進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0108201817242200
論文名稱(中文) 鋅錫銅鈦高溫無鉛銲錫合金微結構與拉伸性質之研究
論文名稱(英文) The Microstructure and Tensile Properties of Zn-25Sn-xCu-yTi High Temperature Pb-free Solder Alloys
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 林政錡
研究生(英文) Jeng-Chi Lin
學號 N56054245
學位類別 碩士
語文別 中文
論文頁數 134頁
口試委員 指導教授-林光隆
口試委員-郭瑞昭
口試委員-吳子嘉
中文關鍵字 高溫無鉛銲錫  鋅錫合金  銅鈦添加  拉伸性質  微結構 
英文關鍵字 High temperature Pb-free solder  Zn-Sn alloy  alloy addition  Microstructure  Tensile properties 
學科別分類
中文摘要 本研究探討添加銅元素(0.1、0.2、0.3、0.4 wt%)與鈦元素(0.01、0.02、0.04 wt%)對Zn-25Sn合金熱性質、常溫(25℃)與高溫(100℃)拉伸性質及微結構之影響;熱性質量測結果指出,合金液相線溫度隨著銅元素添加而上升,而合金固相線溫度和過冷度則不受銅、鈦元素添加影響。Zn-25Sn合金微結構由富鋅相(α-Zn)和富錫相(β-Sn)、針棒狀富鋅相構成的共晶相組成。添加的銅元素形成銅鋅固溶體,而添加的鈦元素能使富鋅相組織細化,在鈦元素含量達0.04 wt%時,TiSn3Zn5介金屬化合物會在富錫相中生成。添加銅元素產生固溶強化的效果,提升合金機械強度,添加0.4 wt%銅元素時,合金強度達到最大值,最大抗拉強度為64.3 MPa,降伏強度為46.2 MPa,硬度為43.5 Hv。添加鈦元素有助於提升合金強度和延展性,Zn-25Sn-0.1Cu-0.02Ti合金具有最大伸長率38.6%,若鈦元素含量增至0.04 wt%,則伸長率下降。在高溫環境(100℃)下的拉伸性質,相較於常溫,合金強度下降而延展性提升,添加銅、鈦元素對合金產生相同效果,Zn-25Sn-0.2Cu-0.02Ti合金具有最大抗拉強度33.0 MPa,Zn-25Sn-0.1Cu-0.02Ti合金具有最大伸長率52.4%。
英文摘要 This study investigated the effect of Cu (0.1, 0.2, 0.3, 0.4 wt%) and Ti (0.01, 0.02, 0.04 wt%) additions on the thermal properties, tensile properties and microstructure of high temperature Zn-25Sn-xCu-yTi solder alloys. The liquidus temperature increased with increasing Cu content. However, the minor elements addition showed little effect on the eutectic temperature and undercooling of the alloys. Zn-25Sn consisted of the Zn rich phase and the eutectic phase. The eutectic phase was the needle-like Zn rich phase dispersing in the Sn rich phase. The Cu addition dissolved into Zn rich phase to form Cu-Zn solid solution. The Ti addition resulted in Zn rich phase refinement. TiSn3Zn5 intermetallic compound was formed at 0.04 wt% Ti addition. The strength of the alloys increased due to the solid solution strengthening of Cu-Zn solid solution. The maximum of UTS, YS and hardness were respectively 64.3 MPa, 46.2 MPa and 43.5 Hv at 0.4 wt% Cu addition. Ti addition enhanced the strength and the ductility. Zn-25Sn-0.1Cu-0.02Ti had the highest elongation of 38.6%. However, the elongation decreased when Ti content increased up to 0.04 wt%. Comparing to 25oC, the strength decreased and the ductility increased at 100oC. The minor elements effects on the tensile properties were similar at these two temperatures. Zn-25Sn-0.2Cu-0.02Ti had the highest UTS of 33.0 MPa. Zn-25Sn-0.1Cu-0.02Ti had the highest elongation of 52.4%.
論文目次 中文摘要.............………………………………...…….............................Ⅰ
Extended Abstract......................................................................................Ⅱ
誌謝...................................................................................................... ⅩⅩⅠ
總目錄..................................................................................................ⅩⅩⅡ
表目錄............................................................................................... ⅩⅩⅤⅠ
圖目錄.............................................................................................. ⅩⅩⅤⅡ
第壹章 簡介..........................................................................................1
1-1 高溫銲錫概論.............................................................................1
1-1-1 高溫銲錫應用.................................................................1
1-1-2 高溫銲錫性質需求.........................................................1
1-2 鉛錫銲錫與無鉛化趨勢.............................................................3
1-2-1 鉛錫合金系統.................................................................3
1-2-2 無鉛化趨勢.....................................................................5
1-3 高溫無鉛銲錫系統.....................................................................6
1-3-1 金錫合金系統.................................................................6
1-3-2 鉍銀合金系統.................................................................8
1-3-3 鋅鋁合金系統................................................................11
1-3-4 鋅錫合金系統...............................................................13
1-4 材料機械性質...........................................................................15
1-4-1 應力-應變曲線..............................................................18
1-4-2 硬度...............................................................................22
1-4-3 材料強化機構...............................................................24
1-4-4 常見高溫銲錫之機械性質比較...................................30
1-5 研究動機...................................................................................30
第貳章 實驗方法與步驟....................................................................34
2-1 實驗構想...................................................................................34
2-2 高溫無鉛銲錫合金製備...........................................................34
2-2-1 石英封管合金製備.......................................................34
2-2-2 澆鑄合金與拉伸試片製備...........................................37
2-3 高溫無鉛銲錫合金之拉伸試驗...............................................37
2-4 拉伸試片之破斷面觀察與分析...............................................40
2-4-1 拉伸試片破斷處表面觀察與分析...............................40
2-4-2 拉伸試片破斷處縱剖面觀察與分析...........................40
2-5 高溫無鉛銲錫合金之微結構觀察與分析...............................41
2-5-1 掃描式電子顯微鏡.......................................................41
2-5-2 電子微探儀...................................................................41
2-5-3 雙束型聚焦離子束儀...................................................42
2-6 高溫無鉛銲錫合金之硬度量測與分析...................................42
2-7 高溫無鉛銲錫合金之熱性質量測與分析...............................43
第參章 結果與討論............................................................................44
3-1 Zn-25Sn-xCu-yTi合金之熱性質分析.......................................44
3-2 Zn-25Sn-xCu-yTi合金之常溫拉伸性質分析...........................56
3-2-1 添加銅元素對常溫拉伸性質之影響...........................56
3-2-2 添加鈦元素對常溫拉伸性質之影響...........................77
3-2-3 添加銅、鈦元素對常溫拉伸性質之影響....................78
3-2-4 Zn-25Sn合金微結構......................................................79
3-2-5 添加銅元素對合金微結構之影響...............................81
3-2-6 添加鈦元素對合金微結構之影響...............................86
3-2-7 常溫拉伸破斷面觀察...................................................93
3-2-8 合金共晶相縱剖面之微結構分析...............................99
3-3 Zn-25Sn-xCu-yTi合金之高溫拉伸性質分析...........................99
3-3-1 添加銅、鈦元素對高溫拉伸性質之影響...................102
3-3-2 高溫拉伸破斷面觀察..................................................118
3-3-3 高溫和常溫拉伸性質比較..........................................118
3-3-4 動態再結晶.................................................................121
3-4 Zn-25Sn-xCu-yTi合金之硬度分析.........................................121
第肆章 結論......................................................................................126
參考文獻................................................................................................127
參考文獻 [1] K. Suganuma, S. J. Kim, and K. S. Kim, "High-Temperature Lead-Free Solders: Properties and Possibilities," Journal of The Minerals, Metals & Materials Society, vol. 61, pp. 64-71, 2009.
[2] V. Chidambaram, J. Hattel, and J. Hald, "High-temperature lead-free solder alternatives," Microelectronic Engineering, vol. 88, pp. 981-989, 2011.
[3] Y. Yamada, Y. Takaku, Y. Yagi, Y. Nishibe, I. Ohnuma, and Y. Sutou, "Pb-free high temperature solders for power device packaging," Microelectronics Reliability, vol. 46, pp. 1932-1937, 2006.
[4] G. Zeng, S. McDonald, and K. Nogita, "Development of high-temperature solders: Review," Microelectronics Reliability, vol. 52, pp. 1306-1322, 2012.
[5] K. N. Tu, A. M. Gusak, and M. Li, "Physics and materials challenges for lead-free solders," Journal of Applied Physics, vol. 93, pp. 1335-1353, 2003.
[6] V. Chidambaram, J. Hattel, and J. Hald, "Design of lead-free candidate alloys for high-temperature soldering based on the Au–Sn system," Materials and Design, vol. 31, pp. 4638-4645, 2010.
[7] G. Ghosh, "Thermodynamic Modeling of the Nickel-Lead-Tin System," Metallurgical and Materials Transactions A, vol. 30A, pp. 1481-1494, 1999.
[8] H. Schoeller, S. Bansal, A. Knobloch, D. Shaddock, and J. Cho, "Effect of alloying elements on the creep behavior of high Pb-based solders," Materials Science and Engineering: A, vol. 528, pp. 1063-1070, 2011.
[9] F. P. McCluskey, M. Dash, Z. Wang, and D. Huff, "Reliability of high temperature solder alternatives," Microelectronics Reliability, vol. 46, pp. 1910-1914, 2006.
[10] L. Quan, D. Frear, D. Grivas, and J. W. M. Jr., "Tensile Behavior of Pb-Sn Solder Cu Joints," Journal of Electronic Materials, vol. 16, pp. 203-208, 1987.
[11] L. N. Ramanathan, J. W. Jang, J. K. Lin, and D. R. Frear, "Solid-State Annealing Behavior of Two High-Pb Solders, 95Pb5Sn and 90Pb10Sn, on Cu Under Bump Metallurgy," Journal of Electronic Materials, vol. 34, pp. 43-46, 2005.
[12] E. Dimitrakakis, A. Janz, B. Bilitewski, and E. Gidarakos, "Small WEEE: determining recyclables and hazardous substances in plastics," Journal of Hazardous Materials, vol. 161, pp. 913-919, Jan 30 2009.
[13] A. Sepúlveda, M. Schluep, F. G. Renaud, M. Streicher, R. Kuehr, C. Hageluken, and A. C. Gerecke, "A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling: Examples from China and India," Environmental Impact Assessment Review, vol. 30, pp. 28-41, 2010.
[14] S. Menon, E. George, M. Osterman, and M. Pecht, "High lead solder (over 85 %) solder in the electronics industry: RoHS exemptions and alternatives," Journal of Materials Science: Materials in Electronics, vol. 26, pp. 4021-4030, 2015.
[15] R. VenkaTraman, J. R. Wilcox, and S. R. Cain, "Experimental Study of the Kinetics of Transient Liquid Phase Solidification Reaction in Electroplated Gold-Tin Layers on Copper," Metallurgical and Materials Transactions A, vol. 28A, pp. 699-706, 1997.
[16] D. G. Ivey, "Microstructural Characterization of Au/Sn Solder for Packaging in Optoelectronic Applications," Micron, vol. 29, pp. 281-287, 1998.
[17] H. G. Song, J. W. M. Jr., and M. T. McCormack, "The Microstructure of Ultrafine Eutectic Au-Sn Solder Joints on Cu," Journal of Electronic Materials, vol. 29, pp. 1038-1046, 2000.
[18] H. G. Song, J. P. Ahn, and J. W. M. Jr., "The Microstructure of Eutectic Au-Sn Solder Bumps on Cu/Electroless Ni/Au," Journal of Electronic Materials, vol. 30, pp. 1083-1087, 2001.
[19] J. W. Yoon, H. S. Chun, J. M. Koo, and S. B. Jung, "Au–Sn flip-chip solder bump for microelectronic and optoelectronic applications," Microsystem Technologies, vol. 13, pp. 1463-1469, 2006.
[20] Q. Wang, S. H. Choa, W. Kim, J. Hwang, S. Ham, and C. Moon, "Application of Au-Sn Eutectic Bonding in Hermetic Radio-Frequency Microelectromechanical System Wafer Level Packaging," Journal of Electronic Materials, vol. 35, pp. 425-431, 2006.
[21] I. Karakaya and W. T. Thompson, "The Ag-Bi (Silver-Bismuth) System," Journal of Phase Equilibria, vol. 14, pp. 525-530, 1993.
[22] J. M. Song, H. Y. Chuang, and T. X. Wen, "Thermal and Tensile Properties of Bi-Ag Alloys," Metallurgical and Materials Transactions A, vol. 38A, pp. 1371-1375, 2007.
[23] J. M. Song, H. Y. Chuang, and Z. M. Wu, "Interfacial Reactions between Bi-Ag High-Temperature Solders and Metallic Substrates," Journal of Electronic Materials, vol. 35, pp. 1041-1049, 2006.
[24] J. M. Song, H. Y. Chuang, and Z. M. Wu, "Substrate Dissolution and Shear Properties of the Joints between Bi-Ag Alloys and Cu Substrates for High-Temperature Soldering Applications," Journal of Electronic Materials, vol. 36, pp. 1516-1523, 2007.
[25] J. H. Kim, S. W. Jeong, and H. M. Lee, "Thermodynamics-Aided Alloy Design and Evaluation of Pb-free Solders for High-Temperature Application," Materials Transactions, vol. 43, pp. 1873-1878, 2002.
[26] S. Masayoshi, Y. Tomohiro, S. Kunio, N. Hiroshi, and T. Tadashi, "Effects of Ag Content on the Mechanical Properties of Bi-Ag Alloys Substitutable for Pb based Solder," Transactions of JWRI, vol. 41, pp. 51-54, 2012.
[27] J. N. Lalena, N. F. Dean, and M. W. Weiser, "Experimental Investigation of Ge-Doped Bi-11Ag as a New Pb-Free Solder Alloy for Power Die Attachment," Journal of Electronic Materials, vol. 31, pp. 1244-1249, 2002.
[28] J. E. Spinelli, B. L. Silva, and A. Garcia, "Microstructure, phases morphologies and hardness of a Bi–Ag eutectic alloy for high temperature soldering applications," Materials and Design, vol. 58, pp. 482-490, 2014.
[29] J. L. Murray, "The Al-Zn (Aluminum-Zinc) System," Bulletin of Alloy Phase Diagrams, vol. 4, pp. 55-73, 1983.
[30] S. J. Kim, K. S. Kim, S. S. Kim, C. Y. Kang, and K. Suganuma, "Characteristics of Zn-Al-Cu Alloys for High Temperature Solder Application," Materials Transactions, vol. 49, pp. 1531-1536, 2008.
[31] N. Kang, H. S. Na, S. J. Kim, and C. Y. Kang, "Alloy design of Zn–Al–Cu solder for ultra high temperatures," Journal of Alloys and Compounds, vol. 467, pp. 246-250, 2009.
[32] Y. Takaku, L. Felicia, I. Ohnuma, R. Kainuma, and K. Ishida, "Interfacial Reaction Between Cu Substrates and Zn-Al Base High-Temperature Pb-Free Solders," Journal of Electronic Materials, vol. 37, pp. 314-323, 2008.
[33] Y. Takaku, K. Makino, K. Watanabe, I. Ohnuma, R. Kainuma, and Y. Yamada, "Interfacial Reaction between Zn-Al-Based High-Temperature Solders and Ni Substrate," Journal of Electronic Materials, vol. 38, pp. 54-60, 2009.
[34] M. T. A. El-khair, A. Daoud, and A. Ismail, "Effect of different Al contents on the microstructure, tensile and wear properties of Zn-based alloy," Materials Letters, vol. 58, pp. 1754-1760, 2004.
[35] F. Cheng, F. Gao, Y. Wang, Y. Wu, Z. Ma, and J. Yang, "Sn addition on the tensile properties of high temperature Zn–4Al–3Mg solder alloys," Microelectronics Reliability, vol. 52, pp. 579-584, 2012.
[36] T. Shimizu, H. Ishikawa, I. Ohnuma, and K. Ishida, "Zn-AI-Mg-Ga Alloys as Pb-Free Solder for Die-Attaching Use," Journal of Electronic Materials, vol. 28, pp. 1172-1175, 1999.
[37] A. Haque, B. H. Lim, A. S. M. A. Haseeb, and H. H. Masjuki, "Die attach properties of Zn–Al–Mg–Ga based high-temperature lead-free solder on Cu lead-frame," Journal of Materials Science: Materials in Electronics, vol. 23, pp. 115-123, 2012.
[38] T. Gancarz, J. Pstruś, P. Fima, and S. Mosińska, "Thermal Properties and Wetting Behavior of High Temperature Zn-Al-In Solders," Journal of Materials Engineering and Performance, vol. 21, pp. 599-605, 2012.
[39] A. Haque, Y. S. Won, A. S. M. A. Haseeb, and H. H. Masjuki, "Investigations on Zn-Al-Ge Alloys as High Temperature Die Attach Material," in Electronic System-Integration Technology Conference (ESTC), 2010 3rd, IEEE, pp. 1-5, 2010.
[40] S. W. Chen, C. H. Wang, S. K. Lin, and C. N. Chiu, "Phase Diagrams of Pb-Free Solders and their Related Materials Systems," Journal of Materials Science: Materials in Electronics, vol. 18, pp. 19-37, 2007.
[41] R. Mahmudi and M. Eslami, "Impression Creep Behavior of Zn-Sn High-Temperature Lead-Free Solders," Journal of Electronic Materials, vol. 39, pp. 2495-2502, 2010.
[42] R. Mahmudi and M. Eslami, "Shear strength of the Zn–Sn high-temperature lead-free solders," Journal of Materials Science: Materials in Electronics, vol. 22, pp. 1168-1172, 2011.
[43] J. E. Lee, K. S. Kim, K. Suganuma, J. Takenaka, and K. Hagio, "Interfacial Properties of Zn-Sn Alloys as High Temperature Lead-Free Solder on Cu Substrate," Materials Transactions, vol. 46, pp. 2413-2418, 2005.
[44] J. E. Lee, K. S. Kim, K. Suganuma, M. Inoue, and G. Izuta, "Thermal Properties and Phase Stability of Zn-Sn and Zn-In Alloys," Materials Transactions, vol. 48, pp. 584-593, 2007.
[45] S. Kim, K. S. Kim, S. S. Kim, and K. Suganuma, "Interfacial Reaction and Die Attach Properties of Zn-Sn High-Temperature Solders," Journal of Electronic Materials, vol. 38, pp. 266-272, 2009.
[46] X. Niu and K. L. Lin, "The microstructure and mechanical properties of Zn-25Sn-XAl (X=0–0.09 wt%) high temperature lead free solder," Materials Science and Engineering: A, vol. 677, pp. 384-392, 2016.
[47] X. Niu and K. L. Lin, "Investigations of the wetting behaviors of Zn–25Sn, Zn–25Sn–XPr and Zn–25Sn–YAl high temperature lead free solders in air and Ar ambient," Journal of Alloys and Compounds, vol. 646, pp. 852-858, 2015.
[48] X. Niu and K. L. Lin, "Effects of Al, Pr additions on the wettability and interfacial reaction of Zn–25Sn solder on Cu substrate," Journal of Materials Science: Materials in Electronics, vol. 28, pp. 105-113, 2016.
[49] W. C. Huang and K. L. Lin, "Effect of Ti Addition on Early-Stage Wetting Behavior Between Zn-25Sn-xTi Solder and Cu," Journal of Electronic Materials, vol. 45, pp. 6137-6142, 2016.
[50] M. Abtewa and G. Selvaduray, "Lead-free Solders in Microelectronics," Materials Science and Engineering, vol. 27, pp. 95-141, 2000.
[51] D. R. Askeland, P. P. Fulay, and W. J. Wright, The science and engineering of materials, 6 ed. Cengage Learning, pp. 206, 458, 2010.
[52] W. D. C. Jr., Materials Science and Engineering - An Introduction, 7 ed. John Wiley & Son, Inc., pp. 143, 147, 188, 2007.
[53] W. D. C. Jr., Fundamentals of Materials Science and Engineering, 5 ed. John Wiley & Sons, Inc., pp. 209-210, 2001.
[54] M. Cole and T. Caulfield, "Constant Strain Rate Tensile Properties of Various Lead Based Solder Alloys at 0, 50, and 100°C," Scripta Metallurgica et Materialia, vol. 27, pp. 903-908, 1992.
[55] F. Xing, Y. Lu, C. Luo, Y. Ruan, and X. Qiu, "Coupling modification of microstructure for improving the mechanical properties of Zn-Sn-Cu-Bi high-temperature solder," Materials Letters, vol. 181, pp. 42-46, 2016.
[56] T. Takahashi, S. Komatsu, H. Nishikawa, and T. Takemoto, "Improvement of High-Temperature Performance of Zn-Sn Solder Joint," Journal of Electronic Materials, vol. 39, pp. 1241-1247, 2010.
[57] J. E. Lee, K. S. Kim, M. Inoue, J. Jiang, and K. Suganuma, "Effects of Ag and Cu addition on microstructural properties and oxidation resistance of Sn–Zn eutectic alloy," Journal of Alloys and Compounds, vol. 454, pp. 310-320, 2008.
[58] V. P. Vassiliev and V. A. Lysenko, "Thermodynamic evaluation of the Cu-In-Zn system," Journal of Alloys and Compounds, vol. 681, pp. 606-612, 2016.
[59] S. Furtauer, D. Li, D. Cupid, and H. Flandorfer, "The Cu-Sn phase diagram, Part I: New experimental results," Intermetallics, vol. 34, pp. 142-147, 2013.
[60] W. T. Guo, "The Microstructure and Tensile Properties of Zn-25Sn-xCu High Temperature Pb-free Solder Alloys," Material Science and Engineering, National Cheng Kung University, 2017.
[61] G. L. Leone, P. Niessen, and H. W. Kerr, "The Mechanism of Grain Refinement During Solidification of Zn-Ti Base Alloy," Metallurgical Transactions B, vol. 6B, pp. 503-511, 1975.
[62] G. L. Leone and H. W. Kerr, "Grain Structures and Coupled Growth in Zn-Ti Alloys," Journal of Crystal Growth, vol. 32, pp. 111-116, 1976.
[63] Y. Wang, X. Zeng, W. Ding, A. A. Luo, and A. K. Sachdev, "Grain Refinement of AZ31 Magnesium Alloy by Titanium and Low-Frequency Electromagnetic Casting," Metallurgical and Materials Transactions A, vol. 38, pp. 1358-1366, 2007.
[64] P. Cheng, Y. Zhao, R. Lu, H. Hou, Z. Bu, and F. Yan, "Effect of Ti addition on the microstructure and mechanical properties of cast Mg-Gd-Y-Zn alloys," Materials Science and Engineering: A, vol. 708, pp. 482-491, 2017.
[65] C. L. Chuang, L. C. Tsao, H. K. Lin, and L. P. Feng, "Effects of small amount of active Ti element additions on microstructure and property of Sn3.5Ag0.5Cu solder," Materials Science and Engineering: A, vol. 558, pp. 478-484, 2012.
[66] E. R. Jette and F. Foote, "Precision Determination of Lattice Constants," The Journal of Chemical Physics, vol. 3, pp. 605-616, 1935.
[67] R. R. Pawar and V. T. Deshpande, "The Anisotropy of the Thermal Expansion of a-Titanium," Acta Crystallographica Section A, vol. 24, pp. 316-317, 1968.
[68] B. S. Murty, S. A. Kori, and M. Chakraborty, "Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying," International Materials Reviews, vol. 47, pp. 3-29, 2002.
[69] B. L. Bramfitt, "The Effect of Carbide and Nitride Additions on the Heterogeneous Nucleation Behavior of Liquid Iron," Metallurgical Transactions, vol. 1, pp. 1987-1995, 1970.
[70] G. P. Vassilev, E. S. Dobrev, and J. C. Tedenac, "Phase diagram of the Sn–Zn–Ti system," Journal of Alloys and Compounds, vol. 407, pp. 170-175, 2006.
[71] K. Doi, S. Ono, H. Ohtani, and M. Hasebe, "Thermodynamic Study of the Phase Equilibria in the Sn−Ti−Zn Ternary System," Journal of Phase Equilibria and Diffusion, vol. 27, pp. 63-74, 2006.
[72] L. R. Garcia, W. R. Osório, L. C. Peixoto, and A. Garcia, "Mechanical properties of Sn–Zn lead-free solder alloys based on the microstructure array," Materials Characterization, vol. 61, pp. 212-220, 2010.
[73] X. CHEN, M. LI, X. X. REN, A. M. HU, and D. L. MAO, "Effect of Small Additions of Alloying Elements on the Properties of Sn-Zn Eutectic Alloy," Journal of Electronic Materials, vol. 35, pp. 1734-1739, 2006.
[74] Z. Haidong, I. Shohji, M. Shimoda, and H. Watanabe, "Effect of Strain Rate and Temperature on Tensile Properties of Bi-Based Lead-Free Solder," Materials Transactions, vol. 57, pp. 873-880, 2016.
[75] F. Lang, H. Tanaka, O. Munegata, T. Taguchi, and T. Narita, "The effect of strain rate and temperature on the tensile properties of Sn–3.5Ag solder," Materials Characterization, vol. 54, pp. 223-229, 2005.
[76] X. Chen, J. Zhou, F. Xue, and Y. Yao, "Mechanical deformation behavior and mechanism of Sn-58Bi solder alloys under different temperatures and strain rates," Materials Science and Engineering: A, vol. 662, pp. 251-257, 2016.
[77] X. Q. Shi, W. Zhou, H. L. J. Pang, and Z. P. Wang, "Effect of Temperature and Strain Rate on Mechanical Properties of 63Sn/37Pb Solder Alloy," Journal of Electronic Packaging, vol. 121, pp. 179-185, 1999.
[78] T. Sakai, "Dynamic Recrystallization Microstructures Under Hot Working Conditions," Journal of Materials Processing Technology, vol. 53, pp. 349-361, 1995.
[79] R. W. K. Honeycombe and R. W. Pethen, "Dynamic Recrystallization," Journal of the Less-Common Metals, vol. 28, pp. 201-212, 1972.
[80] T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. J. Jonas, "Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions," Progress in Materials Science, vol. 60, pp. 130-207, 2014.
[81] A. Galiyev, R. Kaibyshev, and G. Gottstein, "Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60," Acta Materialia, vol. 49, pp. 1199-1207, 2001.
[82] J. C. Slater, "Atomic Radii in Crystals," The Journal of Chemical Physics, vol. 41, pp. 3199-3204, 1964.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw