進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0108201718010400
論文名稱(中文) 整合交叉流與生醫阻抗技術之細胞分離轉盤平台設計
論文名稱(英文) The Integration of Crossflow and Bioimpedance Technique in Rotating Disc Platform Design for Cell Separation
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 蕭鈞悅
研究生(英文) Chun-Yueh Hsiao
學號 P86034111
學位類別 碩士
語文別 英文
論文頁數 85頁
口試委員 指導教授-鄭國順
口試委員-林志隆
口試委員-李嘉猷
口試委員-陳彥廷
口試委員-施東河
中文關鍵字 交叉流  定點照護  電阻抗  分離  生物轉盤 
英文關鍵字 tangential flow,  point-of-care (POC)  impedance  separation 
學科別分類
中文摘要 面對現今醫病比例不均及偏遠醫療資源不足的情況下,定點照護即時檢測 (Point-of-Care Test)是一種新趨勢,其具有快捷且操作簡單之優點,大大降低醫療人力需求、也可避免醫護人員直接接觸血液,且在短時間內讓醫師能作最有效率的臨床判斷。然而,POCT中的相關研究中,血液前處理為大部分,若欲提高檢測準確度,將血液有效分離是很重要的一環。故本研究整合交叉流與生醫阻抗技術之細胞分離轉盤平台設計,有別於以往的生物轉盤利用離心力與旋轉角加速度所提供之分力(尤拉力)作為工作原理,此設計將利用旋轉提供動力讓目標溶液能夠在交叉流道中被分離,換言之即為在旋轉碟盤上實踐尺寸篩檢之效果,利用此法可增加被檢測之液體量。本實驗透過改變轉速影響分子分離效果,並結合生醫阻抗技術進行分離效果的量測以減少系統的複雜度。從實驗結果得知,實驗時間僅需3秒鐘,當轉速達至3500 rpm,分離效果可以高達96%。雖然本研究設計具有快速分離之效果,但仍然有很多因素需考量。目前實驗僅以假體進行討論,尚未測試實際細胞在此設計之分離效果,但本研究提出整合交叉流與生醫阻抗技術之細胞分離轉盤平台設計,能作為POCT之血液分離診斷應用之設計參考。
英文摘要 Blood is one of the most important material that can be used to diagnose disease. To prevent from the effects of blood cells for cell free plasma detection, the blood separation efficiency is a critical step. In this study, we present a novel continuous flow separator using a cross-flow filter structure on rotating disc. We combined impedance bioanalysis and a simple blood sample separation mechanism into the centrifugal platform, and thus reduces the system’s complexity. The working principle of the proposed separator is based on size exclusion of cell through tangential flow that induced by rotation which is different from the past rotation disc system. As a pilot study of this new centrifugal flow control element, we demonstrate the efficient separation that can collect the amount of the fluid without the molecules from the sample. While the rotation stopped, the result showed that the separation efficiency was only 96% under 3500 rpm within a short, 3 seconds interval, however, we just can find rare particles in the analyst chamber, thus we assumed that the lower efficiency may cause by the amount of fluid. Though the prototype of the design had performance rapid separation, the device still need to improve. Therefore, we conclude that the proposed device can take as reference for the application of blood separation and use for point-of-care (POC) diagnostic system.
論文目次 CONTENTS
中文摘要 I
ABSTRACT II
誌謝 III
List of Tables VII
List of Figures VIII

Chapter 1 Introduction 1
1.1 Background 1
1.2 Microfluidic 5
1.2.1 Brief introduction 5
1.2.2 Flow micro separation 6
1.3 Lab on Disc (LOD) 10
1.3.1 Brief introduction 10
1.3.2 Principle of LOD 11
1.3.3 Application of centrifugal microfluidics 13
1.4 Biosensor development and category 15
1.4.1 Concept of a biosensor 15
1.4.2 Different types of biosensors 16
1.5 Electric Cell Substrate Impedance Sensing (ECIS) 21
1.5.1 Brief introduction 21
1.5.2 Principle of ECIS 22
1.5.3 Application of electric impedance 23
1.6 Clinical Statement 25
1.7 Motivation and Purpose 27
1.8 Literature Review 28
1.9 Organization of This Thesis 31
Chapter 2 Materials and Methods 32
2.1 Research Overview 32
2.2 Lab on a Disc 33
2.2.1 Biochip design and working principle 33
2.2.2 Fabrication of Biochip 34
2.2.3 Design and manufacture of the biosensor 40
2.2.4 The birth of the LOD 41
2.3 Propulsion Device 42
2.3.1 Establishment of the motor device 42
2.3.2 Interface of motor control 43
2.4 Detection 45
2.4.1 Circuit theory and design 46
2.4.2 Firmware 47
2.4.3 Setting up the impedance module measurement 48
2.4.4 Calibration of the impedance module 49
2.5 Reagent 51
2.6 System organization and human interface development 52
Chapter 3 Results 54
3.1 Fabrication of Microchannel for the LOD 54
3.2 Electrode Property 56
3.3 Electric Property of Phantom 58
3.4 Performance of Impedance Analyzer 59
3.5 System Performance 60
3.5.1 Phantom measurement (45 um microspheres in DI water) 60
3.5.2 Phantom measurement (mixture of microspheres in DI water) 61
3.6 User interface 62
Chapter 4 Discussions 63
4.1 Microfluidic Channel Fabrication 63
4.2 Electrode Property 66
4.3 Phantom Property 67
4.4 Phantom Measurement 68
Chapter 5 Conclusions and Prospects 71
5.1 Conclusions 71
5.2 Prospects 72
References 73
Appendix 77

參考文獻 [1] P. Yager, G. J. Domingo, and J. Gerdes, “Point-of-Care Diagnostics for Global Health,” Annu. Rev. Biomed. Eng., vol. 10, no. 1, pp. 107–144, 2008.
[2] P. von Lode, “Point-of-care immunotesting: Approaching the analytical performance of central laboratory methods,” Clin. Biochem., vol. 38, no. 7, pp. 591–606, Jul. 2005.
[3] V. Gubala, L. F. Harris, A. J. Ricco, M. X. Tan, and D. E. Williams, “Point of Care Diagnostics: Status and Future,” Anal. Chem., vol. 84, no. 2, pp. 487–515, Jan. 2012.
[4] A. Tay, A. Pavesi, S. R. Yazdi, C. T. Lim, and M. E. Warkiani, “Advances in microfluidics in combating infectious diseases,” Biotechnol. Adv., vol. 34, no. 4, pp. 404–421, Jul. 2016.
[5] E.-S. Kim, E. H. Ahn, E. Chung, and D.-H. Kim, “Recent advances in nanobiotechnology and high-throughput molecular techniques for systems biomedicine,” Mol. Cells, vol. 36, no. 6, pp. 477–484, Dec. 2013.
[6] M. Madou, J. Zoval, G. Jia, H. Kido, J. Kim, and N. Kim, “Lab on a Cd,” Annu. Rev. Biomed. Eng., vol. 8, no. 1, pp. 601–628, 2006.
[7] M. Tang, G. Wang, S.-K. Kong, and H.-P. Ho, “A Review of Biomedical Centrifugal Microfluidic Platforms,” Micromachines, vol. 7, no. 2, p. 26, Feb. 2016.
[8] O. Strohmeier et al., “Centrifugal microfluidic platforms: advanced unit operations and applications,” Chem. Soc. Rev., vol. 44, no. 17, pp. 6187–6229, 2015.
[9] N. Pamme, “Continuous flow separations in microfluidic devices,” Lab. Chip, vol. 7, no. 12, pp. 1644–1659, Nov. 2007.
[10] M. I. Mohammed and M. P. Y. Desmulliez, “Autonomous capillary microfluidic system with embedded optics for improved troponin I cardiac biomarker detection,” Biosens. Bioelectron., vol. 61, pp. 478–484, Nov. 2014.
[11] J. Wang, Design and implementation of an impedance analyzer based on Arduino Uno : A pilot study of bioelectrical impedance analysis. 2015.
[12] J. Chen et al., “Blood plasma separation microfluidic chip with gradual filtration,” Microelectron. Eng., vol. 128, pp. 36–41, Oct. 2014.
[13] W. a. H. S. S. Wewala, J. K. Kasi, A. K. Kasi, and N. Afzulpurkar, “Cell Separation Through Ascending and Descending Curvilinear Microchannels,” Appl. Mech. Mater., vol. 300–301, pp. 1649–1653, 2013.
[14] N. Nivedita and I. Papautsky, “Continuous separation of blood cells in spiral microfluidic devices,” Biomicrofluidics, vol. 7, no. 5, p. 054101, Sep. 2013.
[15] M. G. Lee, J. H. Shin, S. Choi, and J.-K. Park, “Enhanced blood plasma separation by modulation of inertial lift force,” Sens. Actuators B Chem., vol. 190, pp. 311–317, Jan. 2014.
[16] X. Xu, P. Sarder, Z. Li, and A. Nehorai, “Optimization of microfluidic microsphere-trap arrays,” Biomicrofluidics, vol. 7, no. 1, Feb. 2013.
[17] T. G. Kang, Y.-J. Yoon, H. Ji, P. Y. Lim, and Y. Chen, “A continuous flow micro filtration device for plasma/blood separation using submicron vertical pillar gap structures,” J. Micromechanics Microengineering, vol. 24, no. 8, p. 087001, 2014.
[18] J. Zhang, Q. Guo, M. Liu, and J. Yang, “A lab-on-CD prototype for high-speed blood separation,” J. Micromechanics Microengineering, vol. 18, no. 12, p. 125025, 2008.
[19] S. Hugo, K. Land, M. Madou, and H. Kido, “A centrifugal microfluidic platform for point-of-care diagnostic applications,” South Afr. J. Sci., vol. 110, no. 1–2, pp. 1–7, Jan. 2014.
[20] Y. Deng et al., “Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips,” Biomicrofluidics, vol. 8, no. 2, p. 024101, Mar. 2014.
[21] R. Gorkin et al., “Centrifugal microfluidics for biomedical applications,” Lab. Chip, vol. 10, no. 14, pp. 1758–1773, Jun. 2010.
[22] B. S. Lee et al., “A fully automated immunoassay from whole blood on a disc,” Lab. Chip, vol. 9, no. 11, pp. 1548–1555, Jun. 2009.
[23] B. S. Lee et al., “Fully integrated lab-on-a-disc for simultaneous analysis of biochemistry and immunoassay from whole blood,” Lab. Chip, vol. 11, no. 1, pp. 70–78, Dec. 2010.
[24] S. M. Imaad, N. Lord, G. Kulsharova, and G. L. Liu, “Microparticle and cell counting with digital microfluidic compact disc using standard CD drive,” Lab. Chip, vol. 11, no. 8, pp. 1448–1456, Apr. 2011.
[25] C. E. Nwankire, A. Venkatanarayanan, T. Glennon, T. E. Keyes, R. J. Forster, and J. Ducrée, “Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform,” Biosens. Bioelectron., vol. 68, pp. 382–389, Jun. 2015.
[26] N. Godino, E. Vereshchagina, R. Gorkin, and J. Ducrée, “Centrifugal automation of a triglyceride bioassay on a low-cost hybrid paper-polymer device,” Microfluid. Nanofluidics, vol. 16, no. 5, pp. 895–905, May 2014.
[27] M.-S. Choi and J.-C. Yoo, “Automated Centrifugal-Microfluidic Platform for DNA Purification Using Laser Burst Valve and Coriolis Effect,” Appl. Biochem. Biotechnol., vol. 175, no. 8, pp. 3778–3787, Apr. 2015.
[28] Peng K.-J., “使用田口法於指叉式電容性生物感測器的最佳化設計之二維電場模擬, Two-dimensional Electric-field Simulation for Optimal Design of Interdigitated Capacitive Biosensor by Taguchi Method,” Natl. Cent. Univ., Aug. 2011.
[29] K. N. Han et al., “Immunoassay of cardiac biomarkers using a photodiode array biochip,” Sens. Actuators B Chem., vol. 207, pp. 470–476, Feb. 2015.
[30] W. U. Dittmer et al., “Rapid, high sensitivity, point-of-care test for cardiac troponin based on optomagnetic biosensor,” Clin. Chim. Acta, vol. 411, no. 11, pp. 868–873, Jun. 2010.
[31] R. F. Dutra and L. T. Kubota, “An SPR immunosensor for human cardiac troponin T using specific binding avidin to biotin at carboxymethyldextran-modified gold chip,” Clin. Chim. Acta, vol. 376, no. 1–2, pp. 114–120, Feb. 2007.
[32] W. Lee et al., “A centrifugally actuated point-of-care testing system for the surface acoustic wave immunosensing of cardiac troponin I,” Analyst, vol. 138, no. 9, pp. 2558–2566, Apr. 2013.
[33] S. Ko, B. Kim, S.-S. Jo, S. Y. Oh, and J.-K. Park, “Electrochemical detection of cardiac troponin I using a microchip with the surface-functionalized poly(dimethylsiloxane) channel,” Biosens. Bioelectron., vol. 23, no. 1, pp. 51–59, Aug. 2007.
[34] W. G. Jiang, Electric Cell-Substrate Impedance Sensing and Cancer Metastasis. Springer Science & Business Media, 2012.
[35] I. Giaever and C. R. Keese, “A morphological biosensor for mammalian cells,” Nature, vol. 366, no. 6455, pp. 591–592, Dec. 1993.
[36] J. Wegener, C. R. Keese, and I. Giaever, “Electric Cell–Substrate Impedance Sensing (ECIS) as a Noninvasive Means to Monitor the Kinetics of Cell Spreading to Artificial Surfaces,” Exp. Cell Res., vol. 259, no. 1, pp. 158–166, Aug. 2000.
[37] P.-V. Jaime, C. Joan, C.-F. Jordi, R.-V. Ivón, and M.-C. Pere Ll., “Bioimpedance Technique for Point-of-Care Devices Relying on Disposable Label-Free Sensors – An Anemia Detection Case,” INTECH, 2014.
[38] T. A. Nguyen, T.-I. Yin, D. Reyes, and G. A. Urban, “Microfluidic Chip with Integrated Electrical Cell-Impedance Sensing for Monitoring Single Cancer Cell Migration in Three-Dimensional Matrixes,” Anal. Chem., vol. 85, no. 22, pp. 11068–11076, Nov. 2013.
[39] D. K. Kamat, D. Bagul, and P. M. Patil, “Blood Glucose Measurement Using Bioimpedance Technique,” Adv. Electron., vol. 2014, Dec. 2014.
[40] M. R. R. Khan, A. Khalilian, and S.-W. Kang, “Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane,” Sensors, vol. 16, no. 2, p. 265, Feb. 2016.
[41] H.-W. Jung, Y. W. Chang, G. Lee, S. Cho, M.-J. Kang, and J.-C. Pyun, “A capacitive biosensor based on an interdigitated electrode with nanoislands,” Anal. Chim. Acta, vol. 844, pp. 27–34, Sep. 2014.
[42] J. H. Yeon and J.-K. Park, “Cytotoxicity test based on electrochemical impedance measurement of HepG2 cultured in microfabricated cell chip,” Anal. Biochem., vol. 341, no. 2, pp. 308–315, Jun. 2005.
[43] J. S. Daniels and N. Pourmand, “Label-Free Impedance Biosensors: Opportunities and Challenges,” Electroanalysis, vol. 19, no. 12, pp. 1239–1257, Jun. 2007.
[44] “Instructions for Use Samsung LABGEO IB10,” Samsung LABGEO IB10, 2015.
[45] C. W. S. Iv, C. D. Reyes, and G. P. López, “Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation,” Lab. Chip, vol. 15, no. 5, pp. 1230–1249, Feb. 2015.
[46] T. Li, Y. Fan, Y. Cheng, and J. Yang, “An electrochemical Lab-on-a-CD system for parallel whole blood analysis,” Lab. Chip, vol. 13, no. 13, pp. 2634–2640, Jun. 2013.
[47] J.-N. Kuo and X.-F. Chen, “Plasma separation and preparation on centrifugal microfluidic disk for blood assays,” Microsyst. Technol., vol. 21, no. 11, pp. 2485–2494, Nov. 2015.
[48] D. J. Kinahan, S. M. Kearney, M. T. Glynn, and J. Ducrée, “Spira mirabilis enhanced whole blood processing in a lab-on-a-disk,” Sens. Actuators Phys., vol. 215, pp. 71–76, Aug. 2014.
[49] T. Li, L. Zhang, K. M. Leung, and J. Yang, “Out-of-plane microvalves for whole blood separation on lab-on-a-CD,” J. Micromechanics Microengineering, vol. 20, no. 10, p. 105024, Oct. 2010.
[50] R. Burger, N. Reis, J. G. da Fonseca, and J. Ducrée, “Plasma extraction by centrifugo-pneumatically induced gating of flow,” J. Micromechanics Microengineering, vol. 23, no. 3, p. 035035, 2013.
[51] L. Riegger et al., “Single-step centrifugal hematocrit determination on a 10-$ processing device,” Biomed. Microdevices, vol. 9, no. 6, pp. 795–799, Dec. 2007.
[52] J. Liu et al., “Fabrication of SU-8 moulds on glass substrates by using a common thin negative photoresist as an adhesive layer,” J. Micromechanics Microengineering, vol. 24, no. 3, p. 035009, 2014.
[53] 莊勝雄, 游士諄, 林明俊, and 周祖亮, “SU-8 光阻在矽晶圓基材上製作微流道面板之研究,” 南亞學報第二十六期, pp. 23–36, 2006.
[54] X. Ren et al., “Design, fabrication, and characterization of archaeal tetraether free-standing planar membranes in a PDMS- and PCB-based fluidic platform,” ACS Appl. Mater. Interfaces, vol. 6, no. 15, pp. 12618–12628, Aug. 2014.
[55] J. Mr Bhimrao Sheshrao and R. Mr. S. D., “Embedded System For Impedance Measurement,” IJAICT, vol. 3, no. 3, pp. 1143–1146, Jul. 2016.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw