曾耀弘
中文關鍵字 轉爐石    矽鐵  鹼度 
英文關鍵字 BOF slag  phosphorus  ferrosilicon  basicity 
學科別分類
中文摘要 煉鋼爐渣是煉鋼行業的主要副產品之一,隨著鋼鐵產量的增加,爐渣的增長速度也在增加。雖然煉鋼過程中的爐渣可以回收利用,但由於磷的高濃度,其回收率受到限制。如果可以减少爐渣中的磷,則可以在煉鋼過程中回收爐渣,最终我們可以减少CaCO3的消耗,CaCO3是二氧化碳排放的主要來源之一。本研究的目的是以最環保的方式减少BOF爐渣中的磷(P),並以矽鐵(FeSi)為還原劑,加入SiO2以降低各種爐渣的鹼度,確定還原後磷的分布。XRF結果顯示,在反應溫度1500℃,含有3%(重量)FeSi和10%(重量)SiO2的情况下,爐渣中磷的還原效果最好。ICP-MS數據顯示,在1500℃的温度下,具有3wt%的FeSi和5wt%及10wt%的SiO2有磷氣化的較佳结果。根據ICP-MS數據的質量平衡計算結果,樣品中超過50%的P可能被氣化。
英文摘要 Steelmaking slag is one of the major byproducts from the steelmaking industry, and the growth rate of slag generation is increasing as steel production increases. Although the slag of steelmaking process can be recyclable, it is limited in its recovery due to the high concentration of phosphorus. If phosphorus in the slag could be reduced, the slag could be recycled in the steelmaking process, and eventually we could decrease the consumption of CaCO3 which is one of the major sources of CO2 emissions. The aim of this thesis was to reduce the phosphorus (P) from BOF slag with the most environmental friendly way and determine the distribution of phosphorus after reduction by using ferrosilicon (FeSi) as reductant and addition of SiO2 to lower the basicity of slag at various temperature (1300, 1400, and 1500 oC). The main results of this research are that FeSi proven to be able to reduce phosphorus from BOF slag. XRF data showed 2 best results of phosphorus reduction from slag with condition 1500oC with 3 wt% FeSi and 10 wt% SiO2. ICP-MS data showed 2 best results of phosphorus vaporization with condition both samples are at temperature of 1500oC, with 3 wt% FeSi and 5wt% + 10 wt% SiO2. Based on the mass balance calculation by ICP-MS data, more than 50% of P from the samples might be vaporized. Overall, temperature of 1500oC is preferable to have higher reduction percentages of phosphorus from solid phase and vaporization.
論文目次 CONTENTS
摘要 i
ABSTRACT ii
LIST OF TABLES v
LIST OF FIGURES vi
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Objectives 3
CHAPTER 2 LITERATURE REVIEW 4
2.1 Basic Oxygen Furnace (BOF) Slag 4
2.2 Phosphorus reduction 5
2.2.1 Magnetic Separation method 6
2.2.2 Leaching method 12
2.2.3 Capillary Action method 15
2.2.4 Carbothermic Reduction method 25
2.3 Slag Basicity 26
2.4 Temperature 28
2.5 Slag Modifications 28
2.6 Ferrosilicon 29
2.7 P in Fe-Si 30
2.8 Thermodynamics of P in molten FeSi 33
2.9 P in Slag 36
2.10 Kinetics of phosphorus removal 37
2.11 Conditions for Phosphorus Evaporation 38
2.12 Distribution of P between slag and Si 39
CHAPTER 3 METHODOLOGY 40
3.1 Research Equipments 40
3.2 Experimental Flowchart 40
3.3 Preparation of Slag Sample 45
3.4 Preparation of Reductant 45
3.5 FactSage Process 45
3.6 Characterization and Analysis 46
3.6.1 X-ray Flouresence (XRF) 47
3.6.2 X-ray Diffraction (XRD) 47
3.6.3 Scanning Electron Miscroscopy (SEM) + Energy Disperse Optical Spectrum (EDS) 48
3.6.4 Inductively coupled plasma mass spectrometry (ICP-MS) 48
CHAPTER 4 RESULTS AND DISCUSSION 49
4.1 Thermodynamic Modeling by FactSage Software 49
4.1.1 Sample at 1300oC 50
4.1.2 Sample at 1400oC 52
4.1.3 Sample at 1500oC 54
4.2 Slag Characterization 55
4.2.1 Physical characterization 55
4.2.2 XRF Analysis 60
4.2.3 XRD Analysis 62
4.2.4 SEM Analysis 65
4.2.5 ICP-MS Analysis 76
4.3 Phosphorus distribution between FeSi + Slag with XRF analysis and FeSi + SiO2 + Slag with ICP-MS analysis. 77
4.3.1 FeSi with Slag 77
4.3.2 FeSi + SiO2 + Slag at 1500oC (slag part only) 82
4.3.3 FeSi + SiO2 + Slag at 1500oC (metal part only) 83
4.3.4 Condition for Phosphorus Vaporization 85
4.4 Influence of SiO2 Addition as Basicity and Temperature 86
CHAPTER 5 CONCLUSION 89
REFERENCES 90

參考文獻 Bale, C. W., Bélisle, E., Chartrand, P., Decterov, S. A., Eriksson, G., Gheribi, A. E., . . . Van Ende, M. A. (2016). Reprint of: FactSage Thermochemical Software and Databases, 2010–2016. Calphad, 55, 1-19. doi:https://doi.org/10.1016/j.calphad.2016.07.004
Basu, Somnath. Studies on Dephosphorization During Steelmaking. (2007). PhD Thesis. Department of Materials Science and Engineering, Kungliga Tekniska Högskolan.
Diao, J., Xie, B., Wang, Y., & Guo, X. (2012). Recovery of Phosphorus from Dephosphorization Slag Produced by Duplex High Phosphorus Hot Metal Refining. ISIJ International, 52(6), 955-959. doi:10.2355/isijinternational.52.955
Dong, Q., Ying-ying, F., Nan, Z., & Chen-xu, Z. (2013, 21-23 July 2013). Research on Relationship Model of Dephosphorization Efficiency and Slag Basicity Based on Support Vector Machine. Paper presented at the 2013 International Conference on Mechanical and Automation Engineering.
Horn, Q. C., Heckel, R. W., & Nassaralla, C. L. (1998). Reactive Phosphide Inclusions in Commercial Ferrosilicon. Metallurgical and Materials Transactions B, 29(2), 325-329. doi:10.1007/s11663-998-0109-8
Jung, S.-M., Do, Y.-J., & Choi, J.-H. (2006). Reduction Behaviour of BOF type Slags by Solid Carbon. Steel Research International, 77(5), 305-311. doi:10.1002/srin.200606390
Kang, Y. B., Kim, T., & Lee, J. (2012). Valorisation Of Steelmaking Slag By Microwave Treatment. Ironmaking & Steelmaking, 39(7), 498-503. doi:10.1179/1743281212Y.0000000012
Karbowniczek, M., Kawecka-Cebula, E., & Reichel, J. (2012). Investigations of the Dephosphorization of Liquid Iron Solution Containing Chromium and Nickel. Metallurgical and Materials Transactions B, 43(3), 554-561. doi:10.1007/s11663-011-9627-x
Koizumi, S., Miki, T., & Nagasaka, T. (2016). Enrichment of Phosphorus Oxide in Steelmaking Slag by Utilizing Capillary Action. Journal of Sustainable Metallurgy, 2(1), 38-43. doi:10.1007/s40831-015-0035-3
Kumar, V. (2017). Feasibility Study of Dephosphorization of Slag Generated from Basic Oxygen Furnace of an Integrated Steel Plant. International Journal of Metallurgical Engineering, 6, 31-35. doi:10.5923/j.ijmee.20170602.01
Kvitastein, Nina. (2017). Distribution of Phosphorus between FeSi/Si and CaO-SiO2 Slags at 1600oC. Master Thesis, Norwegian University of Science and Technology.
Liao, X., Peng, J., Zhang, L., Hu, T., & Li, J. (2017). Enhanced Carbothermic Reduction Of Ilmenite Placer By Additional Ferrosilicon. Journal of Alloys and Compounds, 708, 1110-1116. doi:10.1016/j.jallcom.2017.03.113
Lin, L., Bao, Y.-p., Wang, M., Jiang, W., & Zhou, H.-m. (2014). Separation and Recovery of Phosphorus from P-bearing Steelmaking Slag. Journal of Iron and Steel Research, International, 21(5), 496-502. doi:https://doi.org/10.1016/S1006-706X(14)60077-7
Liu, C., Huang, S., Wollants, P., Blanpain, B., & Guo, M. (2017). Valorization of BOF Steel Slag by Reduction and Phase Modification: Metal Recovery and Slag Valorization. Metallurgical and Materials Transactions B, 48(3), 1602-1612. doi:10.1007/s11663-017-0966-0
Liu, C., Huang, S., Wollants, P., Blanpain, B., & Guo, M. (2019). Optimization of Mineralogy and Microstructure of Solidified Basic Oxygen Furnace Slag Through SiO2 Addition or Atmosphere Control During Hot-Stage Slag Treatment. Metallurgical and Materials Transactions B, 50: 210. https://doi.org/10.1007/s11663-018-1444-z
Louhenkilpi, L. H. J. a. S. (2013). On The Role Of Ferroalloys In Steelmaking.
Lynch, D. JOM (2009) 61: 41. https://doi.org/10.1007/s11837-009-0166-8
M. Allibert. 1995. Slag Atlas. Dusseldorf , German. Verlag Stahleisen mbH.
Matinde, E., Sasaki, Y., & Hino, M. (2008). Phosphorus Gasification from Sewage Sludge during Carbothermic Reduction. ISIJ International, 48(7), 912-917. doi:10.2355/isijinternational.48.912
Matsubae-Yokoyama, K., Kubo, H., Nakajima, K., & Nagasaka, T. (2009). A Material Flow Analysis of Phosphorus in Japan. Journal of Industrial Ecology, 13(5), 687-705. doi:10.1111/j.1530-9290.2009.00162.x
Miki, T., & Kaneko, S. (2015). Separation of FeO and P2O5 from Steelmaking Slag Utilizing Capillary Action. ISIJ International, 55, 142-148. doi:10.2355/isijinternational.55.142
Nakase, K., Matsui, A., Kikuchi, N., & Miki, Y. (2016). Effect of Slag Composition on Phosphorus Separation from Steelmaking Slag by Reduction. Tetsu-to-Hagane, 102, 485-491. doi:10.2355/tetsutohagane.TETSU-2016-006
Numata, M., Maruoka, N., Kim, S.-J., & Kitamura, S.-y. (2014). Fundamental Experiment to Extract Phosphorous Selectively from Steelmaking Slag by Leaching. ISIJ International, 54(8), 1983-1990. doi:10.2355/isijinternational.54.1983
Qiao, Y., Diao, J. , Liu, X. , Li, X. , Zhang, T. and Xie, B. (2016). Kinetics of Dephosphorization from Steelmaking Slag By Leaching With C6H8O7-Naoh-Hcl Solution. In Rewas 2016: Towards Materials Resource Sustainability (pp. 151-156).
Shaghayegh, E., and Mansoor, B., (2010). A Novel Purification Method for Production of Solar Grade Silicon, (pp. 193–205). John Wiley & Sons, Inc.
Su, T.-H., Yang, H.-J., Lee, Y.-C., Shau, Y.-H., Takazawa, E., Lin, M.-F., Jiang, W.-T. (2016). Reductive Heating Experiments on BOF-Slag: Simultaneous Phosphorus Re-Distribution and Volume Stabilization for Recycling. Steel Research International, 87(11), 1511-1526. doi:10.1002/srin.201500441
Suk, M.-O., Jo, S.-K., Kim, S.-H., Lee, K.-Y., & Park, J.-M. (2006). X-Ray Observation Of Phosphorus Vaporization From Steelmaking Slag and Suppression Method Of Phosphorus Reversion in Liquid Iron. Metallurgical and Materials Transactions B, 37(1), 99-107. doi:10.1007/s11663-006-0089-5
Ueda, S., Morita, K., & Sano, N. (1997). Thermodynamics Of Phosphorus in Molten Si-Fe and Si-Mn Alloys. Metallurgical and Materials Transactions B, 28(6), 1151-1155. doi:10.1007/s11663-997-0071-x
Yildirim, I. Z., & Prezzi, M. (2011). Chemical, Mineralogical, and Morphological Properties of Steel Slag. Advances in Civil Engineering, 2011, 13. doi:10.1155/2011/463638
Yokoyama, K., Kubo, H., Mori, K., Okada, H., Takeuchi, S., & Nagasaka, T. (2007). Separation and Recovery of Phosphorus from Steelmaking Slags with the Aid of a Strong Magnetic Field. ISIJ International, 47(10), 1541-1548. doi:10.2355/isijinternational.47.1541
Yu, L., Dong, Y. C., Ye, G. Z., & Sichen, D. (2007). Concentrating Of Vanadium Oxide in Vanadium Rich Phase(S) By Addition Of SiO2 in Converter Slag. Ironmaking & Steelmaking, 34(2), 131-137. doi:10.1179/174328107X155286
Zhang, Y., Xue, Q., Wang, G., & Wang, J. (2018a). Gasification and Migration of Phosphorus from High-phosphorus Iron Ore during Carbothermal Reduction. ISIJ International, 58(12), 2219-2227. doi:10.2355/isijinternational.ISIJINT-2018-372
Zhang, Y., Xue, Q., Wang, G., & Wang, J. (2018b). Phosphorus-Containing Mineral Evolution and Thermodynamics of Phosphorus Vaporization during Carbothermal Reduction of High-Phosphorus Iron Ore. Metals, 8, 451. doi:10.3390/met8060451
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-07-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-07-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw