進階搜尋


下載電子全文  
系統識別號 U0026-0108201717173800
論文名稱(中文) 半導金屬碲化物之熱電性質與電子結構
論文名稱(英文) Thermoelectrics and Electronic Structure of a Semiconductive Metal Telluride
校院名稱 成功大學
系所名稱(中) 化學系
系所名稱(英) Department of Chemistry
學年度 105
學期 2
出版年 106
研究生(中文) 李旻育
研究生(英文) Min-Yu Lee
學號 L36044189
學位類別 碩士
語文別 中文
論文頁數 44頁
口試委員 指導教授-許桂芳
口試委員-陳燕華
口試委員-林嘉和
中文關鍵字 金屬碲化物  熱電性質  電子結構 
英文關鍵字 metal telluride  thermoelectrics  electronic structure 
學科別分類
中文摘要 本論文利用固態反應法,在高溫650 ºC合成出一個具有新穎結構的金屬碲化物Ba3Ag3InTe6。其晶系及空間群為Orthorhombic Cmc21,單位晶格的a、b、c軸長分別為 a = 4.5669(3) Å, b = 27.9366(16) Å, c = 13.3819(8) Å。此化合物之結構是由AgTe4四面體以Te當作共用邊相互連結,形成皺褶層狀結構[Ag3Te4]5-。InTe4四面體以Te為共用角,懸掛在層狀結構[Ag3Te4]5-的兩側,形成鏈狀結構[InTe2]-。Ba2+為陽離子,填充在孔道中作為電荷平衡的角色。經由紫外光可見光近紅外光吸收光譜儀鑑定化合物的能隙大概落在0.48 eV。
熱電性質量測的結果顯示,此化合物是屬於P型半導體。在320400 K溫度區間席貝克係數為325‒334 μV/K。電導率和熱導率在400 K時分別為9.4 S/cm和0.35 W/mK, ZT值為0.11。
電子能帶結構計算指出此化合物是屬於直接能隙,其電洞傳遞和電子傳遞分別主要藉由AgTe4四面體所組成的層狀結構以及InTe4四面體所組成的鏈狀結構所主導。

英文摘要 A new metal telluride Ba3Ag3InTe6 was synthesized by solid-state reaction at 650 ºC. Crystal Data: orthorhombic, Cmc21, a = 4.5669(3) Å, b = 27.9366(16) Å, c = 13.3819(8) Å, V = 1707.3(2) Å3, and Z = 4. This compound adopts a new two-dimensional structure constructed by AgTe4 and InTe4 tetrahedra and Ba2+ cations. The edge-sharing AgTe4 tetrahedra form a puckered layer of [Ag3Te4]5‒ and the corner-sharing InTe4 tetrahedra form a zig-zag chain of [InTe2]‒ that dangles from both edges of the layer. The band gap determined by UV-vis-NIR absorption spectra is estimated to be around 0.48 eV. This compound is a p-type semiconductor with high Seebeck coefficients of 325‒334 μV/K in an entire temperature range of 320–400 K. The electrical conductivity of 9.4 S/cm and the thermal conductivity of 0.35 W/mK give a ZT value of 0.11 at 400 K. The electronic band structure reveals a direct band gap at the Γ point of face centered primitive Brillouin zone. The density of states (DOS) analysis shows that the p-type hole transport is mostly achieved through the layer consisting of AgTe4 tetrahedra.
論文目次 摘要 I
Abstract II
謝誌 X
目錄 XI
表目錄 XIII
圖目錄 XIV
第一章 緒論 1
第二章 半導金屬碲化物之合成與鑑定 6
2.1 合成方法 6
2.2 單晶X光繞射分析 7
2.3 能量散佈光譜儀分析 10
2.4 粉末X-光繞射分析 11
2.5 微差熱分析 11
2.6 紫外-可見-近紅外光光譜儀 12
2.7 電子結構計算 13
2.8 熱電性質測量 14
第三章 結構與性質討論 15
3.1 晶體結構 15
3.2 純相合成 20
3.3 能隙分析 22
3.4 電子結構 24
3.5 熱電性質 30
第四章 結論 35
第五章 參考文獻 36
第六章 附錄 41


參考文獻 [1] F. J. DiSalvo, Science 1999, 285, 703706
[2] T. M. Tritt, Science 1999, 283, 804.
[3] M. G. Kanatzidis, Chem. Mater. 2010, 22, 646659
[4] J. M. Tarascon, M. Armand Nature 2001, 414, 359367
[5] N. Finlayson, W. C. Banyai, C. T. Seaton, J. Opt. Soc. Am. 1989, 6B, 675684
[6] Y. Kim, I. S. Seo, S. W. Martin, J. Baek, P. S. Halasyamani, N. Arumugam, H. Steinfink, Chem. Mater. 2008, 20, 60486052
[7] S. C. Abrahams, J. L. Bernstein, J. Chem. Phy. 1974, 61, 11401146
[8] A. Stadler, Materials 2012, 5, 661683
[9] H. Lin, Y. Liu, L.-J. Zhou, H.-J. Zhao, L. Chen, Inorg. Chem. 2016, 55, 4470−4475
[10] (a) CRC Handbook of Thermoelectrics, ed. D. M. Rowe, CRC Press, Boca Raton, FL, 1995; (b) Thermoelectrics Handbook: Macro To Nano, ed. D. M. Rowe, CRC/Taylor & Francis, Boca Raton, 2006.
[11] (a) G. Tai, W. Guo and Z. Zhang, Cryst. Growth Des., 2008, 8, 2906–2911; (b) G. Tai, B. Zhou and W. Guo, J. Phys. Chem. C, 2008, 112, 11314–11318; (c) G. Tai, C. Miao, Y. Wang, Y. Bai, H. Zhang and W. Guo, Nanoscale Res. Lett.,2011, 6, 329.
[12] D.Y. Chung, K. S. Choi, L. Iordanidis, J. L. Schindler, P. W. Brazis, C. R. Kannewurf, B. Chen, S. Hu, C. Uher, M. G. Kanatzidis, Chem. Mater. 1997, 9, 3060.
[13] A. Mrotzek, D.-Y. Chung, T. Hogen, M. G. Kanatzidis, J. Mater. Chem. 2000, 10, 1667.
[14] J. Androulakis, K. F. Hsu, H. Kong, C. Uher, J. J. Angelo, A. Downey, T. Hogen, M. G. Kanatzidis, Adv. Mater. 2006, 18, 1170.
[15] S. Derakhshan, A. Assoud, N. J. Taylor, H. Kleinke, Intermetallics. 2006, 14, 198.
[16] D. Y. Chung, T. P. Hogen, M. Rocci-Lane, P. Brazis, J. R. Ireland,
C. R. Kannewurf, M. Bastea, C. Uher, M. G. Kanatzidis, J. Am. Chem. Soc. 2004, 126, 6414.
[17] D. M. Rowe, CRC Handbook of Thermoelectric. CRC Press. 1995.
[18] J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. J. Snyder, Science. 2008, 321, 554.
[19] K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V. P. Dravid, M. G. Kanatzidis, Nat. Chem. 2011, 3, 160.
[20] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, Science. 2008, 320, 634.
[21] K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, M. G. Kanatzidis, Nature. 2012, 489, 414.
[22] A. Adam, Mater. Res. Bull. 2007, 42, 1986.
[23] D. Y. Chung, S. Loo, C. Uher, W. Chen, J. S. Dyck, M. G. Kanatzidis, Chem. Mater. 2012, 24, 1854.
[24] K. Sridhar, K. Chattopadhyay, J. Alloys Compd. 1998, 264, 193-298.
[25] M. Fujikane, K. Kurosaki, H. Muta, S. Yamanaka, J. Alloys Compd. 2005, 393, 299-301.
[26] H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, L. Qiang, C. Uher, T. Day, G. J. Snyder, Nat. Mater. 2012, 11, 422.
[27] Y. C. Wang, DiSalvo, and F. J. J. Solid State Chem. 2001, 156, 4450.
[28] R. Patschke, X. Zhang, D. Singh, J. Schindler, C. R. Kannewurf, N. Lowhorn, T. Tritt, G.S. Nolas, M. G. Kanatzidis, Chem. Mater. 2001, 13, 613621.
[29] A. Assoud, S. Thomas, B. Sutherland, H. Zhang, T. M. Tritt, H. Kleinke, Chem. Mater. 2006, 18, 3866.
[30] Y. Cui, A. Assoud, J. Xu, H. Kleinke, Inorg. Chem. 2007, 46, 12151221.
[31] O. Mayasree, Y. J. Cui, A. Assoud, H. Kleinke, Inorg. Chem. 2010, 49, 65186524.
[32] B. A. Kuropatwa, A. Assoud, H. Kleinke, Inorg. Chem. 2012, 51, 52995304.
[33] M. Fujikane, K. Kurosaki, H. Muta, S. Yamanaka, J. Alloys Compd. 393 (2005) 299301.
[34] M. Fujikane, K. Kurosaki, H. Muta, S. Yamanaka, J. Alloys Compd. 396 (2005) 280–282.
[35] H. Matsushita, E. Hagiwara, A. Katsui, J. Mater. Sci. 39 (2004) 6299–6301.
[36] D. P. Young, C.L. Brown, P. Khalifah, R. J. Cava, A. P. Ramirez, J. Appl. Phys. 88 (2000) 5221–5224.
[37] A. Assoud, Y. Cui, S. Thomas, B. Sutherland, H. Kleinke, Journal of Solid State Chemistry 181 (2008) 2024–200
[38] G. M. Sheldrick, Acta Cryst. 2015. C71, 38.
[39] W.-H. Lai, A. S. Haynes, L. Frazer, Y.-M. Chang, T.-K. Liu, J.-F. Lin, I. C. Liang, H.-S. Sheu, J. B. Ketterson, M. G. Kanatzidis and K.-F. Hsu, Chem. Mater, 2015, 27, 1316–1326.
[40] R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V. R. Saunders and C. M. Zicovich-Wilson, Z. Kristallogr., 2005, 220, 571–573.
[41] D. I. Bilc, R. Orlando, R. Shaltaf, G. M. Rignanese, J. Iniguez and Ph. Ghosez, Phys. Rev. B: Condens. Matter, 2008, 77, 165107.
[42] Z. Wu and R. E. Cohen, Phys. Rev. B: Condens. Matter, 2006, 73, 235116.
[43] A. D. Becke, J. Chem. Phys., 1996, 104, 1040–1046.
[44] S. Piskunov, E. Heifets, R. I. Eglitis and G. Borstel, Comput. Mater. Sci., 2004, 29, 165–178.
[45] R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, P. D’Arco, M. Llunell, M. Causà and Y. Noël, CRYSTAL14 User’s Manual, University of Torino,2014. (http://www.crystal.unito.it/Basis_Sets/silver.html).
[46] B. Metz, H. Stoll and M. Dolg, J. Chem. Phys., 2000, 113, 2563–2569.
[47] K. A. Peterson, J. Chem. Phys., 2003, 119, 11099–11112.
[48] K. A. Peterson, D. Figgen, E. Goll, H. Stoll and M. Dolg, J.Chem. Phys., 2003, 119, 11113–11123.
[49] Z. Wu and R. E. Cohen, Phys. Rev. B: Condens. Matter, 2006, 73, 235116.
[50] S. Paria, T. Ohta, Y. Morimoto, T. Ogura, H. Sugimoto, N. Fujieda, K Goto, K. Asano, T. Suzuki, S. Itoh, J. Am. Chem. Soc. 2015, 137, 10870−10873.
[51] (a) X. Zhang, J. Li, B. Foran, S. Lee, H.-Y. Guo, T. Hogan, C. R. Kannewurf and M. G. Kanatzidis, J. Am. Chem. Soc., 1995, 117, 10513–10520; (b) O. Gourdon, J. Hanko, F. Boucher, V. Petricek, M.-H. Whangbo, M. G. Kanatzidis and M. Evain, Inorg. Chem., 2000, 39, 1398–1409.
[52] J. Li, H.-Y. Guo and R. A. Yglesias, Chem. Mater., 1995, 7,599–601.
[53] K. O. Klepp and W. Sparlinek, Z. Kristallogr., 1996, 211, 393–394.
[54] A. Assoud, S. Derakhshan, N. Soheilnia, H. Kleinke, Chem. Mater. 2004, 16, 4193-4198.
[55] K. Volk, G. Cordier, R. Cook, H. Scha¨fer, Z. Naturforsch. B 1980, 35, 136-140.
[56] A. Assoud, N. Soheilnia, H. Kleinke, Chem. Mater. 2004, 16, 2215-2221.
[57] A. Assoud, N. Soheilnia, H. Kleinke, J. Solid State Chem. 2005, 178, 1087-1093.
[58] J. O. Sofo, G. D. Mahan, Phys. Rev. B 1994, 49, 45654570.
[59] A. Assoud, N. Soheilnia, H. Kleinke, Chem. Mater. 2004, 16, 2215-2221.
[60] A. Assoud, N. Soheilnia, H. Kleinke, J. Solid State Chem. 2005, 178, 1087-1093.
[61] A. Assoud, S. Derakhshan, N. Soheilnia, H. Kleinke, Chem. Mater. 2004, 16, 4193-4198.
[62] J. O. Sofo and G. D. Mahan, Phys. Rev. B, 1994, 49, 4565−4570.
[63] D. I. Bilc, T. Kyratsi, D. Y. Chung, P. Larson, S. D. Mahanti and M. G. Kanatzidis, Phys. Rev. B: Condens. Matter, 2005, 71, 085116.
[64] D. I. Bilc, G. Hautier, D. Waroquiers, G.-M. Rignanese and Ph. Ghosez, Phys. Rev. Lett., 2015, 114, 136601.
[65] D. I. Bilc, C. G. Floare, L. P. Zârbo, S. Garabagiu, S. Lemal and Ph. Ghosez, J. Phys. Chem. C, 2016, 120, 25678.
[66] C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, New York, 8th edn, 2004.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw