進階搜尋


下載電子全文  
系統識別號 U0026-0108201716231700
論文名稱(中文) 含希夫鹼之三氮唑衍生物的合成及其在化學感測器之應用
論文名稱(英文) A Turn-on Fluorescent Sensor Based on Schiff base-containing Triazole for Zn2+ Detection
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 簡彣珊
研究生(英文) Wen-Shan Chien
學號 N36041167
學位類別 碩士
語文別 中文
論文頁數 75頁
口試委員 指導教授-陳雲
口試委員-許聯崇
口試委員-許梅娟
口試委員-侯聖澍
口試委員-吳文中
中文關鍵字 螢光感測器  希夫鹼  光誘導電子轉移  鋅離子 
英文關鍵字 fluorescent sensor  Schiff base  photo-induced electron transfer  zinc ion 
學科別分類
中文摘要 近年來螢光感測器應用於對金屬離子的感測越來越受到關注,金屬離子維持人體許多功能的運行,金屬離子在人體中的量過多或過少均會造成危害,因此檢測金屬離子在環境中的含量變得極其重要。相較於其他測定金屬離子的儀器,螢光感測器有許多優點,例如:容易操作、成本低、量測時間短。
本研究合成出含希夫鹼之三氮唑衍生物S1作為金屬離子螢光感測器
, S1因光誘導電子轉移(photo-induced electron transfer, PET)的作用,螢光強度低。於乙醇/水(4:1, v/v)中探討對金屬離子的辨識能力及形成錯合物的機制,鋅離子選擇性地增強螢光強度(λem = 465 nm,53倍),造成此現象的原因是S1與鋅離子作用使光誘導電子轉移被抑制,進而造成螢光增強。同時螢光光譜產生藍位移,推測是鋅離子與電子給予imine基(-C=N-)氮原子的強作用,提高了激發態與基態間的能量差。由Job plot實驗得到S1與鋅離子形成錯合物的配位比例是1:3,由濃度滴定實驗得到偵測極限(LOD)是1.23 × 10-7 M。另外,S1與鋅離子形成錯合物造成顏色改變可直接以肉眼辨識,以Na2EDTA測試S1之可逆性,發現螢光強度的回復性佳,且S1在pH = 4.2到pH = 11的環境下皆可有效地感測鋅離子。
英文摘要 A Schiff base-containing fluorescent sensor S1 was synthesized by Suzuki coupling reaction. The structure is characterized by 1H NMR and MALDI/TOF-MS. S1 was developed for the detection of Zn2+ ion in EtOH-H2O solution. It exhibited weak fluorescence due to photo-induced electron transfer (PET). However, the strong fluorescent emission can be observed in the prescence of Zn2+ (20 eq) with over 53-fold enhancement at 465 nm. Furthermore, the blue shift in emission are attributed to the coordination of imine nitrogen with Zn2+ which increase the band gap between the excited state and ground state. The stoichiometric ratio between S1 and Zn2+ is 1:3 obtained by Job plot. The limit of optical detection (LOD) is 1.23 × 10-7 M derived from titration experiment. The formation of S1-Zn2+ is chemically reversible and the color change could be directly observed by naked eye. In addition, S1 showed good sensing ability under wide pH value ranging from 4.2 to 11.
論文目次 摘要 I
誌謝 IX
目錄 X
圖目錄 XIII
表目錄 XVI
流程目錄 XVI
第一章 緒論. 1
1-1 前言 1
1-2 感測器介紹 2
1-2-1 化學感測器 2
1-2-2 金屬離子感測 3
1-2-3 螢光感測器 3
1-3 感測器的特性 4
1-3-1靈敏度 4
1-3-2 選擇性 5
1-3-3 可逆性 5
1-3-4 準確性 6
第二章 文獻回顧 7
2-1 螢光原理介紹 7
2-1-1 分子失活過程 8
2-1-2 影響螢光的因素 10
2-2 溶劑效應 14
2-3 螢光感測器的訊號傳遞與作用機制 16
2-3-1光誘導電子轉移 (photoinduced electron transfer,PET) 16
2-3-2光誘導的電荷轉移 (photoinduced charge transfer,PCT) 17
2-3-3光誘導能量轉移(photoinduced energy transfer) 19
2-3-4 激發雙體(excimer)或激發複合體(exciplex)的形成 20
2-3-5 聚集誘導放光(aggregation induced emission) 21
2-3-6 C=N異構化(isomerization) 22
2-3-7激發態分子內質子轉移(excited state intramolecular proton transfer,ESIPT) 23
2-4 希夫鹼(Schiff base) 25
2-4-1 以希夫鹼作為辨識基團之感測器介紹 26
2-5 Suzuki coupling反應 29
2-6 研究動機 30
第三章 實驗內容 31
3-1 實驗裝置與設備 31
3-2 鑑定測量儀器 32
3-3 感測器S1與金屬離子溶液配製 34
3-4 實驗藥品與材料 35
3-5 反應流程 37
3-6 單體合成 39
第四章 結果與討論 42
4-1 單體結構鑑定 42
4-1-1 核磁共振光譜 (NMR) 42
4-1-2基質輔助雷射脫附游離飛行質譜儀 (MALDI/TOF-MS) 44
4-2 光學性質探討 51
4-2-1 感測器S1對不同金屬離子的感測能力 51
4-2-2 光譜變化的機制探討 54
4-2-3 濃度滴定實驗 55
4-2-4 Job plot實驗 57
4-2-5 結合常數計算 58
4-2-6 偵測極限(Detection limit) 59
4-2-7 雙離子實驗 60
4-2-8 感測器S1在不同pH值下的影響 61
4-3 S1-Zn2+錯合物核磁共振圖譜 64
4-4化學感測器S1的可逆性 65
4-5 感測器S1作為Zn2+試紙 67
第五章 結論 68
參考文獻 69
參考文獻 [1] R. Chitturi, V. R. Baddam, L. Prasad, L. Prashanth, and K. Kattapagari, "A review on role of essential trace elements in health and disease," Journal of Dr. NTR University of Health Sciences, 4, 75-79 (2015).
[2] S. J. Stohs and D. Bagchi, "Oxidative mechanisms in the toxicity of metal ions," Free Radic Biol Med, 18, 321-336 (1995).
[3] P. S. Hariharan and S. P. Anthony, "Selective turn-on fluorescence for Zn2+ and Zn2+ + Cd2+ metal ions by single Schiff base chemosensor," Analytica Chimica Acta, 848, 74-79 (2014).
[4] B. Lukowiak, B. Vandewalle, R. Riachy, J. Kerr-Conte, V. Gmyr, S. Belaich, J. Lefebvre, and F. Pattou, "Identification and purification of functional human β-cells by a new specific zinc-fluorescent probe," Journal of Histochemistry and Cytochemistry, 49, 519-527 (2001).
[5] E. L. Que, D. W. Domaille, and C. J. Chang, "Metals in neurobiology: probing their chemistry and biology with molecular imaging," Chemical Reviews, 108, 1517-1549 (2008).
[6] S. J. Lippard and J. M. Berg, Principles of bioinorganic chemistry: University Science Books (1994).
[7] J. M. Berg and Y. Shi, "The galvanization of biology: a growing appreciation for the roles of zinc," Science, 271, 1081-1085 (1996).
[8] D. S. Auld, "Zinc coordination sphere in biochemical zinc sites," Biometals, 14, 271-313, (2001).
[9] Z. Wu, Y. Zhang, J. S. Ma, and G. Yang, "Ratiometric Zn2+ sensor and strategy for Hg2+ selective recognition by central metal ion replacement," Inorganic chemistry, 45, 3140-3142 (2006).
[10] S. Assaf and S.-H. Chung, "Release of endogenous Zn2+ from brain tissue during activity," Nature, 308, 734-736 (1984).
[11] G. A. Howell, M. G. Welch, and C. J. Frederickson, "Stimulation-induced uptake and release of zinc in hippocampal slices," Nature, 308, 736-738 (1984).
[12] K. Cammann, U. Lemke, A. Rohen, J. Sander, H. wilken, B. Winter,"Chemical sensors and biosensors ― principles and applications," Angewandte Chemie International Edition in English, 30, 516-539 (1991).
[13] A. P. de Silva, H. Q. Gunaratne, T. Gunnlaugsson, A. J. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, "Signaling Recognition Events with Fluorescent Sensors and Switches," Chemical Reviews, 97, 1515-1566 (1997).
[14] B. Valeur and I. Leray, "Design principles of fluorescent molecular sensors for cation recognition," Coordination Chemistry Reviews, 205, 3-40 (2000).
[15] W. S. Xia, R. H. Schmehl, C. J. Li, J. T. Mague, C. P. Luo, and D. M. Guldi, "Chemosensors for Lead(II) and Alkali Metal Ions Based on Self-Assembling Fluorescence Enhancement (SAFE)," The Journal of Physical Chemistry B, 106, 833-843 (2002).
[16] A. W. Czarnik, Fluorescent chemosensors for ion and molecule recognition: ACS Publications (1993).
[17] 蘇筱筑,"含羧基聚芴衍生物的合成,鑑定與其在化學感測器之應用," 成功大學化學工程學系學位論文, 1-87 (2013).
[18] D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of instrumental analysis. Australia: Brooks/Cole : Thomson Learning (2007).
[19] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer US (1983).
[20] H. G. Löhr and F. Vögtle, "Chromo- and fluoroionophores. A new class of dye reagents," Accounts of Chemical Research, 18, 65-72 (1985).
[21] Z. H. Kafafi, Organic electroluminescence: CRC press (2005).
[22] V. May and K. Oliver, Charge and energy transfer dynamics in molecular systems: John Wiley & Sons (2008).
[23] H. Bouas-Laurent, A. Castellan, M. Daney, J. P. Desvergne, G. Guinand, P. Marsau, and M. H. Riffaud, "Cation-directed photochemistry of an anthraceno-crown ether," Journal of the American Chemical Society, 108, 315-317 (1986).
[24] J. Wu, W. Liu, J. Ge, H. Zhang, and P. Wang, "New sensing mechanisms for design of fluorescent chemosensors emerging in recent years," Chem Soc Rev, 40, 3483-3495 (2011).
[25] S. W. Thomas, G. D. Joly, and T. M. Swager, "Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers," Chemical Reviews, 107, 1339-1386 (2007).
[26] K. H. Schweikart, M. Hanack, L. Lüer, and D. Oelkrug, "Synthesis, Absorption and Luminescence of a New Series of Soluble Distyrylbenzenes Featuring Cyano Substituents at the Peripheral Rings," European Journal of Organic Chemistry, 2, 293-302 (2001).
[27] C. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, "Beyond superquenching: Hyper-efficient energy transfer from conjugated polymers to gold nanoparticles," Proceedings of the National Academy of Sciences, 100, 6297-6301 (2003).
[28] J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, and B. Z. Tang, "Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole," Chemical Communications, 18, 1740-1741 (2001).
[29] G. Yang, F. Morlet-Savary, Z. Peng, S. Wu, and J.-P. Fouassier, "Triplet-triplet absorption of 2-(2-hydroxyphenyl) benzoxazole (HBO) in polar solvents," Chemical Physics Letters, 256, 536-542 (1996).
[30] Z. Li and S. Wu, "The effect of molecular structure on the photophysical behavior of substituted styryl pyrazine derivatives," Journal of Fluorescence, 7, 237-242 (1997).
[31] P. Wang and S. Wu, "Spectroscopy and photophysics of bridged enone derivatives: effect of molecular structure and solvent," Journal of Photochemistry and Photobiology A: Chemistry, 86, 109-113 (1995).
[32] J.-S. Wu, W.-M. Liu, X.-Q. Zhuang, F. Wang, P.-F. Wang, S.-L. Tao, X.-H. Zhang, S.-K. Wu, and S.-T. Lee, "Fluorescence Turn On of Coumarin Derivatives by Metal Cations:  A New Signaling Mechanism Based on C=N Isomerization," Organic Letters, 9, 33-36 (2007).
[33] A. Gupta and N. Kumar, "A review of mechanisms for fluorescent 'turn-on' probes to detect Al3+ ions," RSC Advances, 6, 106413-106434 (2016).
[34] T. Mahmud, R. Rehman, A. Gulzar, A. Khalid, J. Anwar, U. Shafique, Z. Waheed uz, and M. Salman, "Synthesis, characterization and study of antibacterial activity of enaminone complexes of zinc and iron," Arabian Journal of Chemistry, 3, 219-224 (2010).
[35] C. J. Pedersen, "Cyclic polyethers and their complexes with metal salts," Journal of the American Chemical Society, 89, 2495-2496 (1967).
[36] A. Kajal, S. Bala, S. Kamboj, N. Sharma, and V. Saini, "Schiff bases: a versatile pharmacophore," Journal of Catalysts, 2013, 1-14 (2013).
[37] Z. Xu, J. Yoon, and D. R. Spring, "Fluorescent chemosensors for Zn2+," Chemical Society Reviews, 9, 1996-2006 (2010).
[38] S. Mukherjee and S. Talukder, "A reversible luminescent quinoline based chemosensor for recognition of Zn2+ ions in aqueous methanol medium and its logic gate behavior," Journal of Luminescence, 177, 40-47 (2016).
[39] Y. Zhou, H. N. Kim, and J. Yoon, "A selective ‘Off–On’ fluorescent sensor for Zn2+ based on hydrazone–pyrene derivative and its application for imaging of intracellular Zn2+," Bioorganic & Medicinal Chemistry Letters, 20, 125-128 (2010).
[40] Y. W. Choi, G. J. Park, Y. J. Na, H. Y. Jo, S. A. Lee, G. R. You, and C. Kim, "A single schiff base molecule for recognizing multiple metal ions: A fluorescence sensor for Zn(II) and Al(III) and colorimetric sensor for Fe(II) and Fe(III)," Sensors and Actuators B: Chemical, 194, 343-352 (2014).
[41] A. K. Mahapatra, S. K. Manna, C. D. Mukhopadhyay, and D. Mandal, "Pyrophosphate-selective fluorescent chemosensor based on ratiometric tripodal-Zn(II) complex: Application in logic gates and living cells," Sensors and Actuators B: Chemical, 200, 123-131 (2014).
[42] Z. Dong, Y. Guo, X. Tian, and J. Ma, "Quinoline group based fluorescent sensor for detecting zinc ions in aqueous media and its logic gate behaviour," Journal of Luminescence, 134, 635-639 (2013).
[43] C. Gao, X. Jin, X. Yan, P. An, Y. Zhang, L. Liu, H. Tian, W. Liu, X. Yao, and Y. Tang, "A small molecular fluorescent sensor for highly selectivity of zinc ion," Sensors and Actuators B: Chemical, 176, 775-781 (2013).
[44] D. Sarkar, A. Pramanik, S. Jana, P. Karmakar, and T. K. Mondal, "Quinoline based reversible fluorescent ‘turn-on’ chemosensor for the selective detection of Zn2+: Application in living cell imaging and as INHIBIT logic gate," Sensors and Actuators B: Chemical, 209, 138-146 (2015).
[45] W. K. Dong, S. F. Akogun, Y. Zhang, Y.-X. Sun, and X. Y. Dong, "A reversible “turn-on” fluorescent sensor for selective detection of Zn2+," Sensors and Actuators B: Chemical, 238, 723-734 (2017).
[46] N. Miyaura and A. Suzuki, "Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds," Chemical Reviews, 95, 2457-2483 (1995).
[47] C. Amatore, A. Jutand, and G. Le Duc, "Kinetic Data for the Transmetalation/Reductive Elimination in Palladium-Catalyzed Suzuki–Miyaura Reactions: Unexpected Triple Role of Hydroxide Ions Used as Base," Chemistry – A European Journal, 17, 2492-2503 (2011).
[48] R. Varghese, S. J. George, and A. Ajayaghosh, "Anion induced modulation of self-assembly and optical properties in urea end-capped oligo (p-phenylenevinylene) s," Chemical Communications, 593-595 (2005).
[49] S. Dalapati, M. A. Alam, S. Jana, and N. Guchhait, "Naked-eye detection of F− and AcO− ions by Schiff base receptor," Journal of Fluorine Chemistry, 132, 536-540 (2011).
[50] S. Erdemir, O. Kocyigit, and S. Malkondu, "Fluorogenic recognition of Zn2+, Al3+ and F− ions by a new multi-analyte chemosensor based bisphenol a-quinoline," Journal of fluorescence, 25, 719-727 (2015).
[51] D. A. Deranleau, "Theory of the measurement of weak molecular complexes. II. Consequences of multiple equilibria," Journal of the American Chemical Society, 91, 4050-4054 (1969).
[52] M. Shellaiah, Y. H. Wu, and H. C. Lin, "Simple pyridyl-salicylimine-based fluorescence “turn-on” sensors for distinct detections of Zn2+, Al 3+ and OH− ions in mixed aqueous media," Analyst, 138, 2931-2942 (2013).
[53] W. Li, X. Tian, B. Huang, H. Li, X. Zhao, S. Gao, J. Zheng, X. Zhang, H. Zhou, and Y. Tian, "Triphenylamine-based Schiff bases as the High sensitive Al3+ or Zn2+ fluorescence turn-on probe: mechanism and application in vitro and in vivo," Biosensors and Bioelectronics, 77, 530-536 (2016).
[54] Y. P. Kumar, P. King, and V. Prasad, "Zinc biosorption on Tectona grandis Lf leaves biomass: equilibrium and kinetic studies," Chemical engineering journal, 124, 63-70 (2006).
[55] C.-H. Hung, G.-F. Chang, A. Kumar, G.-F. Lin, L.-Y. Luo, W.-M. Ching, and E. W.-G. Diau, "m-Benziporphodimethene: a new porphyrin analogue fluorescence zinc (II) sensor," Chemical Communications, 978-980 (2008).
[56] H. Chen, W. Gao, M. Zhu, H. Gao, J. Xue, and Y. Li, "A highly selective OFF–ON fluorescent sensor for zinc in aqueous solution and living cells," Chemical Communications, 46, 8389-8391 (2010).
[57] T.-T. Zhang, X.-P. Chen, J.-T. Liu, L.-Z. Zhang, J.-M. Chu, L. Su, and B.-X. Zhao, "A high sensitive fluorescence turn-on probe for imaging Zn 2+ in aqueous solution and living cells," RSC Advances, 4, 16973-16978 (2014).
[58] S. Lee, J. H. Lee, T. Pradhan, C. S. Lim, B. R. Cho, S. Bhuniya, S. Kim, and J. S. Kim, "Fluorescent turn-on Zn2+ sensing in aqueous and cellular media," Sensors and Actuators B: Chemical, 160, 1489-1493 (2011).

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw